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Q1:

RR(n) =
n× (n− 1)

2
. (1)

Solution Let P (n) be the property of n that ( 1) holds. We now prove
by mathematical induction that p(n) is true for all n ≥ 2 .

Inductive base p(2) is true because in a round-robin tournament with
n = 2 the number of matches, RR(2) is 1. In this case, n×(n−1)

2 = 1 .

Inductive hypothesis The inductive hypothesis is given by (1) with
n fixed.

Inductive step In a round-robin tournament with n+1 players, s1, s2, · · · , sn, sn+1

, the number of matches among the n players s1, s2, · · · , sn are RR(n), and the
number of matches with player sn+1 are n, because sn+1 needs to play a match
with each of s1, s2, · · · , sn .

So the total number of matches for in a round-robin tournament with n+1
players are RR(n+1), RR(n+1)= RR(n)+n .

One has
RR(n+1) left side of (1) with n := n + 1
= RR(n) + n from above
= n×(n−1)

2 + n Inductive hypothesis
= (n+1)×((n+1)−1)

2 right side of (1) with n := n + 1
So p(n + 1) holds.

Conclusion The inductive base and the inductive step imply that (1)
is valid for all n ≥ 2 .

Q2:
Solution We prove by induction on the structure of fpe e that
P (e) ≡ if e obtains no negations then the number of symbols in e are odd.
holds for all fpe e .

Inductive base e is an atomic expression, i.e., a single propositional
variable or a single propositional constant. In this case the number of symbols
in e is 1, which is odd.

Inductive Hypothesis Assume that, for any subexpression A of e , if
A contains no negations, then the number of symbols in A are odd.

Inductive step
We only need to consider the cases of e ≡ (A∧B) , e ≡ (A∨B) , e ≡ (A ⇒ B)

,and e ≡ (A ⇔ B) .
Case 1: e ≡ (A ∧B)
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If e contains no negations, then subexpression A and B contains no negations.
By inductive hypothesis, A and B both have odd number of symbols. The
logical connective ∧ is one single symbol. Odd number + odd number + 1 =
odd number. So the number of symbols in e are odd.

The proof for the cases e ≡ (A ∨ B) , e ≡ (A ⇒ B) ,and e ≡ (A ⇔ B) are
similar.

Conclusion One concludes that P (e) holds for all fpe e .

Q3:

n∑

k=0

k · (k + 1) =
2n3 + 6n2 + 4n

6
(2)

Solution Let P (n) be the property of n that (2) holds. We now prove
by mathematical induction that p(n) is true for all natural numbers n .

Inductive base p(0) is true because (2) holds for n = 0 . In this case,∑0
k=0 k · (k + 1) = 0 , and

Inductive hypothesis The inductive hypothesis is given by (2) with n
fixed.

Inductive step One has∑n+1
k=0 k · (k + 1) left side of (2) with n := n + 1

=
∑n

k=0 k · (k + 1) + (n + 1) · (n + 2) by the definition
= 2n3+6n2+4n

6 + (n + 1) · (n + 2) Inductive hypothesis
= n·(n+1)·(n+2)

3 + (n + 1) · (n + 2)
= n·(n+1)·(n+2)+3·(n+1)·(n+2)

3

= (n+1)·(n+2)·(n+3)
3

= 2(n+1)3+6(n+1)2+4(n+1)
6 right side of (2) with n := n + 1

So p(n + 1) holds.

Conclusion The inductive base and the inductive step imply that (2)
is valid for all n .

Q4:
(One has
a1.(a2.(....(an.[]) · · ·)) = [a1, a2, · · · , an] (a)
cat([].y) = y (b)
cat(a.x, y) = a.cat(x,y) (c) )

cat([a1, a2, · · · , an], [b1, b2, · · · , bm]) = [a1, a2, · · · , an, b1, b2, · · · , bm] (3)

Proof Let P (n) be the proposition that (3) is true for all n ≥ 0
,assuming m is fixed and m ≥ 0. One has the following:

Base for induction For n=0, (3) is true. In this case, one has
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cat([], [b1, b2, · · · , bm]) = [b1, b2, · · · , bm] by (b).

Inductive hypothesis The inductive hypothesis is given by (3) with
n fixed.

Inductive step One has
cat([a1, a2, · · · , an, an+1], [b1, b2, · · · , bm]) Left side of (3)
= cat(a1.[a2, · · · , an, an+1], [b1, b2, · · · , bm]) By (a)
= a1.cat([a2, · · · , an, an+1], [b1, b2, · · · , bm]) By (c)
= a1.[a2, · · · , an, an+1, b1, b2, · · · , bm] By induction hypothesis
= [a1, a2, · · · , an, an+1, b1, b2, · · · , bm] By (a) Right side of (3)
So p(n + 1) holds.

Conclusion The inductive base and the inductive step imply that (3)
is valid for all n .

Q5:
Example A = a, b, c , B = b , C = c . One has A∪B = a, b, c, andA∪C =

a, b, c, butB 6= C .

Q6:
Prove

A ∩ (∼ A ∪B) = A ∩B (4)

Proof
A ∩ (∼ A ∪B) left side of (4)
= (A∩ ∼ A) ∪ (A ∩B) by Distributive Laws
= φ ∪ (A ∩B) By Exclusion Law
= (A ∩B) ∪ φ By Commutative laws
= A ∩B By Identity Laws
This completes the proof of (4) .
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