Home work 2 sample solution
22C:034 Spring 2004

Q1:

-1
RR(n) = % (1)
Solution Let P(n) be the property of n that ( 1) holds. We now prove
by mathematical induction that p(n) is true for all n > 2 .

Inductive base  p(2) is true because in a round-robin tournament with

n = 2 the number of matches, RR(2) is 1. In this case, % =1.

Inductive hypothesis The inductive hypothesis is given by (1) with
n fixed.

Inductive step In a round-robin tournament with n+1 players, s1, S2, -+, Sn, Sn+1

, the number of matches among the n players sy, s9,- -, s, are RR(n), and the
number of matches with player s, 41 are n, because s,+1 needs to play a match
with each of s1,s9, -, 8, .

So the total number of matches for in a round-robin tournament with n+1
players are RR(n+1), RR(n+1)= RR(n)+n .

One has

RR(n+1) left side of (1) with n:=n+1

= RR(n) + n from above

= % + n Inductive hypothesis

= w right side of (1) withn:=n+1

So p(n + 1) holds.

Conclusion The inductive base and the inductive step imply that (1)
is valid for all n > 2.

Q2:

Solution = We prove by induction on the structure of fpe e that

P(e) = if e obtains no negations then the number of symbols in e are odd.
holds for all fpe e .

Inductive base e is an atomic expression, i.e., a single propositional
variable or a single propositional constant. In this case the number of symbols
in e is 1, which is odd.

Inductive Hypothesis Assume that, for any subexpression A of e , if
A contains no negations, then the number of symbols in A are odd.

Inductive step

We only need to consider the cases of e = (AAB) ,e = (AVB),e = (A= B)
,and e = (A< B) .

Case 1: e= (AAB)



If e contains no negations, then subexpression A and B contains no negations.
By inductive hypothesis, A and B both have odd number of symbols. The
logical connective A is one single symbol. Odd number + odd number + 1 =
odd number. So the number of symbols in e are odd.

The proof for the cases e = (AV B) ,e = (A= B) ,and e = (A < B) are

similar.

Conclusion  One concludes that P(e) holds for all fpe e .

Q3:
- 2n® 4+ 6n2 + 4
Zk.(k_kl)zw (2)
k=0
Solution  Let P(n) be the property of n that (2) holds. We now prove
by mathematical induction that p(n) is true for all natural numbers n .

Inductive base  p(0) is true because (2) holds for n =0 . In this case,
Sheok-(k+1)=0,and

Inductive hypothesis  The inductive hypothesis is given by (2) with n
fixed.

Inductive step One has

Zié k- (k+1) left side of (2) withn:=n+1
=>r ok-(k+1)+(n+1)-(n+2) by the definition
= % +(n+4+1)-(n+2) Inductive hypothesis

_ n-(n+1§~(n+2) + (n + 1) . (Tl + 2)
_ n(nt1) (n+2)+3-(n+1)-(n+2)

(1) (nt2)-(n43)
- 3

= 2("+1)3+6("g1)2+4("+1) right side of (2) with n:=n+1
So p(n + 1) holds.

Conclusion The inductive base and the inductive step imply that (2)
is valid for all n .

Q4:

(One has

ay.(az.(cc..(an.[]) -+ *)) = [a1, a2, - -, an] (a)
cat(.y) =y (b

cat(a.x, y) = a.cat(x,y) (c))

cat([al,ag, o 'aanL [blab% o 7bm]) = [a17a27 e 7a77.7b1ab2a o abm] (3)

Proof Let P(n) be the proposition that (3) is true for all n > 0
,assuming m is fixed and m > 0. One has the following:

Base for induction For n=0, (3) is true. In this case, one has



cat([], [bl,bg, . ,me = [bl,bg, . ',bm] by (b)

Inductive hypothesis The inductive hypothesis is given by (3) with
n fixed.

Inductive step One has

cat([ay, az, -+, an,ant1), [b1,b2, -, b)) Left side of (3)

= cat(ay.[ag, -, an,ani1], 01,02, -, b)) By (a)

= ay.cat([ag, -, an, anii], [b1, 02, bim]) By (c)

=ay.[az,  , Qn,Ani1,b1,b2, -, by ] By induction hypothesis

=la1,az2, -, n, Apy1,b1, 02, -, by ] By (a) Right side of (3)
So p(n + 1) holds.

Conclusion The inductive base and the inductive step imply that (3)
is valid for all n .

Q5:
Example A=ab,c,B=b,C =c. Onehas AUB = a, b, c,andAUC =
a,b,c,butB # C .

Q6:

Prove

ANn(~AUB)=ANB (4)

Proof

ANn(~AUB) left side of (4)
=(AN~A)U(ANB) by Distributive Laws
=¢U(ANB) By Exclusion Law
=(ANB)U¢ By Commutative laws
=ANB By Identity Laws

This completes the proof of (4) .



