
22C:185 — Fall 2004

Homework XIII

page 1 of 2

1. [20 points]
This problem pertains to a module to specify a highly simplified version of the (positive
and negative) integers. It closely resembles the module for natural numbers in our text
(p. 449). The positive integers are obtained by repeated application of the 'succ' function
to 0, and the negative integers are obtained by applications of the 'pred' function to 0.
module Integers

exports
sorts Integer
operations

0: Integer
succ(_): Integer Æ Integer
pred(_): Integer Æ Integer
add: Integer, Integer Æ Integer
sub: Integer, Integer Æ Integer

end exports
variables

m,n: Integer
equations

add(m,0) = m
add(m,succ(n)) = succ(add(m,n))
add(m,pred(n)) = pred(add(m,n))
succ(pred(m)) = m
pred(succ(m)) = m

end Integers

The specification provided above is incomplete as it does not prescribe any behavior for
the subtraction function 'sub'. Provide suitable equations for the 'sub' function, and justify
that your equations permit the usual conclusions about integer arithmetic (e.g., m-m=0).

2. [30 points]
This problem pertains to the module 'Lists' on page 453 of our text. Add the specification
of two functions with the signatures

drop: Natural, List Æ List, and
front: List Æ List.

The informal description of the 'drop' function is that drop(N,L) consists of the list L with
the first N items removed. For instance,
drop(succ(1), cons(0, cons(1, cons(1, mkList(0))))) ≡ cons(1, mkList(0)).

The informal description of the 'front' function is that front(L) consists of the list L with its
last item omitted. For instance,
front(cons(0, cons(1, cons(1, mkList(0))))) ≡ cons(0, cons(1, mkList(1))).

Provide equations to specify these two functions, and justify that your specification
accomplishes the informally stated behavior, including when the lists are “too short”.



page 2 of 2

3. [15 points]
An abridged version of the Stack of Nat ADT with sorts Stack and Nat is given as
follows:

Signature Equations (for all x,yŒNat and zŒStack)
0:Nat
s: Nat Æ Nat sum(0,y) = y
sum: Nat, Nat Æ Nat sum(s(x), y) = s(sum(x,y))
empty: Stack
push: Stack, Nat Æ Stack
pop: Stack Æ Stack pop(push(z, x)) = z
top: Stack Æ Nat top(push(z, x)) = x

Give a context-free grammar (BNF) whose derivation trees are (when viewed as terms)
precisely the set of well-formed ground terms of this ADT, and justify it.


