
22C/55:181 -- Spring 2006

page 1 of 3

Midterm Exam Sample Solutions

Problem 1.
(a) "x:N • $y:N • x+y2>x2+y is true since for each x, the existence of a suitable value for
y just requires y a little larger than x. For example, if y=x+2, then x+y2 = x+(x+2)2 =
x2+5x+4 > x2+x+2 = x2+y.
(b) $y:N • "x:N • x+y2>x2+y is false. Suppose some value exists for y, say y=k, so that .
"x:N • x+k2>x2+k is true. Then "x:N • k2-k>x2-x would be true, but this inequality is
clearly only true for values of x smaller than k, not all values (e.g., not for x=k).

Problem 2.
Assertion (a) is a suitable invariant -- the initial conditions of K=N, X=1 and P=0 satisfy
this condition, the loop ends with K=0 yielding the desired conclusion, and the condition
can be proven invariant for execution of the loop body.

To see that (b) must fail, just take the values initially assigned for the variables when
N=1, namely P=0, X=1, and K=1, and then K≥0 /\ X*2N = 2K /\ P*X+1 = 2N-K is true. But
after the loop body executes, K=0, P=1, and X=2 so X*2N = 4 while 2K = 1, and
P*X+1=3 while 2N-K=2 and hence the assertion fails to provide a valid invariant.

Problem 3.
Apart from the changes indicated here, the schemes remain as they appear in Diller.

In the invariant for the state schema, add the condition
ran cell « ran land = ∅,

and this pledges states where the same number is not both a cell and a land number.

For the AddCell operation properties, add the pre-condition
newnumber?œ ran land

to prevent adding an existing land line as a cell phone, preserving the invariant for this
operation -- this creates a new exceptional case which the problem does not require to
be treated.

By duality for the AddLand operation properties, add the pre-condition
newnumber?œ ran cell

preserving the invariant for this operation (likewise creating a new exceptional case).

22C/55:181 -- Spring 2006

page 2 of 3

Problem 4.
There are a variety of ways to express this in Z. For a solution using only sets and
relational image -- relational image telephones~(({ph}))} gives all persons assigned to a
phone and can be used to identify those phones whose listing includes all the people in
the argument set (i.e., shared by all).

It would be an acceptable solution to include no pre-condition for this operation (so no
exceptions). If a non-member occurred in the argument set, this would simply lead to the
empty set of phones being returned -- a meaningful and reasonable result (which can
occur even when only members appear in the argument). However, it is more in the style
of Diller's presentation to treat the occurrence of a non-member as an exception and
report accordingly, so this is included in this solution.

SharedPhones
X PhoneDB
people? : P Person
ans! : P Phone

people? Õ members
ans! = {ph : Phone | people?Õtelephones~(({ph}))}

Then the operation completed with the exception is
DoSharedPhones =^= SharedPhones /\ Success \/ NonMembers

where NonMembers is a schema just like Diller's NotMember except that its pre-
condition is ÿ(people? Õ members), the negation of the pre-condition in SharedPhones.

As an alternative solution, the character of the problem is strongly suggestive of
descriptions that characterize members of the desired set. This alternative uses
relational image with telephones (rather than telephones~) in an axiomatic description --
a phone belongs to the answer set if and only if for all x in people, the phone is in the
telephones image (i.e., shared by them all).

SharedPhones
X PhoneDB
people? : P Person
ans! : P Phone
ph : Phone

 people? Õ members
 phŒans! Û ("x:Person • xŒpeople? fi phŒtelephones(({x})))

22C/55:181 -- Spring 2006

page 3 of 3

The first two descriptions are existentially based over either the entire collection Person
or the entire collection Phone. A third solution can be given using generalized
intersection. This was not discussed in class, but is covered in Diller, and takes a single
argument that is a set of sets and gives their mutual intersection. This solution
alternative is more direct than the first two as it requires consideration of only the set of
people given by the argument, and the intersection operation assures membership for all
indicated people.

SharedPhones
X PhoneDB
people? : P Person
ans! : P Phone

 people? Õ members
 ans! = « {telephones(({x})) | xŒpeople?}

