Propositional Logic

Definition: the (well formed) formulas (wffs) over a set of variables V consist of:

- (i) T, F, and each $X \in V$,
- (ii) for each pair of wffs α and β
 - (¬α),
 - (α^β),
 - (ανβ),
 - (α⇒β),
 - (α⇔β),

To avoid excessive parenthesizes in wffs we adopt the following precedence and take \Rightarrow to be rightassociative

highest precedence
7
٨
v
⇒, ⇔
lowest precedence

The definitions of the logical connectives are given by their "truth-tables"

Р	Q	¬Ρ	P∧Q	PvQ	P⇒Q	P⇔Q
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Definition: an **assignment** to a set V of variables is a function $\sigma: V \rightarrow \{T, F\}$. Each assignment is inductively extended to apply to wffs. For wffs α and β

- $\sigma(\neg \alpha) = \neg \sigma(\alpha)$,
- $\sigma(\alpha \wedge \beta) = \sigma(\alpha) \wedge \sigma(\beta),$
- $\sigma(\alpha \vee \beta) = \sigma(\alpha) \vee \sigma(\beta)$,
- $\sigma(\alpha \Rightarrow \beta) = \sigma(\alpha) \Rightarrow \sigma(\beta),$
- $\sigma(\alpha \Leftrightarrow \beta) = \sigma(\alpha) \Leftrightarrow \sigma(\beta)$, and
- $\sigma(\mathbf{T}) = \mathbf{T}, \ \sigma(\mathbf{F}) = \mathbf{F},$

Definition: wffs α and β are **logically equivalent**, $\alpha = \beta$, if $\sigma(\alpha) = \sigma(\beta)$ for each assignment σ .

Definition: Let α and β be wffs. Then α is **satisfiable** if there is an assignment σ so that $\sigma(\alpha) = T$; an unsatisfiable wff is also called a **contradiction**. If $\sigma(\alpha) = T$ for every assignment σ , then α is a **tautology**.

Definition: a set of wffs *S* logically implies a wff α , *S* $\mid = \alpha$, provided that for each assignment σ such that $\sigma(\beta) = T$ for each $\beta \in S$, $\sigma(\alpha) = T$ (if $S = \emptyset$, write $\mid = \alpha$ and α is a tautology).

Definition: a **proof system** consists of the following constituents

- a subset of wffs called **axioms** we expect there is a decision procedure to effectively determine whether or not a wff is an axiom.
- a finite collection $\{R_1, \ldots, R_n\}$ of inference rules, where each rule R_i allows us to decide for wffs α_1 ,
 - ..., α_{m_i} , β whether or not β is a **direct consequence** of $\alpha_1, \ldots, \alpha_{m_i}$, written $\frac{\alpha_1 \cdots \alpha_{m_i}}{\beta}$.
- **proofs** which are sequences $\alpha_1, \ldots, \alpha_k$ of wffs so that each i $(1 \le i \le k)$, either α_i is an axiom or α_i is a direct consequence of some preceding wffs in the sequence; the last wff of a proof is called a **theorem**.

Two important rules of inference are:

• modus ponens — for any wffs α and β , $\frac{\alpha \quad \alpha \Rightarrow \beta}{\beta}$ • resolution — for any wffs α , β , and γ , $\frac{\alpha \lor \beta \quad \neg \alpha \lor \gamma}{\beta \lor \gamma}$.

Definition: in a proof system with axioms A, a wff α is a **consequence of a set of wffs** Γ if it is a theorem in the proof system with axioms A $\cup \Gamma$. The elements of Γ are called **hypotheses** or **premises** and we write $\Gamma \mid -\alpha$; if $\Gamma = \emptyset$, write $\mid -\alpha$ (i.e., with no premises, the consequences are just the theorems).

Definition: a rule of inference $\frac{\alpha_1 \dots \alpha_{m_i}}{\beta}$ is **sound** provided that whenever each α_j $(1 \le j \le m_i)$ is a tautology, β is also a tautology. A proof system is **sound** if each theorem is a tautology. A proof system is **complete** if each tautology is a theorem.