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Predicate Logic

Definition: a predicate is a function that yields a Boolean value.

A predicate is effectively a “parameterized Boolean value” — it may be true for some arguments, and false
for others. For instance x > 0 is a predicate with a single argument, we could name it gt0(x). Then gt0(5)
is true and gt0(0) is false.

The well-formed formulas (wffs) of predicate logic are more involved than those of propositional logic, and
their elaboration is comprised of several definitions.

Definition: the elements of predicate logic wffs consist of the following components:
• variable identifiers – a set (normally infinite) of variable names, often x, x1, x2, … , y, y1, y2, …

• constant identifiers – a set (finite, infinite, or empty) of constant names, often a, a1, a2, … , b, b1,

b2, …

• predicate identifiers – a (non-empty) set of predicate names, often p, p1, p2, … , q, q1, q2, …

• function identifiers – a set of function names, often f, f1, f2, … , g, g1, g2, …

Each function and predicate identifier has a fixed arity — the number of arguments it accepts.

Definition: the terms of the predicate logic are defined inductively as:
(i) variable names and constant names are terms, and
(ii) if t1, … , tk are terms and f is a function name of arity k, then f(t1, t2, … , tk) is a term.

A term that contains no variables is called a ground term.

Definition: if t1, … , tk are terms and predicate name p has arity k, then p(t1, … , tk) is an atomic

formula of the predicate logic.

The additional logical operations in predicate logic are universal quantification, "x — read as “for all x”

(e.g., "x.x2 ≥ 0), and existential quantification, $x — read as “there exists x” (e.g., $x.x2= 3). In the
precedence scheme for avoiding parentheses in formulas, " and $ have the lowest precedence of all the
connectives.

Definition: the well-formed formulas (wffs) of predicate logic are inductively defined as:
(i) each atomic formula is a wff, and
(ii) if a and b are wffs and x is a variable name, then each of the following is also a wff

• (ÿa)
• (aŸb) • ("x.a)
• (a⁄b) • ($x.a)
• (afib) • (aÛb).

These two quantification operations provide an indispensable means to express assertions about the truth
outcomes of predicates. The interpretation of each of these logical operations depends on an understanding
about the universe from which values of variables may be drawn. If this universe is finite, say {c1, c2, … ,

ck}, then these new operations can be expressed using the propositional logic connectives. A formula

("x.a) is equivalent to a conjunction of wffs obtained by replacing x by each of the items of the universe
(e.g., "x.p(x,y) ≡ p(c1,y) Ÿ p(c2,y) Ÿ … Ÿ p(ck,y)). Similarly a formula ($x.a) is equivalent to a

disjunction of wffs obtained by replacing x by each of the items of the universe (e.g., $x.p(x,y) ≡ p(c1,y)

⁄ p(c2,y) ⁄ … ⁄ p(ck,y)). However, typically the universe is not finite so in general these new operations

provide increased expressiveness.

The quantification operations require us to differentiate the use of variables. For instance, the formula p(x)
has a parameter x, and may be true for some values and false for others. However, the formula "x.p(x)
effectively has no parameters and represents a single unique value — the variable x is said to be bound in
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the latter case, and free in the former case. This illustrates two different roles for variables in predicate logic
wffs that must be carefully distinguished.

Definition: the bound occurrences of variables in ("x.a) are the bound occurrences of variables in a, plus
all occurrences of x in a; a is called the scope of the quantification. All variable occurrences that are not
bound are free. Similar definitions apply to ($x.a). A wff is called closed if it has no free variable
occurrences.

Definition: an interpretation i consists of:
(i) a non-empty set D — the domain (or universe of values),
(ii) an assignment m of

• each n-ary predicate name to an n-place relation on D,
• each n-ary function name to an n-place function on D,
• each constant identifier to an element of D.

We write i = (D, m).

An interpretation is a term interpretation if D is all terms, and the assignments for each function name is
the corresponding term constructor, m(f)(t1, … , tk) = f(t1, … , tk). A term interpretation using only

ground terms is called a Herbrand interpretation.

Definition: given an interpretation i = (D, m), a variable assignment (or state) s is a function on the set
of variables V, s: V Æ D. The assignment is inductively extended to yield a value for all terms and
formulas,

(i) for terms
• for variable x, vals(x) = s(x), and for constant c, vals(c) = m(c),

• for a compound term vals(f(t1, … , tk)) = m(f)(vals(t1), … , vals(tk))

(ii) for formulas
• for an atomic formula vals(p(t1, … , tk)) = m(p)(vals(t1), … , vals(tk))

• for compound formulas
vals(ÿa) = ÿvals(a),

vals(aŸb) = vals(a) Ÿ vals(b),

vals(a⁄b) = vals(a) ⁄ vals(b),

vals(afib) = vals(a) fi vals(b),

vals(aÛb) = vals(a) Û vals(b),

vals("x.a) = 
Ó
Ì
Ïtrue if vals'(a) = true for each s' where s'(y) = s(y) for y≠x

false otherwise
  

vals($x.a) =
Ó
Ì
Ïtrue if vals'(a) = true for some s' where s'(y) = s(y) for y≠x

false otherwise
  

The last two definitions indicate that, given an interpretation and a state, a unique value is determined for
each term and each formula by “evaluating” each logical operation. This provides the truth values we use to
categorize formulas.

Definition: Let a be a wff, i be an interpretation, and s be a state. Then s satisfies a under i, i |=s a, if

vals(a) = true. The wff a is true in i, i |= a, if every state satisfies a under i, and i is called a model of

a; the wff a is false in i if no state satisfies a under i. An interpretation is called a model of a set of wffs
if it is a model of each wff in the set, and if it is a term interpretation, it is called a term model.

Definition: A wff is logically valid (a tautology) if it is true in every interpretation, satisfiable if there
exists an interpretation and state that satisfies it, and a contradiction if it is unsatisfiable.
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Definition: A wff a is a logical consequence of a set of wffs G, G |= a, if every interpretation and state
which satisfies each bŒG also satisfies a; a and b are logically equivalent, a ≡ b, if for every
interpretation and every state s, vals(a) = vals(b).

It turns out (i.e., can be proven) that logical validity and logical consequence can be determined by
examining only term models. Term interpretations are completely determined by describing the ground
atomic formulas that are true — this set of formulas is sometimes called a Herbrand interpretation.
Herbrand models are often compared by comparing these sets — the least model assigns true values to the
smallest set of formulas required to obtain a model.

There are a variety of helpful logical equivalencies in predicate logic and we note a few.
• "x.("y.a)  ≡ "y.("x.a)
• $x.($y.a)  ≡ $y.($x.a)
• ÿ("x.a) ≡ $x.(ÿa)
• ÿ($x.a) ≡ "x.(ÿa)

A proof system in predicate logic also comprises a collection of axioms, plus rules of inference. Of course,
modus ponens and resolution are still sound rules of inference. A variety of rules of inference pertaining to
quantification may be utilized. A few are cited here.

• universal generalization 
a

"x.a
  (UG)  

• universal instantiation 
"x.a

 a[x∅ t]
 (UI)  

for each term t that “avoids name clashes”, where a[xÆ t] is wff a with each occurrence of x in the
scope replaced by t

• existential generalization 
a[xÆ t]
$x.a

 (EG)  

for each term t that “avoids name clashes”, where a[xÆ t] is wff a with each occurrence of x in the
scope replaced by t.

Sample Proof
This is a complete system for the propositional logic, where we only consider the logical operations ÿ and
fi. This is not a limitation since every formula can be rewritten using just these two operations — for
instance a Ÿ b ≡ ÿ(a fi ÿb), and a ⁄ b ≡ (ÿa) fi b. We can consideration these other operations as
“abbreviations” with the reduced operation set.

Axioms    (for all legal wffs a, b, g):
A1. a fi (b fi a)
A2. (a fi (b fi g)) fi ((afib) fi ((a fi g))
A3. (ÿ�b fi ÿa) fi ((ÿb fi a) fi b)

Proof   : for any wff d, |— d fi d
1. (d fi ((d fi d) fid)  fi ((dfi(dfid))fi(dfid)) by A2
2. dfi((dfid)fid) by A1
3. (dfi(dfid)) fi (dfid) by modus ponens on 1 and 2
4. dfi(dfid) by A1
5. dfid by modus ponens on 3 and 4


