22C/55:181

Phone Database — Finale

We have examined Z facilities involved in the specification of all of the telephone
database operations. However, these specifications describe only the effect of
each individual operation, not a system in which these operations may be
repeatedly performed. As a last step in this example, we examine Diller’s
specification of a rudimentary control system.

The first constituent of the control system is a new basic type, [Commands].
Commands can be viewed as an enumerated type

Commands ::=aelfplfnlrelamlrm
providing pneumonics for the six basic operations add entry, find phones, find
names, remove entry, add member, and_remove member.

The schemas describing the control facility are as shown below. First, the
operation whose pre-condition is the test for an add entry command.

AddEntry Command
cmd?: Command

cmd? = ae

Then there is a schema about carrying out a command once it is identified.

CODoAddEntry £ DoAddEntryCommand A DoAddEntry

There are similar pairs of schema for each of the other operations. Also, there is
a schema to cover the exceptional cases.

UnknownCommand
=PhoneDB

cmd?: Command
rep!: Report

cmd? & {ae,fp, fn, re, am, rn}
rep! = 'Unknown command'

22C/55:181

Then the overall control is specified as

PhoneDatabase = CODoAddMember
CODoRemoveMember
CODoAddEntry
CODoRemoveEntry
CODoFindPhones
CODoFindNames
Unknown Command

There is one other schema to be mentioned, one specifying the initial state.

InitPhoneDB
APhoneDB

members = J
telephones = &

Actually, the initial state for all the rest of the operations is the post-state of this
operation. This state can be denoted as InitPhoneDB'.

The Miranda animation includes a realization of these specifications, but goes
beyond them. It creates a continuing realization that accepts a sequence of
commands. Before we examine this, we should pause to look at the general I/O
utility functions.

22C/55:181

> before x = takewhile (~=x)

> after x = tl . dropwhile (~=x)

> readl msg g input = msg ++ line ++ "\n" ++ g line input’
> where line = before '\n' input

> input' = after '\n' input

> read2 (msgl,msg2) g = readl msgl gl

> where

> gl linel = readl msg2 g2

> where g2 1ine2 = g (linel,line2)
> write msg g input = msg ++ g input

> end input = ""

Using these utilities, the Miranda animation code is

> string == [char]

> person == string

> phone == string Il extraction from input requires string
> phonedb == ([person], [(person,phone)])

> go :: string -> string

> go = phdb empty

> phdb :: phonedb -> string -> string

> phdb db = tndb db, if invar db

> = write "Invariant violated\n" (tndb db), otherwise
> invar :: phonedb -> bool

> invar (mem, tel) = and [member mem n | (n,a) <- tel]

> empty :: phonedb

> empty = ([1,[D

\%

VVV VYV VVVYVYVVYV

tndb ::

tndb (mem, tel)

= readl
where
cocmd
cocmd
cocmd
cocmd
cocmd

cocmd
cocmd
cocmd

22C/55:181

phonedb -> string -> string

"Command: " cocmd

Il corrections in all cases of cocmd except first
"end" = write "Exit program\n" end
"age" = read2 ("Name? ", "Extension? ") (doAddEntry (mem, tel))

|lfpll _

" fn "

re

am

" r‘mll _

readl "Name? " (doFindPhones (mem, tel))
readl "Extension? " (doFindNames (mem, tel))

= read2 ("Name? ","Extension? ")

(doRemoveEntry (mem, tel))

= readl "Name? " (doAddMember (mem, tel))

readl "Name? " (doRemoveMember (mem, tel))

other = write "Unknown command\n" (donothing (mem, tel))

