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Abstract: This paper is an introduction to recent research on hidden algebra and its application
to software engineering; it is intended to be informal and friendly, but still precise. We first review
classical algebraic specification for traditional “Platonic” abstract data types like integers, vectors,
matrices, and lists. Software engineering also needs changeable “abstract machines,” recently called
“objects,” that can communicate concurrently with other objects through visible “attributes” and
state-changing “methods.” Hidden algebra is a new development in algebraic semantics designed
to handle such systems. Equational theories are used in both cases, but the notion of satisfaction
for hidden algebra is behavioral, in the sense that equations need only appear to be true under all
possible experiments; this extra flexibility is needed to accommodate the clever implementations that
software engineers often use to conserve space and/or time. The most important results in hidden
algebra are powerful hidden coinduction principles for proving behavioral properties. This paper also
includes some comparison with the closely related area called coalgebra, and some bits of history.

1 Introduction

Algebra in its modern abstract sense seems to have begun with Emmy Noether around 1927 [76].
Today this area builds on equational theories for monoids, groups, rings, etc. Garrett Birkhoff
pioneered the general study of equational theories under what we now call “loose semantics,” giving
in particular rules of deduction and a completeness theorem [6]; Alfred Tarski also made significant
early contributions to this area, which is now called “universal algebra” (or sometimes “general
algebra”). ADJ! pioneered “initial semantics” and its application to abstract data types (hereafter
abbreviated ADTs) in computer science [26, 46, 45|, which has since blossomed into an area of
research called “algebraic semantics” (also “algebraic specification”), with hundreds of workers, its
own conferences and journals, and even its own professional society (called AMAST). Hidden algebra
is one of the most recent developments in this lively area.

1.1 Notes on the State of the Software Arts

Software development is very difficult. To understand it better, we can distinguish among designing,
coding, and verifying (i.e., proving properties of) programs. Most of the literature addresses code
verification, but this is very difficult in practice, and empirical studies have shown that little of the
cost of software arises from errors in coding: most comes from errors in design and requirements
[7]. Moreover, many programs are written in obscure and/or obsolete languages, with complex ugly
semantics (like Cobol, Jovial, and Mumps), are very poorly documented, are indispensable to some
enterprise, and are very large, often several million lines, sometimes more. Therefore it is usually
an enormous effort to verify real code, and it isn’t usually worth the trouble. I like to call this the
semantic swamp; it is a place to avoid.

Moreover, programs in everyday use usually evolve, because computers, operating systems, tax
laws, user requirements, etc. are all changing rapidly. Therefore the effort of verifying yesterday’s
version is wasted, because even small code modifications can require large proof modifications — proof
is a discontinuous function of truth.

!This name was used for the set {Goguen, Thatcher, Wagner, Wright}; see [29] for historical details.



This suggests that we should focus on design and specification. But even this is difficult, because
the properties that people really want, such as security, deadlock freedom, liveness, ease of use, and
ease of maintenance, are complex, not always formalizable, and even when they are formalizable,
may involve subtle interactions among remote parts of systems. However, this is an area where
mathematics can make a contribution.

It is well known that most of the effort in programming goes into debugging and maintaining (i.e.,
improving and updating) programs [7]. Therefore anything that can be done to ease these processes
has enormous economic potential. One step in this direction is to “encapsulate data representations”;
this means to make the actual structure of data invisible, and to provide access to it only via a given
set of operations which retrieve and modify the hidden data structure. Then the implementing
code can be changed without having any effect on other code that uses it. On the other hand, if
client code relies on properties of the representation, it can be extremely hard to track down all the
consequences of modifying a given data structure (say, changing a doubly linked list to an array),
because the client code may be scattered all over the program, without any clear identifying marks.
This is why the so-called year 2,000 (Y2K) problem is so difficult.

An encapsulated data structure with its accompanying operations is called an abstract data type.
The crucial advance was to recognize that operations should be associated with data representations;
this is exactly the same insight that advanced algebra from mere sets to algebras, which are sets with
their associated operations. In software engineering this insight seems to have been due to David
Parnas [71, 70], and in algebra to Emmy Noether [76]. (Parallel developments in software engineering
and abstract algebra are a theme of this paper.)

It turns out that although abstraction as isomorphism is enough for algebras representing data
values (numbers, vectors, etc.), other important problems in software engineering need the more
general notion of behavioral abstraction, where two models are considered abstractly the same if they
exhibit the same behavior. The usual many sorted algebra is not rich enough for this: we have to
add structure to distinguish sorts used for data values from sorts used for states, and we need a more
general, behavioral, notion of satisfaction, as discussed in Section 3.

In line with the above general discussion of software methodology, we want to prove properties of
specifications, not properties of code. Often the most important property of a specification is that it
refines another specification, in the sense that any model (i.e., any code realizing) the second is also
a model of the first. Methodologically speaking, a refinement embodies a set of closely related design
decisions for realizing one set of behaviors from another?. In line with the discussion of the previous
paragraph, we will often want to prove behavioral refinements. Behavioral refinement is much more
general than ordinary refinement, and many of the clever implementation techniques that so often
occur in practice require this extra generality.

The need for improved software development methods is very great. Large complex software
systems fail much more often than seems to be generally recognized. One highly visible example is
the 1996 cancellation by the US Federal Aviation Agency of an 8 billion dollar contract with IBM to
build the next generation air traffic control system for the entire US [72]. This is perhaps the largest
default in history, but there are many more examples, including the 1995 cancellation by the US
Department of Defense of a 2 billion dollar contract with IBM to provide modern information systems
to replace myriads of obsolete, incompatible systems. Other highly publicized failures include IBM
software for delivering real time sports data to the media at the 1996 Olympic Games in Atlanta,
the 2 billion dollar loss of the European Ariane 5 satellite, and the failure of the software for the

2Empirical studies show that real software development projects involve many false starts, redesigns, prototypes,
patches, etc. [11]. Although an idealized view of a project as a sequence of refinements is a useful way to organize and
document work retrospectively, it is important not to confuse this with the actual development process.



United Airlines baggage delivery system at Denver International Airport, delaying its 1994 opening
by one and a half years [25], and losing 1.1 million dollars per day.

What these examples have in common is that they were hard to hide. Anyone who has worked
in the software industry has seen numerous examples of projects that were over time, over cost,
or failed to meet crucial requirements, and hence were cancelled, curtailed, diverted, replaced, or
released anyway, sometimes with dire consequences, and frequently with loud declarations of success,
even though the system was never used, and may well have been unusable. For obvious reasons, the
organizations involved usually try to hide their failures, but experience suggests that half or more
of large complex systems fail in some significant way, and that the frightening list in the previous
paragraph is just the tip of an enormous iceberg. Today attention has shifted to the Y2K problem.
The cost of necessary software repairs has been estimated to lie in the multi-trillion dollar range. It
remains to be seen what the effects will be when that fateful night arrives.

1.2 Overview of this Paper

Section 2 briefly summarizes some basics of classical algebraic specification theory, following [30] and
[32]. Then Section 3 explains why software engineering also needs objects, and why their behavioral
properties are important, followed by a brief overview of hidden algebra that follows [38]. The
notation of OBJ3 [37, 48] is used in some examples. Section 4 briefly discusses some other related
work.

Although I'm far from the only one working on these kinds of problem, this survey is focused
on the work with which I’m most familiar, from UCSD and from the Japanese CafeOBJ project.
The UCSD group has put much material on the web, including several hidden algebraic proofs
with tutorial background information, remote proof execution, and Java applets to illustrate the
main ideas; see http://www.cs.ucsd.edu/groups/tatami and the papers [35, 34, 43], which are
available (along with many others) from my website, http://www.cs.ucsd.edu/users/goguen.

2 Algebraic Specification of “Platonic” Abstract Data Types

In the early 1970s, the ADT concept was understood due to the pioneering work of David Parnas
[70, 71], but there was no precise semantics, so it was impossible to verify the correctness of an
implementation for an ADT, or even to formulate what correctness might mean. The first to try
an algebraic solution to this problem was Steve Zilles [77], or at least, hearing about his work via
Jack Dennis led to my giving it a try. The initial algebra theory of abstract data types provided
the first rigorous formalization of ADTs; this approach works especially well for things like integers,
which do not change over time?; it also works for ADTs with state, but not as well. John Guttag
[49] developed a different approach, which while not quite rigorous, was actually more suitable for
handling states. This section gives precise definitions for the initial algebra approach to ADTs, and
some of their basic properties, especially that an ADT is uniquely determined by its specification as
an initial algebra, that abstract data types are indeed abstract, and that initial algebra semantics
can capture all computable data types.

2.1 Signature, Algebra and Homomorphism

We begin with syntax, which raises more issues than you might suspect at first. The classical one
sorted case of Birkhoff, Tarski etc. is not adequate for computer science applications, which involve

3These are the sort of eternal “ideas” with which Plato was concerned, as opposed to the later view of Aristotle,
which was more concerned with change.



many different “types” of data. Benabou [1] seems to have been the first to consider many sorted
universal algebra, which he did in an elegant category theoretic setting; it has since been developed
by many others in more conventional settings; see [40] for more historical information. Goguen [26]
introduced overloaded operation symbols for many sorted algebra. This extension is important for
applications like dynamic binding in object oriented programming, and it is now quite common in
the computer science literature. The approach? is based on many sorted sets: Given a set S, whose
elements are called sorts, then an S-sorted set A is a family of sets As, one for each s € S; the
notation A = {A, | s € S} will be used for such sets. Recall that S* denotes the set of strings over
S; we will let “[]” denote the empty string. We are now ready for the main concepts.

Definition 2.1 An S-sorted signature ¥ is an (S* x S)-sorted set {E, s | (w,s) € §* x S}. The
elements of ¥, s are called operation symbols of arity w, sort s, and rank (w, s); in particular,
o € X5 is a constant symbol. ¥ is a ground signature iff ¥, N Yy = () whenever s # s’ and
Yw,s =0 unless w =[]. O

By convention, |X| = U, ;Yw,s and X' C X means %, ; C %y, s for each w,s. Similarly, union is
defined by (B UX')y s = Ty s U E;U,s' A common special case is union with a ground signature X,
for which we use the notation %(X) =X U X.

Definition 2.2 A -algebra A consists of an S-sorted set also denoted A, plus an interpretation
of ¥ in A, which is a family of arrows is, s, s: Zs;..s,,s = [A°1%" — Ag] for each rank (si...sp, s) €
S* x S, which interpret the operation symbols in ¥ as actual operations on A. For constant symbols,
the interpretation is given by iy ,: X, — As. Usually we write just o for iy s(0), but if we need to
make the dependence on A explicit, we may write o 4. A, is called the carrier of A of sort s.

Given Y-algebras A, A’, a ¥>-homomorphism h: A — A’ is an S-sorted arrow h: A — A’ such
that hs(oa(ai,...,an)) = oar(hs, (s1), ..., hs, (ay)) for each o € g, 5. s and a; € A, fori =1,...,n,
and such that hs(ca) = car for each constant symbol ¢ € ¥ ;. O

An increased emphasis on homomorphisms characterizes the modern era of general algebra; this is
related to the central role that morphisms play in category theory. Given homomorphisms f: A —
B and g: B — C, we denote their composition A — C by f;g. Also we denote the identity
homomorphism on an algebra A by 14.

2.2 Term, Equation and Specification

Given an S-sorted signature ¥, the S-sorted set Tx of (ground) X-terms is the smallest set of lists
of symbols that contains the constants (i.e., Z[],s C Ty,), and such that given ¢ € 3, . s and
ti € Tx,s; then o(t1 .. .t,) € Tx,s. We view T%; as a Y-algebra by interpreting o € Xy ; as just o, and
0 € Ys,..s,,s a8 the operation sending t1,...,t, to the list o(¢1...%,). Then T is called the E-term
algebra. Note that because of overloading, terms do not always have a unique parse. The following
is the key property of this algebra:

Theorem 2.3 (Initiality) Given a signature ¥ with no overloaded constants® and a Y-algebra M,
there is a unique Y-homomorphism 7, — M. O

4This was developed for my course Information Science 329, Algebraic Foundations of Computer Science, first taught
in 1969 at the University of Chicago.

% Actually, every signature X has an initial ¥-algebra, but when ¥ has overloaded constants, terms must be annotated
by their sort; we will use the same notation Tx for this case.



This is proved in many places, for example [45]. The 3-term algebra Ty, serves as a standard model
for a specification with no equations. For example, if 3 is the signature for the natural numbers
with just zero and successor, then 7% is the natural numbers in Peano notation. If 3 consists of
the operation symbols 0, s, + and *, then T%; consists of all ezpressions formed using these symbols
(with the right arities); these are simple numerical expressions. In order to get the natural numbers
with addition and multiplication from this, we need to impose some equations.

Definition 2.4 A Y-equation consists of a ground signature X of variable symbols (disjoint from
Y) plus two X(X)-terms of the same sort s € S; we may write such an equation abstractly in the
form (VX) ¢t = t' and concretely in the form (Vz,y,z) t = ¢’ when |X| = {z,y, 2} and the sorts of
z,y,z can be inferred from their uses in ¢ and in . A specification is a pair (X, E), consisting of
a signature 3 and a set E of Y-equations. O

Conditional equations can be defined in a similar way, but we omit this here. Given 3 and a ground
signature X disjoint from X, we can form the X(X)-algebra Ty (x) and then view it as a X-algebra
by forgetting the names of the new constants in X; let us denote this X-algebra by Tx(X). It has
the following universal freeness property:

Proposition 2.5 Given a Y-algebra A and an interpretation a: X — A, there is a unique -
homomorphism @: Tx(X) — A extending a, in the sense that a@s(x) = as(x) for each z € X and
sesS. O

Definition 2.6 A Y-algebra A satisfies a Y-equation (VX) ¢t = ¢’ iff for any a: X — A we have
a(t) = a(t') in A, written A y (VX) t =t'. A X-algebra A satisfies a set E of Y-equations iff it
satisfies each one, written A =5, E. We may also say that A is a P-algebra, and write A = P where
P = (%, E). The class of all algebras that satisfy P is called the variety defined by P. Given sets
E and E' of Y-equations, let F |= E' mean A = E' for all E-models A. O

The following simple result is much used in equational theorem proving, but is rarely stated
explicitly. Its proof is very simple because it uses the semantics of satisfaction rather than some
particular rules of deduction, and because it exploits the initiality of the term algebra. We have
found this typical of proofs in this area; commutative diagrams and other universal properties also
help give elegant conceptual proofs.

Fact 2.7 (Lemma of Constants) Given a signature X, a ground signature X disjoint from ¥, a set
E of ¥-equations, and t,#' € Txxy, then E |=x (VX) t =t iff E Fxux (V0) ¢t = 1.

Proof: Each condition is equivalent to the condition that a(t) = @(t’) for every X(X)-algebra A
satisfying E and every a: X — A. O

Theorem 2.8 Tx p = Tx/=F is an initial (X, E)-algebra, where =g is the ¥-congruence relation
generated by the ground instances of equations in E. O

The proof can be found in many places, e.g., [45].

Usually we want proofs about software to be independent of how the data types involved happen
to be represented; for example, we are usually not interested in properties of the decimal or binary
representations of the natural numbers, but instead are interested in abstract properties of the
abstract natural numbers. The following result shows that satisfaction of an equation by an algebra
is an “abstract” property, in the sense that it is independent of how the algebra happens to be
represented. This result implies that exactly the same equations are true of any one initial P-algebra
as any other.



Proposition 2.9 Given a specification P = (X, E), any two initial P-algebras are ¥-isomorphic; in
fact, if A and A’ are two initial P-algebras, then the unique X-homomorphisms A —+ A’ and A’ — A
are both isomorphisms, and indeed, are inverse to each other. Moreover, given isomorphic 3-algebras
A and A, and given a Y-equation e, then A e iff A’ | e.

Proof: Let f: A— A" and g: A’ — A be the two homomorphisms guaranteed by initiality. Now
notice that the unique homomorphisms A — A and A’ — A’ must each be identities, namely 14 and
14r. Therefore f;g: A — Ais 14, and g;f: A" — A’ is 14. The proof of the second assertion is
omitted here (see [30]). O

The word “abstract” in the phrase “abstract algebra” means “uniquely defined up to isomor-
phism”; for example, an “abstract group” is an isomorphism class of groups, indicating that we are
not interested in properties of any particular representation, but only in properties that hold for all
representations; e.g., see [57]. Because Theorem 2.9 implies that all the initial models of a specifica-
tion P = (X, E) are abstractly the same in precisely this sense, the word “abstract” in “abstract data
type” has ezactly the same meaning. This is not a mere pun, but a significant fact about software
engineering.

Another fact suggesting we are on the right track is that any computable abstract data type has
an equational specification; moreover, this specification tends to be reasonably simple and intuitive
in practice. The following result from [65] slightly generalizes the original version due to Bergstra
and Tucker [2]. (M is reachable iff the unique ¥-homomorphism 7% — M is surjective):

Theorem 2.10 (Adequacy of Initiality) Given any computable reachable ¥-algebra M with ¥ finite,
there is a finite specification P = (X', A’) such that ¥ C X', such that ¥’ has the same sorts as 3,
and such that M is ¥-isomorphic to Tp viewed as a Y-algebra. O

We do not here define the concept of a “computable algebra”, but it corresponds to what one would
intuitively expect: all carrier sets are decidable and all operations are total computable functions;
see [65]. This result tells us that all of the data types that are of interest in computer science can
be defined using initiality, although sometimes it may be necessary to add some auxiliary functions.
All of this motivates the following fundamental conceptualization, which goes back to 1975 [46, 45]:

Definition 2.11 The abstract data type (abbreviated ADT) defined by a specification P is the
class of all initial P-algebras. O

The importance of initiality for computer science developed gradually. The term “initial alge-
bra semantics” and its first applications appeared in [26]; these included formulating (Knuthian)
attribute semantics as a homomorphism from an initial many sorted syntactic algebra generated by
a context free grammar, into a semantic algebra. In his PhD thesis [58], William Lawvere used the
characterization of the natural numbers as an initial algebra in the axiom of infinity for his category
theoretical axiomatization of sets. A key step in formalizing ADTs this way was my realization that
Lawvere’s use of initiality could be extended to characterize other data types abstractly; see [46],
and for a more complete and rigorous exposition, see [45]. More on initiality can be found in [47]
and [65]; the latter especially develops connections with induction and computability. See [29] for
more historical information about this period, and [37, 32] for more recent results, examples and
references. The adequacy of initiality was studied by Bergstra and Tucker in an important series of
papers, of which [2] is most relevant for present purposes.

Real software has many features that are difficult or impossible to treat with ordinary many
sorted algebra. These include the raising and handling of exceptions, overloaded operators, subtypes,
inheritance, coercions, and multiple representations. Order sorted algebra (abbreviated OSA) is an



attempt to extend many sorted algebra to address these problems. Introduced in [28], this reached
fruition in joint work with Meseguer [41, 66]; OSA provides a partial ordering relation on sorts,
interpreted semantically as subset inclusion among model carriers. Meseguer and I proved [66] that
there are simple ADTs with no adequate many sorted equational specification, because (what we call)
the constructor-selector problem can’t be solved in this setting. Order sorted initial algebras capture
all partial recursive functions (and algebras), not just the total ones, as in the many sorted case.
OSA is only slightly more difficult than many sorted algebra, and essentially all results generalize
without much fuss; in particular, there are complete rules of deduction and initial models. Because
OSA is strongly typed, many terms that intuitively should be well formed because they evaluate to
well formed terms, are actually ill formed; [41] introduced retracts to handle this problem. There
are now many different variants and extensions of OSA, too numerous to mention here, although
Meseguer’s membership equational logic [64] should not be omitted.

2.3 OBJ

Because it is all too easy to write incorrect specifications, it is important to have a tool that can
not only check syntax but also execute test cases, and verify properties; such a tool is also very
helpful in teaching. Around 1974, I conceived the OBJ language for this purpose, using order sorted
algebra® with overloaded mixfix syntax, and with term rewriting as its operational semantics [27];
the goal was to make specifications as readable and testable as possible. The final OBJ3 [48] version’
of OBJ resulted from the efforts of many people, including José Meseguer, Kokichi Futatsugi, Jean-
Pierre Jouannaud, Claude and Héléne Kirchner, David Plaisted, and Joseph Tardo [44, 42, 22, 48];
this system provided loose and initial semantics, rewriting modulo equations, generic modules, order
sorted algebra with retracts, and user definable builtins®; OBJ2 was heavily used in designing OBJ3
[56], and I think greatly speeded up this effort, by facilitating team communication and documenting
interfaces. Many other languages have followed OBJ’s lead, including: ACT ONE [21], which was used
in the LOTOS hardware description language; the CafeOBJ system [23, 20], an industrial strength
version of the OBJ language being built by a large Japanese national project, that includes hidden
algebra to handle behavioral properties of objects with states; the CASL system [15], being developed
by a diverse European group called CoFI (for Common Framework Initiative), which aspires to be
a Common Algebraic Specification Language, although it does not support order sorted algebra or
hidden algebra; and Maude [13], which efficiently extends OBJ3 with rewriting logic [64], membership
logic [64], and reflection.

OBJ has notation for expressing both initial and loose specifications, using overloaded order
sorted syntax [48, 37, 32]. OBJ modules that are to be interpreted loosely begin with the keyword
theory (or th) and close with the keyword endth. Between these two keywords come declarations
for sorts and operations, plus (as discussed later) variables and equations. For example, the following
OBJ3 code specifies the theory of automatas:

th AUTOM is
sorts Input State Output .
op sO : -> State .
op £ : Input State -> State .
op g : State -> Output .
endth

6 Actually, a precursor called error algebra, motivated by the importance of error handling in real systems.

T“OBJ” refers to the general design, while “OBJ3” refers to a specific implementation.

8These were originally intended for providing builtin data structures like numbers, but were later used in imple-
menting complex systems on top of OBJ, since they allow access to the underlying Lisp system [48].



Any number of sorts can be declared following sorts (or equivalently, sort), and operations are
declared with their arity between the : and the ->, with their sort following the ->.

The keyword pair obj...endo indicates that initial semantics is intended. For example, the
Peano natural numbers are given by

obj NATP is

sort Nat .

op O : -> Nat .

op s_ : Nat -> Nat .
endo

which uses “mixfix” syntax for the successor operation symbol: in the expression before the colon,
the underbar character is a place holder, showing where the operation’s arguments should go; hence
successor has prefix syntax here.

The following implements a simple flag object by representing its state as a natural number. The
keyword pr indicates an importation, in this case of EVENAT, which is the natural numbers enriched
with a Boolean valued function even, which is true iff its argument is even; the expression after
EVENAT renames the sort Nat of EVENAT to be Flag. The next line introduces three prefix operations
all at once, each with the same source and target; these are methods for changing state. The line
that begins with var declares a variable and its sort, and the next three lines are equations that
define the three methods and the Boolean valued attribute up?.

obj NFLAG is
pr EVENAT *(sort Nat to Flag)
ops (up_)(dn_) (rev_.) : Flag -> Flag .
op up?_ : Flag -> Bool .
var F : Flag .
equp F=2x%F .
eqdn F =2 *xF + 1.
eqrev F=F+ 1
eq up? F = even F .
endo

The next section gives an abstract specification for this object.

All the OBJ3 code in this paper is executable, and (once suitable definitions for EVENAT and one
other module are added) executing it actually proves the simple result about flags discussed below;
the OBJ output is given in Appendix A.

3 Hidden Algebra

Initial semantics works very well for data structures like integers, lists, booleans, vectors and matrices,
but is more awkward for situations that involve a state, i.e., an internal representation that is changed
by commands and never viewed directly, but only through external “attributes.” For example, it is
usually more appropriate to view stacks as machines with an encapsulated (invisible) internal state,
having “top” as an attribute. Although initial models exist for any reasonable specification of stacks,
real stacks are more likely to be implemented by a model that is not initial, such as a pointer plus an
array. This implies that a new notion of implementation is needed, different from the simple notion
of initial model. Moreover, in considering (for example) stacks of integers, the sorts for stacks and
for integers must be treated differently, since the latter are still modeled initially as data. Although



these issues have been successfully addressed in an initial framework (e.g., [45]), it is really better to
take a different viewpoint.

Hidden algebra explicitly distinguishes between “visible” sorts for data and “hidden” sorts for
states. It makes sense to declare a fixed collection of shared data values, bundled together in a single
algebra, because the components of a system must use the same representations for the data that
they share, or else they cannot communicate®.

Definition 3.1 Let D be a fixed data algebra, with W its signature and V its sort set, such that
each D, with v € V is non-empty and for each d € D, there is some 1) € ¥|, such that ¢ is
interpreted as d in D; we call V' the visible sorts. For convenience, we assume D, C ¥, for each
veV.O

The above concerns semantics; but the prudent verifier needs an effective specification for data values
to support proofs, and it is especially convenient to use initial algebra semantics for this purpose,
because it supports proofs by induction. We now generalize the notion of signature:

Definition 3.2 A hidden signature (over a data algebra (V, ¥, D)) is a pair (H,Y), where H
is a set of hidden sorts disjoint from V', ¥ is an S = (H U V)-sorted signature with ¥ C ¥, such
that

(S1) each o € £, s with w € V* and s € V lies in ¥,, ,, and
(S2) for each o € ¥,, s at most one hidden sort occurs in w.

We may abbreviate (H,X) to just £. If w € S§* contains a hidden sort, then o € X, ; is called a
method if s € H, and an attribute if s € V. If w € V* and s € H, then o € %, is called a
(generalized) hidden constant.

A hidden (or behavioral) theory (or specification) is a triple (H,X, E), where (H,Y) is a
hidden signature and E is a set of 3-equations that does not include any W-equations; we may write
(3, E) or just E for short. O

Condition (S1) expresses data encapsulation, that ¥ cannot add any new operations on data items.
Condition (S2) says that methods and attributes act singly on (the states of) objects. Every operation
in a hidden signature is either a method, an attribute, or else a constant'?. Equations about data
(U-equations) are not allowed in specifications; any such equation needed as a lemma should be
proved and asserted separately, rather than being included in a specification. The following example
should help to clarify this definition; it is the simplest possible example where something beyond
pure equational reasoning and induction is needed.

Example 3.3 Below is a hidden specification for flag objects, where intuitively a flag can be either
up or down, with methods to put it up, to put it down, and to reverse it:

th FLAG is sort Flag .
pr DATA .
ops (up_.) (dn_) (rev.) : Flag -> Flag .
op up?_ : Flag -> Bool .
var F : Flag .

°In practice, there may be multiple representations for data with translations among them, and representations may
change during development, so this is a simplifying assumption; however, it can easily be relaxed.

0Tn our most recent work [75], this assumption is weakened by allowing operations with more than one hidden sort;
this is important for examples like sets, where union and intersection have two hidden arguments.



eq up? up F = true .

eq up? dn F = false .
eq up? rev F = not up? F .
endth

Here FLAG is the name of the module and Flag is the name of the class of flag objects. The
methods and attribute are as in the previous NFLAG example, which is actually a model of the above
specification, in a sense made precise below. O

If ¥ is the signature of FLAG, then W is a subsignature of 3, and so a model of FLAG should be a
Y.-algebra whose restriction to ¥ is D, providing functions for all the methods and attributes in X3,
and behaving as if it satisfies the given equations. Elements of such models are possible states for
Flag objects. This motivates the following:

Definition 3.4 Given a hidden signature (H,Y), a hidden X-algebra A is a (many sorted) X-
algebra A such that Alg = D. O

We next define behavioral satisfaction of an equation, an idea introduced by Reichel [73]. In-
tuitively, the two terms of an equation ‘look the same’ under every ‘experiment’ consisting of some
methods followed by an ‘observation,’ i.e., an attribute. More formally, such an experiment is given
by a context, which is a term of visible sort having one free variable of hidden sort:

Definition 3.5 Given a hidden signature (H,X) and a hidden sort h, then a ¥-context of sort h is
a visible sorted Y-term having a single occurrence of a new variable symbol z of sort h. A context is
appropriate for a term ¢ iff the sort of ¢ matches that of z. Write c[t] for the result of substituting
t for z in the context c.

A hidden X-algebra A behaviorally satisfies a X-equation (VX) ¢ = ¢’ iff for each appropriate
Y-context ¢, A satisfies the equation (VX) c[t] = c[t']; then we write A Ex (VX) t =1¢'.

A model of a hidden theory P = (H, X, E) is a hidden X-algebra A that behaviorally satisfies
each equation in E. Such a model is also called a (X, E)-algebra, or a P-algebra, and then we write
AEPor AEy E. Also we write E' Ey E iff A Ex E' implies A Ey, E for each hidden ¥-algebra
A. O

Example 3.6 Let’s look at a simple Boolean cell C' as a hidden algebra. Here, Cr1ag = Cpoo1r =
{true, false}, up F = true, dn F = false, up? F = F, and rev F' = not F.

A more complex implementation H keeps complete histories of interactions, so that the action
of a method is merely to concatenate its name to the front of a list of method names. Then Hp1ag =
{up,dn,rev}*, the lists over {up,dn,rev}, while Hg,o1 = {true, false}, up F = up™F, dn F = dn"F,
rev F = rev™F, while up? up™F = true, up? dn™F = false, and up? rev"F = not up? F, where ™
is the concatenation operation. Note that C and H are not isomorphic. O

For visible equations, there is no difference between ordinary satisfaction and behavioral satis-
faction. But these concepts can be very different for hidden equations. For example,

rev rev F = F

is strictly satisfied by the Boolean cell model C, but it is not satisfied by the history model H, nor
by the model NFLAG, for which the left side has value F+2. However, the equation is behaviorally
satisfied by all these models. This illustrates why behavioral satisfaction is so often more appropriate
for computer science applications.

Previously we gave a semantic definition of an abstract data type as an isomorphism class of
initial algebras for some specification; equivalently, by Theorem 2.10, we could define it to be an
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isomorphism class of computable algebras, or in the order sorted case, of partial computable algebras.
The hidden analog of this defines an abstract object (or machine) to be a class of all hidden
algebras that satisfy some hidden specification (in practice, it is often desirable to restrict attention
to reachable models).

3.1 Coinduction

The first effective algebraic proof technique for behavioral properties was context induction, intro-
duced by Rolf Hennicker [51] and developed further in joint work with Michel Bidoit [5, 4]. Their
research programme is similar to ours in several ways, but is more concerned with semantics than
with proofs. Unfortunately, context induction can be awkward to apply in practice, as first noticed in
[24]. We proposed hidden coinduction as a way to avoid this awkwardness. The technique resembles
one introduced by Robin Milner [67], but is more general. Peter Padawitz is also developing similar
notions [68, 69], using a very general notion of sentence.

Induction is a standard technique for proving properties of initial (or more generally, reachable)
algebras of a theory, and principles of induction can be justified from the fact that an initial algebra
has no proper subalgebras [32, 65]. Final (terminal) algebras play an analogous role!! in justifying
reasoning about behavioral properties with hidden coinduction. Before describing the final algebra,
note that its use is not precisely dual to that of the initial algebra for abstract data types. The
semantics of a hidden specification is not the final algebra, but rather is the variety of all hidden
algebras that satisfy the spec; in fact, final algebras do not even exist in general. However, their
existence for certain signatures, with no equations, plays an important technical role.

Given a hidden signature ¥ without generalized hidden constants (recall these are hidden oper-
ations with no hidden arguments), the hidden carriers of the final ¥-algebra Fy, are given by the
following “magical formula,” for h a hidden sort:

FE,h = H [CE[zh]v — D'u] ;
veV

the product of the sets of functions taking contexts to data values (of appropriate sort). Elements
of Fx, can be thought of as ‘abstract states’ represented as functions on contexts, returning the data
values resulting from evaluating a state in a context. This also appears in the way Fy interprets
attributes: let o € Xp,,, be an attribute, let p € Fx j and let d € D,,; then we define Fx, ;(p,d) =
py(0(zn,d)); i.e., py is a function taking contexts in Cx[zp], to data values in D,, so applying it to
the context o(z,d) gives the data value resulting from that experiment. Methods are interpreted
similarly; see [38] for details.

Definition 3.7 Given a hidden signature X, a hidden subsignature ® C ¥, and a hidden }-algebra
A, then behavioral ®-equivalence on A, denoted =g, is defined as follows, for a,a’ € A,:

(El) a=¢sd if a=4d
when s € V, and

(B2) a=¢sa iff Acla)=A.(d) forallv eV and all c € Cy[2],

when s € H, where z is of sort s and A, denotes the function interpreting the context ¢ as an
operation on A, that is, A.(a) = 6(c), where 6, is defined by 6,(z) = a and 8 denotes the free
extension of 6,.

When ® = 3, we may call =¢ just behavioral equivalence and denote it =.

""Though no longer so in our latest work [75].
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For ® C 3, a hidden ®-congruence on a hidden ¥-algebra A is a ®-congruence ~ which is the
identity on visible sorts, i.e., such that a ~, o’ iff a = @ for all v € V and a,d’ € A, = D,. We call
a hidden Y:-congruence just a hidden congruence. O

The key property is the following:

Theorem 3.8 If ¥ is a hidden signature, ® is a hidden subsignature of 3, and A is a hidden
Y-algebra, then behavioral ®-equivalence is the largest behavioral ®-congruence on A. O

There is beautiful abstract proof of this result for those who know a little category theory in [38]; it
uses the existence of final algebras when there are no hidden constants, which is also shown in [38].
The congruence relation can be seen as a generalization of the so called Nerode equivalence in the
classical theory of abstract machines, e.g., see [65].

Theorem 3.8 implies that if a ~ a’ under some hidden congruence ~, then a and a’ are behaviorally
equivalent. This justifies a variety of techniques for proving behavioral equivalence (see also [36]).
In this context, a relation may be called a candidate relation before it is proved to be a hidden
congruence. Probably the most common case is ® = ¥, but the generalization to smaller ® is useful,
for example in verifying behavioral refinements.

Example 3.9 Let A be any model of the FLAG theory in Example 3.3, and for f, f' € Ag1aq, define
[~ f'iffup? f = up? f' (and d ~ d' iff d = d' for data values d,d'). Then we can use the equations
of FLAG to show that f ~ f’ impliesup f ~ up f' and dn f ~ dn f’ and rev f ~ rev f’, and of
course up? f ~ up? f'. Hence ~ is a hidden congruence on A.

Therefore we can show A = (VF:Flag) rev rev F = F just by showing A | (VF:Flag)
up? rev rev F = up? F. This follows by ordinary equational reasoning, since up? rev rev F =
not (not (up? F)). Therefore the equation is behaviorally satisfied by any FLAG-algebra A.

It is easy to do this proof mechanically using OBJ3, since all the computations are just ordinary
equational reasoning. We set up the proof by opening FLAG and adding the necessary assumptions;
here R represents the candidate relation ~:

openr FLAG .

op _R_ : Flag Flag -> Bool .
var F1 F2 : Flag .

eq F1 R F2 = (up? F1 == up? F2)
ops f1 £f2 : -> Flag .

close

The new constants £1, £2 are introduced to stand for universally quantified variables, following the
lemma of constants, and == is OBJ3’s builtin equality test'?. We now show that R is a hidden
congruence:

open . eq up? f1 = up? f2 . red (up f1) R (up £2) . **x> should be: true
red (dn f1) R (dn f2) . =***> should be: true red (rev f1) R (rev £f2)
***> should be: true close

where red is a command that tells OBJ to “reduce” the subsequent term, i.e., to apply equations as
left-to-right rewrite rules, until a term is obtained where no rule applies.
Finally, we show that all FLAG-algebras behaviorally satisfy the equation with:

red (rev rev f1) R f1 .

12This operation reduces its two arguments, and then checks whether the results are identical. It is known that this
gives equality under certain general conditions, which do hold here [37].
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All the above code runs in OBJ3, and gives true for each reduction, provided the following lemma
about the Booleans is added somewhere,

eq not not B =B .

where B is a Boolean variable. I think this proof is about as simple as could be hoped for. O

Just as there is a rich lore about doing inductive proofs, so more and more lore is accumulating about
doing coinductive proofs. For example, the third reduction in the example above is unnecessary;
however, it is more trouble to justify its elimination than it is to ask OBJ to do it; see [38].

3.2 Nondeterminism

Because nondeterminism is very problematic for ordinary algebraic specification, it is perhaps sur-
prising that it is already an inherent facet of hidden algebra. We first illustrate this with the following
very simple example:

th C is pr DATA .
op ¢ : -> Nat .
endth

Here ¢ has some natural number value in every model, and every number can occur; each model
chooses exactly one. However, there can also be arbitrary junk in models, so it makes sense to
restrict to reachable models; then the choice of a value for ¢ completely characterizes a model. I like
to describe this by saying that each model is a “possible world” in which some fixed choice has been
made for each nondeterministic possibility.

It is also easy to restrict the choice of a value for ¢, by adding an equation like one of the following:

eq ¢ => 1 = true .

eq 2 => ¢ = true .

eq odd(c) = true .

eq prime(c) = true .

eqc ==1o0r c == 2 = true .

The last equation suggests a rather cute way to specify nondeterministic choice in hidden algebra:

th CH is pr DATA .

op _|l_ : Nat Nat -> Nat

vars N M : Nat .

egN | M==Nor N | M==M = true .
endth

Here again, models are “possible worlds,” where some choice of one of N, M is made for each pair N,
M. It is not hard to prove that this choice function is idempotent, i.e., satisfies the equation

eqN | N=N .

However, the commutative and associative properties fail for some models (the reader is invited to
find the appropriate models) and hence for the theory.

Neither example of nondeterminism above involves state, which is the most characteristic feature
of hidden algebra, so we really should give an example of nondeterminism with a hidden sort. For
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some reason, vending machines are very popular for illustrating various aspects of systems, especially
nondeterminism and concurrency. The spec below describes perhaps the simplest vending machine
that is not entirely trivial: when you put a coin in, it nondeterministically gives you either coffee
or tea, represented say by true and false, respectively; and then it goes into a new state where it is
prepared to do the same again. In this spec, init is the initial state, in(init) is the state after one
coin, in(in(init)) is the state after two coins, etc., while out (init) is what you get after the first
coin, out (in(init)) after the second, etc.

th VCT is sort St

pr DATA .

op in : St -> St

op out : St -> Bool .
endth

As before, it is easy to restrict behavior by adding equations like
cq out(in(in(8))) = not out(8) if out(S) = out(in(S)).

which says that you cannot get the same substance three times in a row. (It is interesting to notice
that this equation will guarantee fairness.)

For examples like this, it is also interesting to look at the final algebra F', for the signature
without the constant init: according to the “magic formula,” it consists (up to isomorphism) of all
Boolean sequences — i.e., it is the algebra of (what are called) traces; in fact, contexts are the natural
generalization of traces to a non-monadic world. Since there is a unique (hidden) homomorphism
M — F for any model M of VCT, the image of init under this map characterizes the behavior of M.
This simple and elegant situation holds for nondeterministic concurrent systems in general. (More
information about nondeterminism and final models can be found in [38].)

The approach to nondeterminism in hidden algebra is quite different from that which is tradi-
tional in automaton theory: in hidden algebra, each possible behavior appears in a different possible
world, whereas a nondeterministic automaton includes all choices in a single model. The possible
worlds approach corresponds to real computers, which are always deterministic, and must simulate
nondeterminism, e.g., using pseudo-random numbers. Chip makers don’t make nondeterministic
Turing machines or automata; if they could then P = NP wouldn’t be a problem!

3.3 Proving Behavioral Refinement

The simplest view of behavioral refinement assumes a specification (X, E) and an implementation
A, and asks if A =y Ej; the use of behavioral satisfaction is significant here, because it allows us to
treat many subtle implementation tricks that only ‘act as if’ correct, e.g., data structure overwriting,
abstract machine interpretation, and much more.

Unfortunately, trying to prove A Ex, E directly dumps us into the semantic swamp mentioned
in the introduction. To rise above this, we work with a specification E’ for A, rather than an actual
model'3. This not only makes the proof far easier, but it also has the advantage that the proof will
apply to any other model A’ that (behaviorally) satisfies E’. Hence, what we prove is E' E E; in

13Some may object that this maneuver isolates us from the actual code used to define operations in A, preventing
us from verifying that code. However, we contend that this isolation is actually an advantage, since only about 5% of
the difficulty of software development lies in the code itself [7], with much more of the difficulty in specification and
design; our approach addresses these directly, without assuming the heavy burden of a messy programming language
semantics. But of course we can use algebraic semantics to verify code if we wish, as extensively illustrated in [37].
Thus we have achieved a significant separation of concerns.
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semantic terms, this means that any A (behaviorally) satisfying E' also (behaviorally) satisfies E;
and very significantly, it also means that we can use hidden coinduction to do the proof. The method
is just to prove that each equation in E’ is a behavioral consequence of E, i.e., a behavioral property
of every model (implementation) of E. More details and some examples are given in [38], including
the proof that a pointer with an array gives a behavioral refinement of the stack spec.

3.4 The Object Paradigm

Objects have local states with visible local “attributes” and “methods” to change state. Objects also
come in “classes,” which can “inherit” from other classes, and objects can communicate concurrently
and nondeterministically with other objects in the same system. This paradigm has become dominant
in many important application areas. We have already seen how to handle most of these features
with hidden algebra. Aspects of concurrency and inheritance are treated in [33, 38]. A full treatment
of inheritance requires the use of order sorted algebra for subclasses [41].

4 Summary and Related Work

This paper has presented hidden algebra as a natural next step in the evolution of algebraic speci-
fication, that can handle the main features of the object paradigm. Of course, no one would invent
a method like coinduction for examples as simple as our flag example; this was chosen just to bring
out the basic ideas clearly. Much more complex examples have been done, including correctness
proofs for an optimizing compiler and for a novel communication protocol [50, 34]. Hidden algebra
first appeared in [31], and was subsequently elaborated in papers including [33, 10]; an important
precursor was work by Goguen and Meseguer on what they called “abstract machines” [39]. The
rapidly growing literature on hidden algebra includes [17, 38, 59, 12, 52, 18, 60]. Coinduction seems
to give proofs that are about as simple as possible, but more experience is needed before this can be
said with complete certainty. The closely related area of coalgebra also uses coinduction, and also
has a rapidly growing literature, including [74, 53, 54, 55]. However, it seems that coalgebra has
difficulty with nondeterminism, concurrency, and operators with multiple state arguments.

It can be argued that algebraic specification is now entering a golden age, in which new techniques
are bringing old goals to fruition in unexpected ways, and are also opening new horizons from which
exciting new goals seem reachable. We have discussed hidden algebra and its cousin coalgebra.
Another important new development is rewriting logic [61, 62], a weakening of equational logic that
provides an ideal operational semantics for rapidly implementing many term rewriting algorithms
[14], as well as for describing and comparing various kinds of concurrency [62]; rewriting logic has
been efficiently implemented in Maude [63, 13]. The CafeOBJ system [20, 23] provides industrial
strength implementations of rewriting logic, as well as of ordinary order sorted equational logic,
hidden sorted equational logic, and all their combinations [19, 20]! The designs for both Maude
and CafeOBJ are heavily indebted to that of OBJ, and indeed can be considered versions of OBJ.
There is also exciting new work in term rewriting [16] (which is the basis for implementing systems
like OBJ3, Maude and CafeOBJ), for example in France around Jean-Pierre Jouannoud and Adel
Bouhoula, on induction and termination proofs [9], including the SPIKE and CiME systems [8], and
some new work on proving behavioral properties with a similar technology [3]. The issues discussed
in this paper seem to be of increasing importance for computer science, and I think we can look
forward to continuing progress.
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OBJ3 Output

Below is the output that OBJ3 produces when it executes this paper (there is a little program that
extracts the executable code from the paper, and passes it to OBJ3 for execution; the source file for
this paper has two “invisible” OBJ3 modules, EVENAT and DATA, which are needed to make others
work):

NARRRRRRRRERRR RNV,
——— Welcome to 0OBJ3 ——-

ZULEEEEEEEETTETETTIN

0BJ3 version 2.04o0xford built: 1994 Feb 28 Mon 15:07:40

Copyright 1988,1989,1991 SRI International
1998 Nov 8 Sun 10:21:48

th AUTOM

obj NATP

**%> This is the invisible EVENAT module:

obj EVENAT

obj NFLAG

**x> This is the invisible DATA module:

obj DATA
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th FLAG

***> prove rev rev F = F :

openr FLAG

op _ R _ : Flag Flag -> Bool .

var F1 F2 : Flag .

eq F1 R F2 = ( up? F1 == up? F2 )

ops f1 £f2 : -> Flag .

close

open

eq up? f1 = up? £f2 .

reduce in FLAG : up f1 R up £f2
rewrites: 4
result Bool: true

**%> should be: true

reduce in FLAG : dn f1 R dn f2
rewrites: 4
result Bool: true

**%x*> should be: true red (rev f1) R (rev £2)

*%x> should be: true close

reduce in FLAG : rev (rev f1) R f1
rewrites: 7
result Bool: true

th C

th CH

th VCT
0BJ> Bye.

The true results above indicate that OBJ3 has in fact done the computations that constitute the
proof.
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