
22C/55:181

page 1 of 2

Types in Z

Z has been designed as a strongly typed language. This can be useful in a practical way
by clarifying the kind of object (and hence its properties) under consideration. It is also
essential from the theoretical point of view when working with sets in a very general
setting, in particular when defining sets by describing the properties of their members as
we do in Z. It is well known that paradoxes can easily arise when sets are described by
unconstrained properties. One famous case is Russell's paradox. Suppose we say a set
S is ordinary if SœS. Since to identify a set, we must describe its members, being
ordinary (or not) is an apparently reasonable property to attach to a set. But then
consider the collection O of all and only ordinary sets, and the question: is O ordinary?
Of course, the answer must be either yes or no. However,

if yes, O is ordinary, then by the definition of ordinary, OœO and we have an ordinary
set not in O, an impossibility;

if no, O is not ordinary, then by the definition of ordinary, OŒO and we have an non-
ordinary set in O, an impossibility.

 Hence we have a logically impossible situation -- a paradox -- that arises from
seemingly natural methods of defining sets. One method to avoid such logical
catastrophes is to impose the discipline of typing on the sets that are considered. It goes
beyond the scope of our class to develop the assurance that this is sufficient to avoid
these logical pitfalls however.

Since Z is a strongly typed language, the nature of types is a primary issue. In many
presentations this is given minimal attention. However, every variable that appears in a
Z specification must be declared, and the declaration identifies its type. Also, every
function (and predicate) has prescribed types for its arguments and result. Finally, every
expression has a type associated with it that is determined by the types of its
constituents and the operations performed on them.

Types generally provide a set of values, together with a collection of operations that may
be performed on these values. But not every set of values is a type. The following are
basic types of Z:

• in a generic declaration such as [X, Y], X and Y are (names of) basic types (or
given types) -- all operations and their properties must be described by the
specification,

• * the signed integers Z = { … -2, -1, 0, 1, 2, … } together with all their familiar
operations and properties is a basic type; additional operations and their
properties may be described by the specification

• * the subsets of values of a type T constitute a type, P T, with the familiar set
operations and properties

• * the Cartesian product (n-tuples), written T1 ¥ T2 ¥ … ¥ Tn,for types T1, T2, … ,
Tn denotes the collection of values (x1, x2, … , xn) where xi is a value of type Ti
(1≤i≤n). Operations on n- tuples are the projection functions, pi(x1, x2, … , xn) =
xi (1≤i≤n). The most common special case is for n=2, and 2-tuples are often
called pairs.

22C/55:181

page 2 of 2

For a type T, we write x:T, and for a set T we write x[T. However, commonly corruptions
of types are used. For instance, we may see a declaration n:N, while N is a set not a
proper type. Strictly speaking the type of n is Z, plus there is an implicit assertion n≥0.
So while a clear distinction is sometimes not made, the means in the previous paragraph
are the required ways to form legitimate Z types; one additional means called free types
will be discussed later.

Since values have types, and operations define types for their arguments and results,
expressions constructed from several operations provide type requirements as well.
Expression type requirements are determined by direct application of the type
characteristics of the values and operations it is composed from.

