We have completed the specification of the first phone database operation, and now continue with those remaining. For the next operation we need to introduce a new formalism. This consists of using a relation to perform mappings as we normally do with functions. For a relation $\mathrm{R} \square \mathrm{X} \square \mathrm{Y}$, each $\mathrm{W} \square \mathrm{X}$ is associated with its relational image $R(W)=\{y \square Y \mid \square x \square W \square x R y\}$.

The next PhoneDB operation is one of the "lookup" operations.
FindPhones \qquad

```
\squarePhoneDB
name?: Person
numbers!: P Phone
name?: dom telephones
numbers! = telephones({name?})
```

The relational image operation allows us to establish the desired post-condition directly, and the required pre-condition is evident. When the pre-condition is not met, the exceptional outcome needs to be explicitly stated. This is handled similarly to the previous case.

UnknownName \qquad
पPhoneDB
name?: Person
rep!: Report

```
name? \ dom telephones
rep! = 'Unknown name'
```

The pre-condition here is just the negation of that for the FindPhones operation, and the post-condition indicates the error report. Then we again use a schemaformula to define

DoFindPhones \triangleq FindPhones \square Success UnknownName

If we pause to examine the corresponding component of the Miranda animation, we find a clear reflection of the specification.

```
findPhones n (mem, tel) = disp (image tel [n])
doFindPhones (mem, tel) n Il correction added
    = write (findPhones n (mem, tel) ++ "\n\n") (phdb (mem, tel)),
        if member (domain tel) n
    = write "Unknown name\n" (phdb (mem, tel)), otherwise
```

$$
\begin{aligned}
& \text { image f } u=[y I(x, y)<-f ; \text { member } u x] \\
& \text { disp } x
\end{aligned} \begin{aligned}
& =\text { "Empty\n", if } x=[] \\
& =\text { hd } x, \text { if \#x = } 1 \\
& =\text { hd } x++ \text { "ln" ++ disp (tl } x), \text { otherwise }
\end{aligned}
$$

We continue with the operation for looking up names. With the state space adopted, this leads us to the use of the relational inverse (or transpose) operation.

FindNames \qquad
\square PhoneDB
names!: P Person
number?: Phone
number \square ran telephones
names! = telephones~(\{number\})
The notation in Z for relational inverse is the postfix operator ' \sim '. For relation $R \square$ $X \square Y$ and each $W \square Y$, this is defined as $R \sim(W)=\{x \mid x R y$ and $y \square W\}$. The precondition for FindNames insures that the names! result will be a non-empty set.

As was done with the FindEntry operation, we complete the specification by describing error handling.

UnknownNumber
—PhoneDB
number?: Phone
rep!: Report
number \square ran telephones
rep! = 'Unknown number'

Then the completed specification is DoFindNames \triangleq FindNames \square Success

UnknownNumber
Again the match with the Miranda animation should be clear.
findNames e (mem, tel) = disp (image (inverse tel) [e])
doFindNames (mem, tel) e Il correction added
$=$ write (findNames e (mem, tel) ++ "\n\n") (phdb (mem, tel)),
if member (range tel) e
= write "Unknown extension\n" (phdb (mem,tel)), otherwise
range $\mathrm{f}=[\mathrm{y} \mid(\mathrm{x}, \mathrm{y})<-\mathrm{f}]$
inverse $f=[(y, x) \mid(x, y)<-f]$

