
22C/55:181

1

At this point, there are a number of issues to explore. First of all, the issue of
scope of identifiers is raised by the declaration of the output variable 'rep' in
several schemas. Some identifiers have a global scope — their definitions are
associated throughout the rest of the specification. Basic type identifiers and
schema identifiers have global scope. Other identifiers have a local scope —
their definition is in effect only within a single schema. Identifiers in the
declaration part of a schema are local to that schema. Variables declared in one
schema are known elsewhere only if that schema is imported (or included) by
another. It is implicitly understood that to obtain a consistent specification,
imported declarations and conditions must not introduce conflicts.

Another collection of issues is raised in the DoAddEntry definition by the use of
the familiar logical operations to combine schemas rather than logical formulas.
The brief view given here is that the resulting definition is assumed to import all
the declarations of the constituent schema, and the conditions of DoAddEntry are
formed from those of the constituents in the manner given in the formula.

Examination of the pre-conditions of the three operation schemas reveals that if
the pre-conditions of the AddEntry operation are met, then this operation
determines a new state, and a Success report is issued. If the pre-conditions of
AddEntry are not met, then those of one of the other schemas is met, and a
corresponding report is the result with no state change.

There is a potential inconsistency in the DoAddEntry definition as three distinct
values are associated with the output variable 'rep!'. However, the pre-conditions
for the constituent schemas in the DoAddEntry operation are mutually exclusive.
The AddEntry schema provides the preconditions

name? Œ members
name? a newnumber? œ telephones

Hence the negation of these pre-conditions is
name? œ members ⁄ name? a newnumber? Œ telephones

Now the two disjuncts in this negation are not mutually exclusive in general.
However, we are also assured of the PhoneDB invariant

dom telephones Õ members

Therefore if name? œ members is true, name? a newnumber? Œ telephones
must be false. Hence the three pre-conditions of the constituent schemas of
DoAddEntry

name? Œ members Ÿ name? a newnumber? œ telephones

name? œ members

22C/55:181

2

name? a newnumber? Œ telephones

in conjunction with the invariant of PhoneDB, are mutually exclusive and no
inconsistency arises for the value of 'rep!.

With the behavior of the operation of adding entries now completely specified, we
are now prepared to examine the Miranda animation of this operation.

addEntry n e (mem, tel) = (mem, tel ++ [(n,e)])
doAddEntry (mem, tel) (n,e) || correction added

= write "Okay\n" (phdb (addEntry n e (mem, tel))),
if member mem n & ~member tel (n,e)

= write "Not a member\n" (phdb (mem, tel)), if ~member mem n
= write "Entry already exists\n" (phdb (mem, tel)), if member tel (n,e)

The 'addEntry' function returns a pair that satisfies the post-condition for that
operation provided the pre-condition is True. The 'doAddEntry' definition includes
the three tests for its guards, and either performs the add and issues a success
“report”, or issues an error report in the other cases.

