
22C/55:181

1

The operation schema above does not complete the specification of the
AddEntry operation. As we have already observer with algebraic specification, it
is of vital importance to anticipate possible error/exception conditions. A
specification should both clearly identify these conditions, and describe the
intended behavior in these circumstances. In Z we can “add on” this part after the
“normal case” specification quite easily.

The next several schemas are auxiliary schemas that enable us to complete the
specification of the AddEntry operation in all the various circumstances. The
following is also an operation schema, but it promises not to change the state.

NotMember
 XPhoneDB
 name?: Person
 rep!: Report

 name? œ members
 rep! = 'Not a member'

The importing convention for the declaration XPhoneDB is the same as for D
schemas, but promises to leave the state unchanged — we imagine implicit post-
conditions X' = X for each state variable.

The decoration '!' is attached to the rep variable to denote that it is an output, or
result, variable for this operation. With the “define before use” convention of Z, a
definition of the type Report should have appeared before we see it here. Z
includes “enumeration types”, and this is the intention for Report. However, until
we complete the specification, we are unsure of all the messages we may wish to
issue from the implementation. Therefore we defer presenting this until we know
what we require. It will eventually be

Report ::= 'Not a member' | 'Okay' | …

We have two more pieces to provide before we can complete the specification of
the first operation.

EnrtyAlreadyExists
 XPhoneDB
 name?: Person
 newnumber?: Phone
 rep!: Report

 name? a newnumber? Œ telephones
 rep! = 'Entry already exists'

22C/55:181

2

This is another operation that does not change the state. It has two arguments
and one result. There are two explicit conditions, one implicit invariant from
PhoneDB, and two implicit post-conditions.

We have one last auxiliary schema

Success
 rep!: Report

 rep! = 'Okay'

This is a particularly simple scheme — it involves no state, has no argument, and
produces a constant output.

This is the last of the constituents needed for our completed AddEntry operation.
This provides an example of definition by schema-formula, namely

DoAddEntry =̂ AddEntry Ÿ Success
⁄ NotMember
⁄ EntryAlreadyExists

