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Abstract. We present a simple characterization of definable quotient
types as being induced by idempotent functions, and an encoding of this
in Cedille (a dependently typed programming language) in which both
equational constraints and the packaging that associates these with ele-
ments of the carrier type are irrelevant, facilitating equational reasoning
in proofs. We provide several concrete examples of definable quotients
using this encoding and give combinators for function lifting (with one
variant having zero run-time cost).
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1 Introduction

Every dependently typed programming language has some built-in notion of def-
initional equality of expressions which is induced by its operational semantics.
This notion can then be internalized as an equality type within the language,
called propositional equality. Propositional equality often enjoys a privileged sta-
tus, with language and library authors providing support for reasoning with it in
the form of, e.g., special rewriting syntax or tactics specifically for it. However,
it sometimes occurs that the programmer wishes to consider two expressions
of some type A equal up to some arbitrary equivalence relation ∼, which will
not have the same support as propositional equality. Quotient types provide
a solution to this problem by allowing the formation of a new type A/∼ for
which the equivalence a ∼ b corresponds precisely to propositional equality of
the equivalence classes [a] and [b] of type A/∼.

As an example, the rational numbers constitute an archetypal application of
quotients. First, fractions are defined as a pair of two natural numbers. Next, an
equivalence relation is defined between fractions such that a/b is equivalent to c/d
if and only if ad = cb. The quotient type with respect to this equivalence relation
constructs the rational numbers. Alternatively, we can decide whether a/b and
c/d are equivalent by comparing canonical representatives of their equivalence
classes, computed by dividing both numerator and denominator by their greatest
common divisor. Observe that this canonical choice operation for rationals is
necessarily idempotent. Generalizing, it turns out that rational numbers and all
other definable quotient types (in the sense of Li [15]) can be characterized by
the set of fixpoints of some idempotent function on the carrier type. We call this
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quotients by idempotent functions, and to the best of our knowledge are the first
to work with this characterization of definable quotients explicitly.

Of course, definable quotients are, for any suitable characterization of them,
definable already in existing proof assistants like Agda or Coq [4,15]. In this work,
we argue that certain features of Cedille’s type theory makes the encoding of our
formulation especially simple, as in particular not only are all required proofs
erased (as one expects already in theories with proof irrelevance) but indeed the
very packaging used to associate terms with their equational constraints is also
erased during equational reasoning. In summary, our contributions are:

1. a novel and simple characterization of definable quotients by idempotent
functions;

2. an encoding of this characterization that takes advantage of Cedille’s ex-
trinsic typing and notion of erasure to allow every definable quotient to be
definitionally equal to an element of the carrier type;

3. examples of definable quotients formalized in Cedille (with a code repository
available at github.com/cedille/cedille-developments/tree/master/

idem-quotients) including:

– a quotiented identity type (the carrier of which lacks decidable equality);

– naturals modulo some k;

– the even and odd subset types of naturals considered as quotient types;

– finite sets as lists whose elements have decidable equality, whose combi-
nation with other definable quotient types highlights the advantages of
our encoding;

– integers as a definable quotient inductive type, with constructors com-
patible with the intended equivalence relation and an induction principle
in terms of these;

4. combinators for lifting of functions, which for compatible functions can be
done such that the lifted function is definitionally equal to the original.

This version of the paper improves upon an earlier draft by more clearly iden-
tifying the class of quotient types to which quotients by idempotent functions
belong, emphasizing that the advantage of our encoding in Cedille is the disap-
pearance in equations of explicit type coercions between quotient and carrier,
focusing on examples of quotients by idempotent functions that contribute to
the central argument of the paper, and better contextualizing our contributions
in the existing literature on quotient types.

We begin the paper with a brief overview of Cedille’s type theory and lan-
guage features (Section 2). Next, we give a general definition of quotients by
idempotent functions in Cedille and consider several examples (Section 3). Then,
we present the satisfied properties of and combinators for our quotients by idem-
potent functions (Section 4). After, we consider the benefits and limitations of
our work with respect to the existing literature on quotient types (Section 5).
Finally, we conclude the paper and reflect on our contributions (Section 6).

http://github.com/cedille/cedille-developments/tree/master/idem-quotients
http://github.com/cedille/cedille-developments/tree/master/idem-quotients
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(a) Equality

FV (t t′) ⊆ dom(Γ )

Γ ` β{t′} : {t ' t}
Γ ` t : {t1 ' t2} Γ ` t′ : [t2/x]T

Γ ` ρ t @ x.T − t′ : [t1/x]T

Γ ` t : {t1 ' t2} Γ ` t1 : T

Γ ` ϕ t− t1 {t2} : T

|β{t′}| = |t′|, |ρ t @ x.T − t′| = |t′|, |ϕ t− t1 {t2}| = |t2|,
(b) Dependent Intersection

Γ ` t1 : T1 Γ ` t2 : [t1/x]T2 |t1| = |t2|
Γ ` [t1, t2] : ι x :T1. T2

Γ ` t : ι x :T1. T2

Γ ` t.1 : T1

Γ ` t : ι x :T1. T2

Γ ` t.2 : [t.1/x]T2

|[t1, t2]| = |t1|, |t.1| = |t|, |t.2| = |t|,
(c) Implicit Products

Γ, x : T ` t′ : T ′ x 6∈ FV(|t′|)
Γ ` Λx :T. t′ : ∀x :T. T ′

Γ ` t : ∀x :T ′. T Γ ` t′ : T ′

Γ ` t -t′ : [t′/x]T

|Λx :T. t| = |t|, |t -t′| = |t|

Fig. 1: Typing and erasure for a fragment of Cedille

2 Background

2.1 CDLE

Cedille’s core theory is the Calculus of Dependent Lambda Eliminations (CDLE)
[21,22]. CDLE is an extension of the impredicative extrinsically-typed Calculus of
Constructions [5] with three additional type formers: the dependent intersections
ι x :T1. T2 of Kopylov [14]; the implicit products ∀x :T1. T2 of Miquel [18] (which
we may write T1 ⇒ T2 if x /∈ FV (T2)); and an equality type {t1 ' t2} of untyped
terms. The term language of CDLE is just the untyped λ-calculus, so to make
type checking algorithmic Cedille requires users provide some type annotations,
and definitional equality of terms is modulo erasure of these annotations. Figure
1 gives the term annotations in Cedille associated with these additional type
constructs and their erasures. In particular, the erasure of the β axiom and
dependent intersections is essential to our encoding of quotients by idempotent
functions.

Equality {t1 ' t2} is the type of proofs that t1 and t2 are equal, where these
two terms are only required to be well-scoped. It is introduced with β{t′} (for
an unrelated t′, discussed below) if |t1| and |t2| (the erasures of t1 and t2) are
βη-convertible. If t has type {t1 ' t2} it can be eliminated using ρ or ϕ where
ρ t @ x.T − t′ (which erases to |t′|) rewrites all occurrences of t2 in the type
[t2/x]T with t1 using the guide @ x.T , and ϕ t − t1 {t2} (which erases to |t2|)
casts t2 to the type T assuming that t1 has type T . For convenience in equational
reasoning, Cedille allows the guide to be omitted when the type [t1/x]T of the
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ρ-expression is known contextually, and provides the alternative form ρ+ t− t′
which normalizes the expected type until it finds occurrences of t1 to rewrite.

The fact that β may erase to an arbitrary (well-scoped) given term is called
the Kleene trick [22] as it goes back to Kleene’s numeric realizability: any evi-
dence at all may stand as proof for a trivially true equation (in Cedille, if β is
written without some desired erasure t′ then by default it erases to λx. x). In
practice, when combined with dependent intersections the Kleene trick enables
the formation of a kind of equational subset type where elements of a carrier type
may also act as proof that some equation concerning them holds, provided the
equation is indeed true.

Dependent Intersection ι x :T1. T2 is the type of terms t which can be seen to
have both the types T1 and [t/x]T2. The introduction form [t1, t2] is conceptually
similar to that of a dependent pair, except that |t1| must be βη-equivalent to
|t2|, thus allowing the erasure of this introduced intersection to simply be |t1|.
If t has type ι x :T1. T2, then the projections t.1 and t.2 resp. have types T1 and
[t.1/x]T2. Both projections erase to |t|.

We provide a simple example of the technique employed in our construction
of definable quotients in Cedille: assume we have the type Nat of natural numbers
with constructor zero : Nat and function pred : Nat → Nat defined in the
usual way. Then, the expression [zero, β{zero}] has type ι x :Nat. {x ' pred x}
and erases to zero.

Implicit Product ∀x : T1. T2 is the type of functions whose argument x of
type T1 is erased and thus not used to compute the result value of type T2. It
is introduced by Λx. t2 (which erases to |t2|), provided that t2 has type T2 and
further that x does not occur in the erasure of t2. If t has type ∀x :T1. T2 and t1
has type T1, then we may form an erased application t -t1 (which erases to |t|)
of type [t1/x]T2. Our use of implicit products in this paper is necessary for the
result described in Section 4.1 where it allows a function that is compatible with
an equivalence relation of some carrier type to be lifted to a function over the
(definable) quotient in such a way that the lifted function is definitionally equal
to the original.

Additional term and type constructs not given in Figure 1 are summarized
here. All types are quantified over with ∀ (such as ∀X : ?.X → X) and within
terms abstracted over with Λ (such as ΛX. λx. x). Term-to-type and type-to-
type applications are written with a center-dot (such as t · T ). Local definitions
are written [x = t] − t′, analogous to let x = t in t′ in other languages.
Cedille also provides a built-in operator ς for symmetry of equality – this could
be replaced by a definition using ρ but is provided for convenience.

2.2 Datatypes in Cedille

CDLE lacks a primitive notion of inductive datatype. Firsov et al. [7] show how
these may be derived generically (in the sense of for any covariant signature
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functor). As of version 1.1.0, the Cedille tool incorporates this result by allowing
users to declare inductive datatypes with usual notation. For example, natural
numbers and pairs can be declared with:

data Nat : ? =

| zero : Nat

| succ : Nat → Nat.

data Pair (A: ?) (B: ?) = pair : A → B → Pair.

Cedille also has facilities for simple pattern-matching using operator µ′, and
for combined pattern-matching and recursion with operator µ:

fst : ∀ A: ?. ∀ B: ?. Pair·A·B → A

= Λ A. Λ B. λ p. µ’ p { pair a b → a }.

add : Nat → Nat → Nat

= λ m. λ n. µ addN. m { zero → n | succ m’ → succ (addN m’) }.

The operational semantics of µ′ is case-branch selection, so for example fst

(pair zero (succ zero)) reduces to zero. The operational semantics of µ is
combined case-branch selection and fixpoint unrolling. For example, for any m
and n of type Nat, add (succ m) n reduces to succ (µ′ addN . m { zero →
n | succ m′ → succ (addN m′)}).

Declared datatypes automatically come with an induction principle invoked
by pattern-matching and recursion with µ (and similarly a non-recursive “proof-
by-cases” principle invoked by µ′). An example of this is given below in the proof
addZeroRight showing zero is a right-identity of addition.

addZeroRight : Π n: Nat. {add n zero ' n}

= λ n. µ ih. n @(λ x: Nat. {add x zero ' x}) {

| zero → β
| succ n’ → ρ (ih n’) @ y. {succ y ' succ n’} - β
}.

Here, a guiding type annotation is given explicitly with @ to help type check
each case branch, with the bound variable x replaced with the corresponding
constructor pattern. In the zero case the expected type is {add zero zero '
zero}, which holds by β (the Cedille tool also considers the operational semantics
of µ and µ′ when checking convertibility of terms in an equation). In the succ

case the expected type is {add (succ n′) zero ' succ n′}. A guide for rewriting
is given with @ where the expected type is first checked to be convertible with
{succ (add n′ zero) ' succ n′}, then the inductive hypothesis ih n′ is used to
perform a rewrite, and finally β is checked against type {succ n′ ' succ n′}

Cedille uses a type-based approach to termination checking of recursive func-
tions defined with µ [13]. However, this method sometimes requires type coer-
cions be used explicitly on the recursive subdata revealed in case patterns. Most
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of the recursive functions and proofs in this paper do not require the full power of
Cedille’s termination checker. Thus, for clarity, we remove these type coercions
to de-clutter our presentations and indicate explicitly those functions for which
a syntactic guard (as described by Giménez [10]) would be insufficient to ensure
termination.

3 Quotient Types by Idempotent Functions

3.1 General Construction

We now present in Cedille quotient types by idempotent functions, which we
prove in Section 5 precisely characterizes definable quotients.

IdemFn : ? → ? = λ A: ?. ι f: A → A. Π a: A. {f (f a) ' f a}.

Quotient : Π A: ?. IdemFn·A → ?
= λ A: ?. λ f: IdemFn·A. ι a: A. {f a ' a}.

qcanon : ∀ A: ?. Π f: IdemFn·A. A → Quotient·A f

= Λ A. λ f. λ a. [f.1 a, ρ (f.2 a) - β{f.1 a}].

For any carrier A, IdemFn·A is the type of functions f over A which also prove
themselves idempotent. Thanks to the Kleene trick, this obligation amounts to
requiring only that they are idempotent. Similarly, Quotient·A f (for any type
A and f : IdemFn·A) is the type of elements of A which are the fixpoints of f ,
and for any element a of the carrier qcanon f maps a to a representative of type
Quotient·A f by simply applying (the first projection of) f to a and discharging
the proof obligation that {f (f a) ' f a} by idempotency of f . The intended
equivalence relation a ∼ b on A then implicitly arises from the propositional
equality {qcanon a ' qcanon b}, and need not be given explicitly.

Our motivation for this characterization of definable quotients is its two-fold
simplicity, which we reinforce with examples given in the remainder of this sec-
tion: first, the number of required components is small, being only a carrier type,
unary operation, and proof this operation is idempotent; second, the additional
term-level structure packing components with these properties is all erasable,
convenient for equational reasoning within proofs and especially so when these
proofs concern multiple quotient types. From this second feature arises in par-
ticular the pleasing fact that every element of the quotient type is definitionally
equal to some element of the carrier type. This can be demonstrated within
Cedille by a kind of internalized subtyping relation: the existence of a coercion
qcoerce from Quotient·A f (for every A and f) to A which is definitionally
equal to λx. x.

qcoerce : ∀ A: ?. ∀ f: IdemFn·A. Quotient·A f → A

= Λ A. Λ f. λ q. q.1 .

qcoerceId : {qcoerce ' λ q. q} = β.
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3.2 Typed Equality with UIP

An important property of equality within type theory is whether it validates the
principle of uniqueness of identity proofs (UIP), which is the statement that any
two proofs p1 and p2 of {t1 ' t2} (for any t1 and t2) are themselves equal. The
Kleene trick causes Cedille’s built-in equality to be anti-UIP because e.g. both
β{λx. λ y. x} and β{λx. λ y. y} prove {λx. x ' λx. x}. However, if UIP is desired
then it is possible to construct as a definable quotient an equality type Id that
validates UIP. This construction is simple but rather interesting as, unlike other
examples we consider, the carrier of this quotient type has undecidable equality
(it contains divergent λ-expressions). Yet, this does not impede our choosing a
canonical representative – for any proof eq we return an equivalent proof which
erases to λx. x.

eqRep : ∀ A: ?. Π a: A. Π b: A. {a ' b} → {a ' b}

= Λ A. λ a. λ b. λ eq. ρ eq - β.

eqRepIdemFn : ∀ A: ?. Π a: A. Π b: A. IdemFn·{a ' b}

= Λ A. λ a. λ b. [eqRep a b, λ eq. β].

We retain typing information by using indices for the quotient type Id.

Id : Π A: ?. A → A → ?
= λ A: ?. λ a: A. λ b: A. Quotient·{a ' b} (eqRepIdemFn a b).

Note that we choose a homogeneous identity type for ease of demonstration, but
a heterogeneous or untyped version with UIP is also possible. Finally, we prove
that Id validates UIP.

UIP : ∀ A: ?. Π a: A. Π b: A. Π p: Id·A a b. Π q: Id·A a b.

Id·(Id·A a b) p q

= Λ A. λ a. λ b. λ p. λ q. [ρ ς p.2 - ρ ς q.2 - β, β].

3.3 Natural Numbers Modulo k

The natural numbers modulo k is a family of quotient types where two numbers
are equivalent modulo k if their remainders with respect to k are equal. Below, we
define the remainder function rem 1 and show with remIdem that it is idempotent.
Note that some definitions are omitted (indicated by <..>) in the paper but
available in the supplementary code repository 2.

1 The listing of function rem omits necessary type coercions for Cedille to ensure that
the recursive call on minus n’ k’ is well-founded.

2 github.com/cedille/cedille-developments/tree/master/idem-quotients

http://github.com/cedille/cedille-developments/tree/master/idem-quotients
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rem : Nat → Nat → Nat

= λ n. λ k. µ rec. n {

| zero → zero

| succ n’ →
[k’ = pred k]

- if (lt n’ k’) (succ n’) (rec (minus n’ k’))

}.

remIdem : Π n: Nat. Π k: Nat. {rem (rem n k) k ' rem n k} = <..>

remIdemFn : Π k: Nat. IdemFn·Nat
= λ k. [λ n. rem n k, λ n. ρ+ (remIdem n k) - β{rem n k}].

Mod : Nat → ? = λ k: Nat. Quotient·Nat (remIdemFn k).

In the case of Mod k the idempotent function λ n. rem n k canonicalizes the
input natural number to a value in the range [0, k − 1].

Functions on the natural numbers can be lifted to Mod k either by canonical-
izing the output or proving that all outputs of the function are fixpoints of rem.
For instance, we can lift natural number addition to Mod k by coercion from Mod

k to Nat, followed by addition and canonicalization of the output.

addMod : Π k: Nat. Mod k → Mod k → Mod k

= λ k. λ n. λ m. qcanon (remIdemFn k) (add n.1 m.1).

Li argues that definable quotients aid in reasoning about the quotient type be-
cause both setoid and set views of the data are available [15]. We show that
facts about the carrier type that are preserved in the quotient type can be easily
demonstrated. Here, it is easy to show that addMod is commutative and has an
identity element by appealing to the fact that add has these properties.

addModComm : Π k: Nat. Π a: Mod k. Π b: Mod k.

{addMod k a b ' addMod k b a}

= λ k. λ a. λ b.

ρ (addComm a.1 b.1) @ x. {rem x k ' addMod k b a} - β.

addModIdLeft : Π k: Nat. Π a: Mod k. {addMod k a zero ' a}

= λ k. λ a. ρ (addZeroRight a.1) @ x. {rem x k ' a}

- ρ (a.2) - β.

addModIdRight : Π k: Nat. Π a: Mod k. {addMod k zero a ' a}

= λ k. λ a. ρ (a.2) - β.

Notice in the proofs addModIdLeft and addModIdRight that we may use zero

directly when reasoning about it as an identity element for addMod. This is possi-
ble thanks to Cedille’s equality being for untyped terms, and sensible because we
know that (for all k) qcannon (remIdemFn k) zero is zero by definition. Thus,
explicit canonicalization of zero is neither required nor desired.
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3.4 Even and Odd Natural Numbers

As we have seen, the elements of quotients by idempotent functions in Cedille
have (definitionally) equal elements in the carrier type. With this property in
mind, we construct the type of even natural numbers and odd natural numbers.

toEven : Nat → Nat

= λ n. µ rec. n {

| zero → zero

| succ n’ → µ’ n’ {

| zero → zero

| succ n’’ → succ (succ (rec n’’))

}

}.

toOdd : Nat → Nat = λ n. succ (toEven n).

toEvenIdem : Π n: Nat. {toEven (toEven n) ' toEven n} = <..>

toEvenIdemFn : IdemFn·Nat = <..>

toOddIdem : Π n: Nat. {toOdd (toOdd n) ' toOdd n} = <..>

toOddIdemFn : IdemFn·Nat = <..>.

Even : ? = Quotient·Nat toEvenIdemFn.

Odd : ? = Quotient·Nat toOddIdemFn.

The idempotent function toEven relates every two consecutive natural numbers,
picking the smaller number as the canonical representative. The idempotent
function toOdd is similar but chooses the larger number instead. The pair of
idempotent functions toEven and toOdd define the same equivalence relation
with the only difference being which of the two related numbers are picked.
This is in contrast to Mod k where the equivalence relation alone gives a desired
computational behavior or algebraic structure. Indeed, the algebraic structure
of Mod k is present regardless of the selection of the canonical elements. But for
Even and Odd as quotients we are interested in the particular fixpoints of the
functions toEven and toOdd.

A fundamental property about even numbers is that addition by two produces
an even number. By defining addition by two first on the natural numbers we
can lift the function to Even. However, unlike the lifting we did previously we
can avoid having to apply toEven on the result and instead prove it is already
a canonical representative.

succSucc : Nat → Nat = λ n. succ (succ n).

evenSSCompat : Π e: Even. {toEven (succSucc e) ' succSucc e}

= <..>

evenSuccSucc : Even → Even

= λ e. [succSucc e.1, ρ (evenSSCompat e) - β{succSucc e}].
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Of course, a similar development can be carried out for odd natural numbers.
We call this version of function lifting compatible, following Cohen [4]. With
compatible lifting the resulting function is definitionally equal to the original
function.

A core benefit to our approach is that we can mention elements of the carrier
type and the quotient type in equational contexts without any additional type
coercions such as projections for dependent records. In a property that decom-
poses a natural number into an even or odd number we can directly say that the
natural number is equal to the corresponding even or odd number (in the re-
turn type of evenOrOdd below, Or is the disjoint union type, and the dependent
intersections should be read as a kind of existential quantification):

evenOrOdd : Π n: Nat. Or·(ι x: Even. {n ' x})·(ι x: Odd. {n ' x})

= <..>

3.5 List as Finite Set

As Cohen argued, quotients are a useful feature in formalizing mathematics
[4]. However, they can also be a useful abstraction for computer science. As
an example, finite sets are usually defined in terms of trees where an order on
the elements is needed. With quotients, we can instead form finite sets as an
abstraction over those lists whose elements have decidable equality.

EqFn : ? → ? = λ A: ?. ι f: A → A → Bool.

(Π a: A. Π b: A. {f a b ' true} ⇒ {a ' b}).

distinctCons : ∀ A: ?. EqFn·A → A → List·A → List·A
= Λ A. λ eq. λ a. λ l. µ’ (find eq a l) {

| tt → l

| ff → cons a l

}.

distinct : ∀ A: ?. EqFn·A → List·A → List·A
= Λ A. λ eq. λ l. µ rec. l {

| nil → nil·A
| cons a l → distinctCons eq a (rec l)

}.

distinctIdem : ∀ A: ?. Π eq: EqFn·A. Π l: List·A.
{distinct eq (distinct eq l) ' distinct eq l} = <..>

distinctIdemFn : ∀ A: ?. Π eq: EqFn·A. IdemFn·(List·A) = <..>

ListSet : Π A: ?. EqFn·A → ?
= λ A: ?. λ eq: EqFn·A. Quotient·(List·A) distinctIdemFn.

We need an equality function that decides the equality of terms of the parameter
type in order to prove that distinct is idempotent. A quotient of List provides
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a guarantee about the list that does not alter the underlying structure and does
not need to be proven because the list can always be canonicalized. If we allow
ourselves an ordering on the elements of A in addition to decidable equality,
then we could quotient by a sort function to construct a SortedList type.
Alternatively, we could quotient a tree instead of a list to form a TreeSet type.

Throughout the paper, we have highlighted that elements of the quotient type
are definitionally equal to certain elements of the carrier type. The advantage of
our encoding, and its interaction with Cedille’s equality type, is most apparent
in the combination of ListSet with other definable quotient types. If for exam-
ple we wished to define a specialized notion of equality between List·Nat and
ListSet·Even, it would be as simple as asking that two terms are equal.

EqEvenSet1 : List·Nat → ListSet·Even eqEven → ?
= λ l1: List·Nat. λ l2: ListSet·Even eqEven. {l1 ' l2}.

However, if we were to use an encoding of definable quotients based on a depen-
dent record or pair type, we would be required to use a homogeneous equality
type like Id (Section 3.2) and explicit coercions between the two sets of quotient
and carrier types.

EqEvenSet2 : List·Nat → ListSet·Even eqEven → ?
= λ l1: List·Nat. λ l2: ListSet·Even eqEven.

Id·(List·Nat) l1

(map (qcoerce -evenIdemFn)

(qcoerce -(distinctIdemFn eqEven) l2)).

With EqEvenSet1 l1 l2 we know that l1 and l2 are (propositionally) equal.
An intrinsically typed theory (like Coq or Agda) however must use EqEvenSet2,
where qcoerce would be implemented by record accessors or product projections
rather than an identity function. As such, they would remain in proof obliga-
tions unless explicitly discharged, meaning for this example we would have to
more carefully track coercions for the ListSet and the Even elements when
manipulating terms in proofs.

3.6 Quotient Inductive Integers

In prior examples where the carrier type had an induction principle, we would
expect that the quotient type constructed from it is also inductive with respect
to some canonicity-preserving constructors. Take for example a non-canonical
encoding of integers (which we call the pre-integers).

data PreInt : ? =

| pzero : PreInt

| psucc : PreInt → PreInt

| ppred : PreInt → PreInt.

When phrased as a quotient inductive type, the definition includes the following
axioms.
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spCancel : Π p: PreInt. {psucc (ppred p) ' p}

psCancel : Π p: PreInt. {ppred (psucc p) ' p}

However, these axioms are false because of how type theories like Cedille, Agda,
and Coq encode the constructors of PreInt. To fix this problem the axioms must
be considered as part of the definition of the type. In systems like Cubical Agda
the solution is to extend the notion of inductive types to higher inductive types
which are allowed to specify path constructors that may depend on previously
defined constructors [24]. The underlying semantics of the system then encodes
the type appropriately so that all path constructors are satisfied.

With quotient types by idempotent functions we can take a different ap-
proach to the problem by definining canonicity-preserving constructors on the
type PreInt:

psucc’ : PreInt → PreInt

= λ p. µ’ p {

| pzero → psucc pzero

| psucc x → psucc (psucc x)

| ppred x → x

}.

ppred’ : PreInt → PreInt

= λ p. µ’ p {

| pzero → ppred pzero

| psucc x → x

| ppred x → ppred (ppred x)

}.

We do not need to define a pzero’ constructor because it would be definitionally
equal to pzero. Next, we define the idempotent function which induces the
intended equivalence relation by noticing that it should replace every PreInt

constructor with the corresponding canonicity-preserving version.

integer : PreInt → PreInt

= λ p. µ rec. p {

| pzero → pzero

| psucc x → psucc’ (rec x)

| ppred x → ppred’ (rec x)

}.

When a quotient type is designed with the constructors (psucc’ and ppred’)
first and the canonizer (integer) second, then the proof that the canonizer is
idempotent is equivalent to knowing that the constructors commute with it. To
show that psucc’ and ppred’ commute with integer we need to know that
the equational axioms hold. That is, we need to show that the canonical choice
for any pre-integer satisfies the cancellation axioms of the canonicity-preserving
constructors.
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EqSP : PreInt → ? = λ p: PreInt. {psucc’ (ppred’ p) ' p}.

eqSP : Π p: PreInt. EqSP (integer p) = <..>

EqPS : PreInt → ? = λ p: PreInt. {ppred’ (psucc’ p) ' p}.

eqPS : Π p: PreInt. EqPS (integer p) = <..>

integerIdem : Π p: PreInt. {integer (integer p) ' integer p}

= <..>

integerIdemFn : IdemFn·PreInt = <..>

With these lemmas, eqSP and eqPS, the function integer can be shown idem-
potent without difficulty.

Next, we define the quotient type Int, its corresponding constructors, and
prove the cancellation properties.

Int : ? = Quotient·PreInt integerIdemFn.

izero : Int = [pzero, β{pzero}].
isucc : Int → Int = <..>

ipred : Int → Int = <..>

sp : Π i: Int. {isucc (ipred i) ' i} = <..>

ps : Π i: Int. {ipred (isucc i) ' i} = <..>

Finally, we can prove an induction principle on Int that references the quotient
constructors by induction on the underlying PreInt.

induct : ∀ P: Int → ?. P izero →
(Π x: Int. P x → P (isucc x)) →
(Π y: Int. P y → P (ipred y)) →
Π i: Int. P i = <..>

Furthermore, we can use the induction principle to define addition on the quo-
tient inductive integers as expected.

iadd : Int → Int → Int

= λ x. λ y. induct·(λ x: Int. Int) y

(λ a. λ b. isucc b)

(λ a. λ b. ipred b)

x.

In contrast to a Cubical Agda definition of quotient inductive integer our
construction does not mention a coherence condition about the equational con-
straints ps and sp. Both the coherence condition and the set truncation condi-
tion described by Pinyo and Altenkirch [20] are not true for the equality type
of Cedille. However, the type PreInt has a decidable equality. This implies that
Int also has a decidable equality because every element can be coerced to an
element in PreInt. Thus, construction of quotient inductive types using idem-
potent functions will always have decidable equalities if the underlying carrier
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type does. This means that these types, in a Homotopy Type Theory setting,
are already sets which is why a coherence condition is not needed. Also, it is
important to note that quotient inductive types, as described in Cubical Agda,
are more expressive than quotients by idempotent functions. Indeed, we have
only the definable quotient inductive types.

4 Properties of Quotient Types by Idempotent Functions

In the literature several desired properties of quotient types are listed. Li lists
soundness and completeness of the canonicalization function relative to the
equivalence relation as requirements [15]. Cohen lists, additionally, a surjection
property and lifting properties [4]. First, we briefly demonstrate that some of
these properties trivially hold for quotients by idempotent functions. Second, we
demonstrate function and property lifting in Section 4.1.

In this section we will use abbreviations for the idempotent function, carrier
type, and quotient type.

import quotient-defs.

module quotient (A: ?) (f: IdemFn·A).
Q : ? = Quotient·A f.

canon : A → Q = λ a. qcanon f a.

Here, quotient-defs contains the definitions found in the beginning of Section
3. Now, we define the equivalence relation Equiv on A that arises from f and
show that canon is sound and complete (as defined by Li for definable quotients)
with respect to it.

Equiv : A → A → ? = λ a: A. λ b: A. {f a ' f b}.

sound : Π a: A. Π b: A. Equiv a b → {canon a ' canon b}

= λ a. λ b. λ eq. eq.

complete : Π a: A. Equiv (f.1 a) a

= λ a. ρ (f.2 a) @ x. {x ' f a} - β.

In Section 5 we expand on the equivalence between Li’s definable quotients
and quotients by idempotent functions. It is also straightforward to show the
surjection property of Cohen.

surjection : Π q: Q. ι a: A. {q ' canon a}

= λ q. [q.1, ρ ς q.2 @ a. {a ' canon a} - β{q.1}].

Function and property lifting are more interesting in Cedille because Q terms
have corresponding A terms that are definitionally equal.
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4.1 Function and Property Lifting

When working with the quotient type Q, there may be functions on the carrier
type A that would be useful to use on Q. We have seen this briefly already for both
Mod k (where addition on Nat was lifted) and Even (where applying the successor
twice on Nat was lifted). These two applications are different. Addition on Nat

was lifted by restricting the input arguments and canonicalizing the output.
Successor twice on Nat was lifted by proving that the output returns a canonical
element for any canonical input.

We abstract lifting by canonicalization to automatically lift any simply typed
function on A to a simply typed function (with the same shape) on Q. This
requires that the output of any higher-order inputs are also canonicalized. To
accomplish this in Cedille we use an inductive relation IsSimple.

data IsSimple : (? → ?) → ? =

| base : IsSimple·(λ x: ?. x)

| any : ∀ T: ?. IsSimple·(λ x: ?. T)

| arrow : ∀ A: ? → ?. ∀ B: ? → ?.
IsSimple·A → IsSimple·B → IsSimple·(λ x: ?. A·x → B·x).

liftByCanon : ∀ F: ? → ?.
IsSimple·F → Pair·(F·A → F·Q)·(F·Q → F·A) = <..>

This construction allows for both instances of A where it is replaced by Q (using
the base constructor) and also instances of A that are not replaced (using the
any constructor). In the unary case applying liftByCanon is definitionally equal
to applying canon on the output of the operation.

liftByCanon1 : (A → A) → Q → Q

= λ op. (fst (liftByCanon (arrow base base))) op.

liftByCanon1’ : (A → A) → Q → Q

= λ op. λ q. canon (op q.1).

liftByCanon1Eq : Π op: A → A.

{liftByCanon1 op ' liftByCanon1’ op}

= λ op. β.

Although lifting by canonicalization is very flexible there may be some idem-
potent functions that are either expensive to compute or would otherwise be un-
necessary to re-apply. For example, applying a filter function over a ListSet

would not invalidate the fact that it is a fixpoint of distinct but reapply-
ing distinct to the output of filter will change the complexity from linear to
quadratic. This is because distinct replaces every cons with the distinct cons

operation, every application of which destructs and rebuilds (in linear time) the
entire list set. To avoid this, an additional compatibility property about the
operation to be lifted needs to be proven.
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Compatible : Π T: ?. (T → A) → ?
= λ T: ?. λ op: T → A. Π t: T. {f (op t) ' op t}.

liftArg : ∀ R: ?. Π op: A → R. Q → R

= Λ R. λ op. λ q. op q.1.

lift : ∀ T: ?. Π op: T → A. Compatible·T op ⇒ T → Q

= Λ T. λ op. Λ c. λ t. [op t, ρ (c t) - β{op t}].

Knowing that the operation is compatible with the idempotent function is only
necessary for lifting the return type of the operation op. Lifting arguments of
the function, as long as they are not higher order arguments, is always possible.
With liftArg and lift binary functions can be lifted by applying inputs to the
operation in the compatibility evidence.

lift2 : Π op: (A → A → A). (Π a: A. Compatible·A (op a))

⇒ Q → Q → Q

= λ op. Λ c. λ x. liftArg (lift (op x.1) -(c x.1)).

A similar approach is possible for any n-ary function. As expected, compatible
lifting will return a definitionally equal operation.

liftArgId : ∀ R: ?. Π op: A → R. {liftArg op ' op}

= Λ T. λ op. β.

liftId : ∀ T: ?. Π op: T → A. {lift op ' op}

= Λ T. λ op. β.

Aside from lifting functions we also wish to lift properties. Given a property
on A we lift it to a property on Q by forgetting the fixpoint evidence.

Lift : (A → ?) → Q → ? = λ P: A → ?. λ q: Q. P q.1.

dlift : ∀ P: A → ?. (Π a: A. P a) → Π q: Q. Lift·P q

= Λ P. λ p. λ q. p q.1.

Alternatively, as stated by Hofmann, we have quotient induction where we start
with a property on Q and show that it holds for all elements of Q if it holds for
the canonical representatives of elements of A.

qind : ∀ B: Q → ?. (Π a: A. B (canon a)) → Π q: Q. B q

= Λ B. λ c. λ q. ρ ς q.2 - c q.1.

Quotient induction lets us prove, by induction on A, a fact about the quotient
type. However, this is not the same as being able to perform induction directly on
Q using canonicity-preserving constructors as we showed for quotient inductive
integers in Section 3.6.
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5 Related Work

Quotients have been explored in several existing systems including: Agda, Coq,
HOL Light, NuPRL, and others. We survey the existing literature and comment
on what is relevant to results presented in this work.

Definable quotients as given by Li [15] are closely related to quotients by
idempotent functions. In Li’s thesis he formalizes, in Agda, examples of definable
quotients and additionally proves that not all quotients of interest are definable.
One such example is unordered pairs that lack a total ordering of its components.
The type of unordered pairs is also undefinable with an idempotent function.
Indeed, the idempotent function must either keep the order of elements or swap
the elements and neither choice is fixed without an imposed order.

Li also provides and proves equivalent to definability a notion of quotients
by normalization. We now show that our formulation of quotients by idempotent
functions is an equivalent condition to this. The quotient A/∼ of a setoid (A,∼)
is definable by normalization if:

1. there is a function f : A→ A;
2. which is sound, ∀a, b : A, a ∼ b⇒ f(a) = g(b);
3. and complete, ∀a : A. f(a) ∼ a

and definable by an idempotent function if:

1. there is a function g : A→ A;
2. which is idempotent, ∀a : A. g(g(a)) = g(a);
3. and is image equivalent, ∀a, b : A. a ∼ b⇔ g(a) = g(b)

Theorem 1. The two conditions above on setoid (A,∼) are equivalent.

Proof. (⇒) Assume a function f which is sound and complete. We wish to
provide some function which is idempotent and image equivalent. We pick f : for
all a : A, we have by completeness that f(a) ∼ a, and applying soundness to
this yields f(f(a)) = f(a), so f is idempotent. For all a, b : A, we have already
by soundness that a ∼ b⇒ f(a) = f(a), and assuming that f(a) = f(b) we have
by completeness that a ∼ f(a) = f(b) ∼ b, so f is image equivalent.

(⇐) Assume a function g which is idempotent and image equivalent. We
wish to provide some function which is sound and complete. Pick g: we have
soundness as a direct consequence of image equivalence. For all a : A, we have
by idempotence that g(g(a)) = g(a), so by image equivalence we have g(a) ∼ a
showing g is complete. ut

In Coq, Cohen [4] developed two notions of quotient types. The first consists
of two functions pi : Q → T and repr : T → Q where ∀x : T. pi(repr(x)) = x;
much like as in our presentation, the equivalence relation x ∼ y then arises from
the equality repr x = repr y. The second notion arises from carrier types T
with a choice structure which guarantees that, for every equivalence relation,
labeled ∼, there exists a canonical choice operation canon : T → T [9]. In
translating from the second notion of quotient to the first, Cohen shows that
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choice structure guarantees that canon is idempotent and defines the quotient
type Q as a dependent record containing an element of T and a proof that it is a
fixpoint of canon. Though this is similar to quotients by idempotent functions,
we start with the requirement that the canonical choice operation is idempotent
rather than deriving it as a consequence of the seemingly stronger requirement
that T has a choice structure.

Moreover, because Coq is an intensional type theory the packaging of the
dependent record will not be erased when reasoning about terms of the quotient
type Q. Also, the lack of a truly heterogeneous equality type (as opposed to
John Major equality [17]) in Coq will prevent the direct equational reasoning
between carrier and quotient type that is possible in Cedille. This situation is
also the same for constructing quotient by idempotent functions in Agda: even
using Prop or irrelevant record fields so that Q is in a sense a subtype of T , it
is not the case that every q of type Q is definitionally equal to some element
of type T , and so coercions between these the two must be managed explicitly
when performing equational reasoning.

Quotient types in type theory have been studied as early as the 1990s with
Hofmann’s work on interpreting quotient types in both predicative and impred-
icative variants of the Calculus of Constructions [11]. Hofmann’s work is ex-
panded upon by Veltri who works with impredicative encodings and some ad-
ditional primitive types to show versions of dependent lifting for quotients [23].
The approach of utilizing normalization is explored in Courtieu’s work where
he expands the Calculus of Inductive Constructions with type constructors for
“normalized types” [6].

Outside of intensional proof assistants like Coq and Agda, Nogin has worked
on modular definitions of quotients in the NuPRL system to ease the develop-
ment burden when using quotients [19]. Prior to Nogin’s work NuPRL included
quotients as a primitive construct. In modern NuPRL types are identified as
partial equivalence relations and quotient types are constructed from this inter-
pretation directly [2]. Quotients are also defined and used in HOL Light and
similar systems [12].

In this work we have focused on definable quotient types, but there are sev-
eral interesting quotients that do not fit into this category. For instance, higher
inductive types (of which quotient inductive types are a special case) have been
used to model type theory in type theory [1] and finite sets [8]. With the existence
of a small core of higher inductive types (one of which is the higher inductive
quotient), all set-truncated higher inductive types have been shown to be deriv-
able [25]. Although there are some quotient inductive types that can be modeled
as quotients by idempotent functions (such as the quotient inductive integers)
it is clear that quotient inductive types are a more expressive formalism.

The presence of non-definable quotients in type theories can have significant
consequences. Indeed, Maietti demonstrates that when effective quotients are
added to constructive set theory and two universes are postulated that the law
of the excluded middle holds for small sets [16]. Likewise, Chicli et al show in
Coq that if quotients of functions spaces are available, where all such quotients
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have a section mapping, and there is an impredicative universe then the theory is
inconsistent [3]. With a theory like Cedille that does not have a universe hierarchy
and has impredicative quantification, caution must be used in extending the
theory with undefinable quotients (or more generally higher inductive types) as
it could make the theory inconsistent.

6 Conclusions

In this work we have described a novel and relatively simple characterization
of definable quotient types by idempotent functions, and described an encoding
of it within Cedille. We have presented concrete examples of quotient types: an
equality type with UIP, naturals modulo k, the even and odd subset of natu-
rals, finite sets (and their combination with even numbers), and a quotiented
integer type with an induction principle. We have also developed function lift-
ing operations, showing that in particular compatible functions can be lifted
to a definitionally equal function over the quotient type. Moreover, dependent
intersection and the Kleene trick in Cedille allow full erasure of the packaging
of elements of a carrier type with proofs they are fixpoints of some idempotent
function, meaning no explicit coercions between the quotient and carrier type
are needed for equational reasoning, as would be the case for a similar encoding
in other dependently typed languages like Coq and Agda.

We are interested in expanding on this work by investigating what equational
constraints for higher inductive types would always guarantee that it is a defin-
able quotient inductive type, and thus derivable within CDLE. Also, in Cedille
a notion of (Mendler-style) histomorphism is derivable that allows for more flex-
ibility in recursive definitions [7]. We have shown that induction is possible in
terms of the quotient constructors, but we also want to extend this result to
histomorphisms on the quotient type.
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