
Bidirectional Type Inference in Programming Languages

Submitted in Partial Fulfillment of the Requirements for the Qualifying Exam of the
Ph.D. Program

University of Iowa, Department of Computer Science

Christopher Jenkins

2018 September 3

0 Abstract

Type inference in programming languages helps to maintain the balance between powerful fea-
tures and user-friendliness. Bidirectional type inference is a simple, effective, and widely-used
technique in approaches to partial type inference that locally propagates type information be-
tween nodes of the abstract syntax tree (AST) through two main judgment forms, called synthesis
and checking mode. By itself, bidirectional type inference serves as a strong foundation for local
type inference systems, an approach that benefits from simplicity in use and implementation
while still being powerful enough to infer a good number of type annotations; in conjunction
with other techniques for type inference, bidirectionality can be used to help relate the type
inference implementation to an independent specification that can better communicate where
type annotations are required, where they can be omitted, and what types are inferred, all with-
out getting into implementation details. This report provides an introduction to the concept of
bidirectional type inference and gives an in-depth analysis of how it is used in three published
type systems to help provide a specification for sophisticated type inference techniques.

1 Introduction

In programming languages, types serve as a kind of machined-checked specification for programs
and data, indicating their “shape” and what kinds of operations can be performed on them
– integers can be added, strings can be concatenated, etc. The two main approaches to
type checking, static and dynamic, differ in when this specification is enforced, with the latter
making violations of this specification run-time errors and the former introducing a separate
type-checking phase before run-time. Proponents of static typing point out that it can guarantee
software is free from certain classes of errors, whereas testing can only confirm the existence of
errors. For languages such as C with simple, weakly-enforced static type systems, the kinds
of specifications programmers can write – and thus, bugs they can rule out – are not very
interesting. However, types in programming languages lie on a continuum of expressivity, and
languages with richer type systems such as Haskell, ML, and Scala are popular in part because of
their ability to statically enforce non-trivial behavioral guarantees for programs. At the extreme
end, due to the Curry-Howard correspondence [Cur34] we can view types as propositions and
terms as proofs, and languages such as Agda, Idris, and Coq use this to blur the lines between
general-purpose functional programming language and interactive theorem prover!

1

This increase in expressivity comes at a cost, however. Detractors of static type checking are
quick to point out that languages with static typing often require a great deal of help from the
programmer in the form of type annotations. Type annotations are not necessarily a bad thing –
at their best, they serve as formal documentation of the programmer’s intent for an expression –
but writing them quickly becomes tedious when it is “obvious” what type each sub-expression of
a program should have. Type inference, which is the automatic reconstruction of typing informa-
tion from programs, is the key technology which helps to reduce the programmer’s annotation
burden. However, there is an inherent conflict between advanced type-level features allowing
programmers to impose precise specifications and, on the other hand, expecting type inference
algorithms to reconstruct these advanced specifications. Additionally, with more sophisticated
type inference algorithms, it becomes increasingly difficult for programmers to understand why
their code has a type error, where they should provide additional annotations, or even why a
specific type, and not another, was inferred for an expression!

This report is concerned with bidirectional type inference, an approach to type inference that
helps reduce the number of redundant and silly type annotations while at the same time being
amenable to providing a high-level, specificational description of the implementation suitable
for communicating to programmers. The design space for type inference algorithms is just as
large (if not more so) as that for type systems themselves, so to help orient the reader to where
bidirectional type inference sits within it, I begin with categorizing approaches to type inference
by asking the following two high-level questions: does the algorithm perform complete or partial
type inference, and does it rely on global or purely local type information?

Complete vs Partial Methods Some programming languages have type systems simple
enough to admit complete type inference, meaning that if a program is typeable at all, it is
typeable without any typing annotations. Of such methods, the most popular are variants
of Damas-Hindley-Milner [DM82] type inference, most often used in functional programming
languages with (restricted) parametric polymorphism like ML and Haskell. For such languages,
specifying the type annotation requirements is trivial – nowhere! – and inference of “principal”
(i.e. most general) types answers which types will be inferred when multiple might work.

Complete type inference is possible only in languages where the structure of types is somehow
restricted. In contrast to the predicative, prenex polymorphism of ML, it is well-known that
complete type inference for the “gold-standard” of expressivity in functional languages, impred-
icative System F, is undecidable [Wel98]. Languages aspiring to approach or exceed the power
of System F must therefore rely on partial methods of type inference; for such languages, some
type annotations will be unavoidable, and the goal of type inference is to make the annotation
requirements and the types that the algorithm infers predictable and sensible.

Global vs Local Methods Global methods of type inference work by first generating typing
constraints for the whole program and then attempting to solve these constraints, usually using
some form of unification algorithm. Because they have access to all available typing information,
global methods do a very good job at minimizing annotation requirements. However, when type
errors do occur they can be more difficult for programmers to interpret, as the root cause of the
error can be distant from the location it is reported [Mca00]. Local methods of type inference,
on the other hand, work by only propagating typing information between adjacent nodes of the
AST and restricting the generation and solution of typing constraints to a well-defined locality
(typically a node of the AST). What local methods lack in power they gain in comprehensibility
and improved localization of error messages. Unlike the divide between complete and partial
methods, type inference systems can combine local and global methods as desired.

2

Bidirectional Type Inference sits at the intersection of local methods used for partial type
inference: local because it describes the flow of typing information between adjacent nodes of
the language AST, and partial because complete methods usually need not concern themselves
with this flow. Systems using bidirectional type inference use two main judgment forms, usually
called synthesizing and checking mode. Synthesizing mode is used for “pulling” type information
out of a term and making it available to the surrounding context, and checking mode is used
for “pushing” typing information available from the context into a term. This may seem like
a rather simple technique – and indeed, it is! – but it is surprisingly useful for designing and
specifying type inference algorithms, partly because it can bring the specification a little closer
to the implementation and make it easier to show the two are equivalent, and partly because
the two modes significantly affect what and how types are inferred.

In this report I will consider several type inference systems, what the goals of these systems
are, and how they use bidirectionallity to effectively specify their inference algorithm. Sec-
tion 2 provides background on how to read type inference rules and some simple properties
and advantages of bidirectional systems. Section 3 presents the type system of “Local Type
Inference” [PT00], Pierce and Turner’s seminal work which first formally introduced bidirec-
tional type-checking, and explores the interplay between bidirectional inference, subtyping, and
type-argument inference. Section 4 shows a refinement of the previous type system called “Col-
ored Local Type Inference” [OZZ01] by Odersky et al. internalizing bidirectionality into the
structure of types themselves, allowing for the local propagation of partial type information.
Finally, Section 5 departs from local-only methods to examine the type system by Dunfield
and Krishnaswami in “Complete and Easy Bidirectional Typechecking for Higher-rank Poly-
morphism” [DK13], which adds a third judgment form for type-argument inference to the usual
bidirectional mix. All three systems have bidirectional specificational rules with respect to which
the implementations are proven sound and complete.

2 Bidirectional Type Inference

2.1 System F-sub

In this section I give some necessary background for reading type inference rules. For the
remainder of this report, a least some familiarity with System F is assumed1. Figure 1 gives
the grammar, subtyping, and type inference rules for System F< , an extension of System F
that adds subtyping. Type systems are often given as a set of inference rules, where premises
and assumptions go above the horizontal line and conclusions below. Typing derivations form
bottom-up “proof trees” similar to those seen in natural deduction. The advantage of describing
them in this way, rather than through pseudo-code, is that inference rules allow for a higher-level
view of the system that users and implementors of the system alike can understand. Figure 1
contains only “uni-directional” (synthesizing-only) inference rules so that, at a first pass, we can
focus only on how to read them. After giving a brief overview of this system I will discuss its
limitations and motivate making the system bidirectional (Figure 2).

Grammar In F< constants > (pronounced “top”) and ⊥ (“bot”) are added to the language
of System F types, representing resp. the universal and uninhabited types. Intuitively, any
typeable term can be used when a term of type > is needed, and if you have a term of type ⊥
it can be used as if it were any type. Besides this, the most significant deviation from System F
is the coupling of type abstractions with arrow types and the use of uncurried function types,
though these are more of a stylistic rather than a fundamental departure. Terms are formed
by variables, function abstractions fun[X](x :S)t (with X the abstracted type variables, x the

1For a thorough introduction of the subject see Chapter 23 of [Pie02]

3

(a) Grammar for types, terms, and contexts

Types R,S, T, U, V ::= X Type variable
> | ⊥ Maximal and minimal type

∀X.S → T Uncurried function type

Terms t, f ::= x Term variable

fun[X](x :S)t Abstraction

f [T](t) Application

Contexts Γ ::= • Empty context
Γ, x :T | Γ, X Term and type variable binding

(b) Subtyping rules: S <T

X <X
S-Refl

T <>
S-Top

⊥<T S-Bot

T <R S <U

∀X.R→ S < ∀X.T → U
S-Fun

(c) Type synthesis rules: Γ `⇑ t : T

Γ `⇑ x : Γ(x)
S-Var

Γ, X, x :S `⇑ t : T

Γ `⇑ fun[X](x :S)t : ∀X.S → T
S-Abs

Γ `⇑ f : ⊥ Γ `⇑ t : S

Γ `⇑ f [T](t) : ⊥
S-App-Bot

Γ `⇑ f : ∀X.S → R Γ `⇑ t : U U < [T/X]S

Γ `⇑ f [T](t) : [T/X] R
S-App

Figure 1: System F< (part 1)

term variables, and t the body of the function), and applications f [T](t) (with function f , type
arguments T , and term arguments t), with these last two given in a fully-uncurried style – the
over-bar notation indicates some sequence of the grammatical category underneath it.

Subtyping and Typing Figures 1b and 1c give the inference rules for forming resp. the
subtyping and typing judgments of the system. We read such rules as follows: first we look at
the judgment below the horizontal line for the conclusion of the rule, and then we look above
the line for its premises (if there are no premises, the rule is an axiom). For example, rule
S-Fun in Figure 1b can be read as “to conclude that ∀X.R → S is a subtype of ∀X.T → U ,
we need to show that types T are subtypes of R and to show that S is a subtype of U”. With
this we can read all the other subtyping rules: rule S-Refl is reflexivity for type variables,
and S-Top and S-Bot say resp. that every type is a subtype of > and supertype of ⊥. Rule
S-Fun allows for more involved subtyping to occur between polymorphic function types, so for
example ∀X.⊥ → X < ∀X.X → > is derivable. Note the contravariant twist for the domain
type. Intuitively, the justification is that if S <T and you need a function that consumes terms
of type S, you can make do with a function that consumes the larger class of terms of type T .

As for the typing rules, rule Var is standard, saying that a term variable has whatever type
associated to it in a typing context Γ (the notation Γ(x) is meant to convey “looking up” the
type for x in Γ). In S-Abs we can type a function fun[X](x : S)t whose term parameters x
have type annotations S (where type variables X may be free in S) when, after adding the
abstracted type and term variables to the typing context, we can type its body t. Rule S-App

is more involved: to type an application, we first confirm that the function f really has an
arrow type, then synthesize types U for term arguments t, and lastly we check that terms t
are legal arguments to function f by making sure U is a subtype of the expected type [T/X]S

4

(representing the simultaneous and capture-avoiding substitution of types T for type variables
X in types S). Finally, a special exception must be carved out in rule S-App-Bot for using a
term f of type ⊥ as an applicand – after all, ⊥ is a subtyping of all polymorphic function types,
so it can be used as a function in an application.

Redundant Annotations As it stands now, programming in System F< is tedious. Con-
sider: assuming some base type Int and some function f of type2(Int→ Int)→ Int, in order
to apply f to an anonymous function, we are forced to give type annotations to the argument, as
in f(fun(x :Int)x). This is frustrating, because the type of f tells us that this annotation should
be Int – the explicit annotation is redundant! To try to improve this situation, we would first
add bare-abstractions to our term language, of the form fun[X](x)t, (that is, sans annotations
for variables x). To add a suitable typing rule for bare abstractions, we might be tempted to
propose the following:

Γ, X, x :S `⇑ t : T

Γ `⇑ fun[X](x)t : ∀X.S → T
S-Abs-Bad

but alas, if we wanted to implement a type-checking algorithm for this system, how are we
supposed to generate types S from a bare-abstraction? How can we know that this is available
from the surrounding context? The problem with rule S-Abs-Bad is that it is not syntax-directed.

Syntax-directedness The usual implementation of a type inference algorithm is through a
function that uses case analysis on the subject of typing (and other inputs) to determine which
rule applies, and uses recursion to generate or check the rule’s premises [Chr13]. Only type
systems that are syntax-directed can be easily translated to such an implementation, because
it ensures that two conditions hold for the inference rules that very closely correspond the
implementation approach: first, given any derivable judgment, the form of the judgment un-
ambiguously determines the single rule needed to introduce it ; second, in every inference rule,
the “inputs” to the conclusion uniquely determine the inputs to each premise, and the “out-
puts” of the premises determine the outputs of the conclusion. The typing rules of Figure 1c
mostly3satisfy this first condition, and adding rule S-Abs-Bad cannot cause overlap as it concerns
a totally new grammatical form.

The second condition given is also called the mode-correctness condition. When viewed
algorithmically, each judgment is implicitly moded to indicate the parts considered as input and
output. For what I have presented of System F< so far, our mode-annotated judgments are
Γ+ `⇑ t+ : T− and S+<T+, where superscripts + and − indicate resp. inputs and outputs. To
ensure a rule is mode-correct, it must pass the following reading [Pfe04]:

1. Assume the inputs to the conclusion are known

In S-Abs-Bad, this is Γ and fun[X](x)t

2. Show that the inputs of the premise are known.

In S-Abs-Bad, we can show that Γ and t are known, but get stuck showing that the
extended typing context Γ, X, x :S is known, as it is not clear how to provide types S

3. Assume the outputs of the premise are known.

In S-Abs-Bad, this it T

2When a function type does not quantify over any type variables, I omit the quantifier entirely, as well as []
from the application and abstraction.

3 I say mostly, because technically rules S-App and S-App-Bot overlap; since the two rules are so similiar,
they can easily be merged into one significantly more complex but unambiguous rule, but this does not seem
particularly useful.

5

4. Show that the outputs of the conclusion is known.

In S-Abs-Bad, this is ∀X.S → T , where again its not clear how S is known.

Bidirectional Rules To remove unnecessary annotations on abstractions while preserving
syntax-directedness, we need some way to “tweak” the mode of S-Abs-Bad so that the type is
considered an input to the judgment. And lo! Bidirectionality give us just that by adding a
new judgment Γ+ `⇓ t+ : T+ indicating that the surrounding context of term t has provided an
expected type T , and all we need to do is check that t can be ascribed type T . The additional
typing rules induced by adding this new judgment are listed in Figure 2 – the previous rules
remain a part of this new system (except for rule S-App – see below)

(a) Extended language of terms

Terms f, t ::= ... | fun[X](x)t Bare abstraction

(b) Type checking rules: Γ `⇓ t : T

Γ, X, x :S `⇓ t : T

Γ `⇓ fun[X](x)t : ∀X.S → T
C-Abs-Inf

Γ(x)<T

Γ `⇓ x : T
C-Var

T <S Γ, X, x :S `⇓ t : R

Γ `⇓ fun[X](x :S)t : ∀X.T → R
C-Abs

Γ `⇑ f : ∀X.S → R [T/X]R<U Γ `⇓ t : [T/X]S

Γ `⇓ f [T](t) : U
C-App

Γ `⇑ t : T

Γ `⇓ t : >
C-Top

Γ `⇑ f : ⊥ Γ `⇑ t : S

Γ `⇓ f [T](t) : R
C-App-Bot

Γ `⇑ f : ∀X.S → R Γ `⇓ t : [T/X]S

Γ `⇑ f [T](t) : [T/X]R
S-App

Figure 2: System F< (part 2)

Adding the checking-mode judgment to our system requires we add several new inference
rules covering the different term constructs of System F< (whose definition now spans both
Figures 1a and 2a). The most important new addition is rule C-Abs-Inf, our mode-correct
version of S-Abs-Bad. In this rule, the types S for variables x are provided as input to the
judgment by the surrounding context, which requires the whole expression have type ∀X.S → T .
The other significant development of adding bidirectionality is the change in rule S-App. If we see
application f [T](t) then between the type of f and type arguments T we fully know the expected
types for the arguments. So instead of requring that t synthesize their types independently,
and then see if these agree (via subtyping) with the expected types, we pass the expected types
[T/X]S down. Between just these two rules we can now type f(fun(x)x), our original motivating
example. (The other rules of the system are listed for the sake of completeness – some of them
will be touched upon towards the end of the section).

2.2 Example

Figure 3: Example derivation in System F<

Γ ` f : ∀X. (X,X)→ >
S-Var

⊥<X
S-Bot

X <>
S-Top

∀X.X → X < ∀X.⊥ → >
S-Fun

Γ `⇓ y : ∀X.⊥ → >
C-Var

⊥<>
S-Bot

Γ, X, x :⊥ `⇓ x : >
C-Var

Γ `⇓ fun[X](x)x : ∀X.⊥ → >
C-Abs-Inf

Γ `⇑ f [∀X.⊥ → >](y, fun[X](x)x) : >
S-App

6

To see how these inference rules work in practice, it is useful to have an example of a full
derivation for a concrete expression. This is given in Figure 3 which synthesizes a type for the
expression f [∀X.⊥ → >](y, fun[X](x)x), assuming typing context Γ binds f to ∀X. (X,X)→ >
and y to ∀X.X → X. To type this application, we first synthesize the type of function f by
looking it up in the context Γ in S-Var (premise omitted for space), then check arguments
(y, fun[X](x)x) against their expected types [∀X.⊥ → >/X] (X,X) (where the instantiation
for X comes from the given type argument). The first argument y synthesizes type ∀X.X → X,
which is subsumed by the checked type; the second argument, fun[X](x)x does not synthesize
its type, but the checked type allows us to associate the local variable x with type ⊥, allowing
us to check that the body of the function (here just x itself) has type >.

2.3 Subsumption

We conclude by remarking on simple but significant interaction between bidirectionality and
subtyping, one which will be a re-occuring theme throughout this report: in System F< , and in
bidirectional type systems in general, subsumption of the type of a term is governed entirely by
the term’s context. Referring back to Figure 2, this phenomenon is most obvious in rules C-Var
and C-Top, where both can be read as saying the synthesized type of the subject is subsumed
by the checked type of the context. More subtly, if you keep this in mind when comparing
the two versions of S-App, you might wonder whether checking the arguments t against types
[T/X] S (second version) includes the cases where the arguments synthesize types which are then
subsumed by the expected type (first version). The answer is yes – any term that synthesizes
its type can be checked against a supertype4:

If Γ `⇑ t : T and T <S then Γ `⇓ t : S

Furthermore, it is important to limit type subsumption to switches from checking to synthesis
mode to keep our rules syntax-directed. If we had a synthesizing rule like

Γ `⇑ t : T T <S

Γ `⇑ t : S
S-Sub-Bad

it would be mode-incorrect, as supertype S is not determined by the inputs to the rule. Adding
bidirectionality to System F< allows for more precise control of type subsumption and let us
infer types for more terms, all without making translation to an implementation difficult!

3 Local Type Inference

3.1 System PT

Inferring Type Arguments In Section 2 we saw that adding bidirectionality to System F<

reduced the number of typing annotations required for some function abstractions. Unfortu-
nately, there is another pain-point of using the system: inferring type arguments in function
applications! Sometimes these are painfully obvious – for example, assuming some base type
Int, a constant 0 of type Int, and id of type ∀X.X → X, we would have to write id[Int](0) –
but we would clearly rather write id(0) and infer that X should be instantiated to Int!

Adding type-argument inference to our bidirectional System F< requires some care. First,
type-argument inference requires we synthesize types for term arguments and then find valid
instantiations of the type arguments from this. This is in direct tension with our bidirectional ap-
proach of using the known types of the arguments given by the function to check term arguments.

4I proved this version of the theorem myself – the original (Theorem 4.4.1 of [PT00]) is a completeness theorem
stated in terms of fully-annotated terms.

7

(a) Extended language of terms

Terms f, t ::= ... | f(e) Bare application

(b) Type-argument inference rules

Γ `⇑ f : ∀X.T → R, |X| > 0 Γ `⇑ t : S S < [U/X]T Minimizes(X,U, T , S)

Γ `⇑ f(t) : [U/X]R
S-App-Inf

Γ `⇑ f : ∀X.T → R, |X| > 0 Γ `⇑ t : S S < [U/X]T [U/X]R<V

Γ `⇓ f(t) : V
C-App-Inf

where Minimizes(X,U, T , S) = for all V .(S < [V /X]T implies [U/X]R< [V /X]R)

Figure 4: System PT

Second, there may be multiple legal type argument instantiations, risking non-determinism: in
the example above, what stops us from inferring that id(0) has type > by instantiating X to >?

Pierce and Turner in “Local Type Inference” [PT00] show one approach to resolving the
tension between bidirectionality and type-argument inference. The additional term construct
f(e) (bare applications) and its two new typing rules are given for it are listed in Figure 4, which
should be seen as further extending the rules for System F< given in Figures 1 and 2 to form
System PT. To the first issue (“synthesize or check the arguments?”), we know which approach
is called for when the function of a bare application expects a non-zero number of type arguments
(written |X| > 0) – we must infer X by synthesizing types from the term arguments. To the
second issue, non-determinism in the result type is staved-off in rule S-App-Inf by requiring a
minimality condition (fourth premise) for the instantiation, which will guarantee uniqueness.

Type-argument Inference Rules In both S-App-Inf and C-App-Inf, after synthesizing
types ∀X.T → R for the function f and S for the arguments t, for the application to be
well-typed we must check that S is a subtype of some instantiation [U/X] of the expected
type T . The tricky part of this is that multiple such instantiations might satisfy S < [U/X] T
and specifically in S-App-Inf the particular choice can affect the result type of the application
[U/X]R. (C-App-Inf, meanwhile, has its result type imposed on it from the context, so the
particular choice of instantiation matters less).

To clearly communicate to programmers what type is produced from using it, rule S-App-Inf
requires a minimality condition, i.e. that the result type [U/X]R is the “smallest” (wrt. the
subtyping relation) possible. More precisely, any other instantiation [V/X] that could type
the application would produce a result type [V/X]R more general than result type [U/X]R; in
concrete terms, in the application id(0) above we could not instantiate X to > because this would
produce a non-minimal result type >. Thanks to anti-symmetry of the subtyping relation, this
guarantees uniqueness, as two such minimal types are subtypes of each other and thus identical.

A minimal instantiation for the return type may not always exist. For example, assuming
h has type ∀X.X → (X → X), bare application h(0) might be typed (prior to the minimality
check) at Int→ Int or > → >, which are incomparable in the subtyping relation. Because type
variable X occurs co- and contravariantly in the result type of h, no minimal instantiation is
possible. In such cases, rule C-App-Inf performs significantly better at typing bare applications
– if the expected type is > → >, then X can only be instantiated to >.

3.2 Discussion

Rules as specification The careful reader will have noticed that even though we have tamed
non-determinism in the result types of rules S-App-Inf and C-App-Inf, these two rules are not

8

syntax-directed. In both, when we check that they are mode-correct we get stuck trying to show
that types U (needed for our instantiation [U/X]) are known. Perhaps surprisingly, this is not
a bug but a feature! Pierce and Turner provide alternative, syntax-directed versions of these
rules along with a sophisticated constraint solving algorithm producing U , and show that these
rules are sound and complete with respect to the rules given in Figure 4b – that is, every type
derivation in the algorithmic system has a corresponding derivation in the specificational system,
and vice-versa. Therefore, S-App-Inf and C-App-Inf can be seen as giving a declarative spec-
ification for users of the language, providing a full account of type-argument inference without
reference to implementation details. Furthermore, the different between the specification and
implementation is a mere the swapping of just these two rules with their algorithmic versions.

Bidirectionality is not required for making a clean distinction between specification and
implementation. Indeed, in [PT00] the authors begin with a uni-directional system featuring
type-argument inference with a clear distinction between specification and implementation, and
refine it to have bidirectionality afterwards. Instead, bidirectionality provided an easy way
to increase the power of type inference, both by allowing bare function abstractions and by
increasing the set of typeable applications (by relaxing the minimality requirement in checking
mode), without causing any confusion about what result types are inferred for bare applications
or overly complicating the presentation of the type system.

Design-choices of System PT We conclude this section with discussion of some design
choices made for System PT (comprised of the rules in Figures 1 (sans S-App), 2, and 4).
Pierce and Turner sought to develop a type inference system using the purely local techniques
of bidirectional rules and local type-argument inference. For the latter of these techniques to
be effective, a single AST node for a bare application must be given all arguments up front
to maximize the typing information available for type-argument inference. This leads them to
use a fully-uncurried style for functions. Uncurried applications are still supported, but type
inference performs significantly worse for them – we can synthesize a type for h′(0, 0), where h′

is an “uncurried” function h′ of type ∀X. (X,X) → X, where (as we saw earlier) h(0)(0) can
not with a curried h.

A type system based on purely local techniques has the advantage of requiring only local
reasoning when dealing with type errors. In their discussion, Pierce and Turner noted that type
errors tend to be reported “close to the point where more type annotations are required (or
where an actual error is present in the program)”. Furthermore, they established empirically
that this does not have to come at the price of requiring too many “silly” annotations in programs
by analyzing ˜160,000 lines of ML code, identifying the kinds of annotations different styles of
functional programming would require in an explicitly typed language, and confirming that the
majority of redundant type annotations this would introduce is handled well by their system.

In some settings, the user is not the only benefactor of purely-local reasoning for type infer-
ence. In notes sent to the types mailing list [Ode02], Odersky gives a simple example showing
that in type systems with (rich) nominal subtyping and type-argument inference, “any constraint
system which admits instantiatable type variables on both sides of a subtyping constraint does
not have a single best solution”, giving a strong incentive for such languages to use purely local
methods (like bidirectionality) to keep type inference predictable and well-specified.

4 Colored Local Type Inference

4.1 System OZZ

Improving the Compromise In Section 2 I showed how adding bidirectionality to our type
inference system allowed us to infer annotations on bare function abstractions, then showed in

9

Section 3 how to add type-argument inference for bare applications. Where these two features
meet they are in apparent conflict – bidirectionality wants us to check the term arguments
of applications using a fully-known type, whereas type-argument inference wants to synthesize
types for term arguments to know how to fill in the missing type arguments of the function.
The compromise struck by System PT is “all-or-nothing”: all type arguments are provided and
we perform type checking on the term arguments, or all type arguments are omitted and we
proceed with type synthesis.

It is natural to ask whether we can improve upon this situation. While many silly type
annotations can be removed when using System PT, it is easy give cases where some must
still be provided that we expect to occur semi-frequently in functional programming. Consider:
assuming g has type ∀X. (Int→ X)→ X, we could not type expression g(fun(x)x), because 1)
g is not given a type argument for X, meaning we must perform type-argument inference and
synthesize a type for its term argument, but 2) argument fun(x)x is missing a type annotation
on x and so does not synthesize a type! This is irritating, because we know that the bound x
must have type Int by looking at the type of g. Framed another way, the heart of this issue is
that the expected type Int → X of the argument only has partial type information: we want
to check the argument with known domain type Int but synthesize the codomain type to find
the type instantiating X. The bidirectional rules of System PT, however, pass types down and
up whole-cloth and do not offer a way to decompose them for different inference modes.

In “Colored Local Type Inference” [OZZ01]5, Odersky et al. refine System PT to allow for
partial type information to be given by the context to an expression. The grammar, subtyping
rules, and type inference rules for this System OZZ are given in Figure 5, with some auxiliary
judgments given in Figure 6. The system is significantly more complex than System PT (and
directly based on it), so due to space considerations I will not exhaustively cover each inference
rule. Instead, in this section will carefully study only the significant differences of System OZZ
from System PT – which means the grammar, subtyping rules, and a single typing rule – and
how these address the identified short-comings of System PT.

Grammar Figure 5a lists the grammar for the new system. First, type constructors them-
selves, and not judgments, come with checking and synthesizing mode annotations. As detailed
in the grammar, T ∗ indicates a type with an arbitrary mixture of parts in checking or synthe-
sizing modes Each type constructor is decorated with either ⇑ or ⇓, which as before indicate
resp. synthesizing or checking mode. Reading subtyping and typing rules that use “colored”
(mode-annotated) types requires knowing a handful of notational conventions, which unlike the
paper itself I will conveniently list in one place for your reference:

• Type meta-variable with fixed mode: S⇑, S⇓

Every type constructor in S has the given mode

• Type meta-variable with no mode: S

If it occurs within a moded type constructor, as in (S1
X→ S2)

⇓ (i.e. checking mode for the

arrow), then it inherits this mode, as in (S⇓1
X→ S⇓2)⇓; otherwise, it is the same as S∗.

• Multiple occurrences of “colored” type S∗ in an inference rule

Seen in for example rule Sel and Abs of Figure 5c. The interpretation is that each occurence
of S∗ has the same coloration or mode-mixture throughout the rule (though the moding
of S∗ is arbitrary, it is fixed for one reading of the rule).

5So called because the “official” version of the paper used font coloring instead of superscript annotations to
indicate the different modes within types.

10

(a) Grammar for modes, types, and terms

Modes ∗ ::= ⇑ | ⇓

Types T ∗, S∗, R∗ ::= X⇑ | X⇓
>⇑ | >⇓ | ⊥⇑ | ⊥⇓
{x1 :T ∗1 , ..., xn :T ∗n}⇑ | {x1 :T ∗1 , ..., xn :T ∗n}⇓ Records

(T ∗
X→ S∗)⇑ | (T ∗

X→ S∗)⇓ Functions

Terms E,F ::= x

fun[X](x :T)E | fun(x)E

F [T](E) | F (E)
E.x | {x1 = E1, ..., xn = En} Record selection and construction

(b) Subtyping: T <S, T <S

T <T X⇑<X⇓ ⊥⇑<⊥⇓ >⇑<>⇓ (T ∗
X→ S∗)⇑< (T ∗

X→ S∗)⇓
T1<T2 T2<T3

T1<T3

⊥⇑< {x1 :⊥⇑, ..., xn :⊥⇑}⇓ ⊥⇑<X⇓ ⊥⇑< (>⇑ X→ ⊥⇑)⇓ ⊥⇑<>⇓

{x1 :>⇓, ..., xn :>⇓}⇑<>⇓ X⇑<>⇓ (⊥⇓ X→ >⇓)⇑<>⇓
T1<T

′
1 T ′2<T2

(T ′1
X→ T2)< (T1

X→ T ′2)

{x1 :T ∗1 , ..., xn :T ∗n , xn+1 :>⇓, ..., xm :>⇓}⇑< {x1 :T ∗1 , ..., xn :T ∗n}⇓
T1<T

′
1 ... Tn<T

′
n

{x1 :T1, ..., xn :Tn}< {x1 :T ′1, ..., xn :T ′n}

(c) Colored type inference rules: Γ `C E : T

Γ `C x : Γ(x)⇑
Var

Γ `C E : T T <T ′

Γ `C E : T ′
Sub

Γ, X, x :T⇑ `C E : S∗

Γ `C fun[X](x :T)E : (T
X→ S∗)⇑

Abs

Γ, X⇑, x :T⇑ `C E : S∗ X /∈ tv(E)

Γ `C fun(x)E : (T⇓
X→ S∗)⇓

Abs-Inf
Γ `C F : (S⇑

X→ T⇑)⇓ Γ `C E : [R/X]S⇓

Γ `C F [R](E) : [R/X]T⇑
App

Γ `C F : (S⇑
X→ T⇑)⇓ Γ `C E : S′ S′ /X S⇓ S′< [R/X]S⇓ [R/X]T⇑<T ′ Minimizes(X,R, T, T ′, S, S′)

Γ `C F (E) : T ′
App-Inf

Γ `C E : {x :T ∗}⇓

Γ `C E.x : T ∗
Sel

Γ `C E1 : T ∗1 ... Γ `C En : T ∗n

Γ `C {x1 = E1, ...xn = En} : {x1 :T ∗1 , ..., xn :T ∗n}⇑
Rec

Figure 5: System OZZ

• Unmoded (equivalently ∗-moded) type constructor: (S
X→ T)

Seen in the record and arrow subtyping rules (3rd and 4th row, last column). Used to
abbreviate two rules, one each for when the constructor is annotated with ⇓ and ⇑. Type
meta-variables occuring in the constructor (like S and T above) have mode ∗.

Aside from modes, new to the language of types are record types. Records both make this
system more similar to practical OOP languages with structural subtyping, and they obviate
the need for uncurried applications, as passing multiple arguments can be simulated by passing
a single record argument with multiple fields. The form of polymorphic function types has also

been changed slightly, with the abstracted variables X located above the arrow (as in (S
X→ T))

in order to make reading its three modalities easier (one each for the domain, codomain, and

11

the combination of an arrow and type quantifications). Finally, for the language of terms the
only new additions are projection and construction of record types, and abstractions fun(x)t
that permit even type arguments to be omitted.

Subtyping The subtyping rules for System OZZ in Figure 5b are far more involved than the
subtyping for System PT, but the details of how each rule works are less important than the
high-level intuition of what purpose they serve. Recall the concluding remark in Section 2 about
bidirectionality and subsumption: “subsumption of the type of a term is governed entirely by the
term’s context.” System OZZ takes this insight even further than System PT by tracking in the
type itself the parts given by the context (⇓) and by the term (⇑); the subtyping relation carefully
mediates the interaction of these two sources of information during subsumption, ensuring that
synthesized information is never guessed and checked information is not arbitrarily discarded.

To get more specific, the crucial invariant of the subtyping rules is that, “structural changes
in the type always imply that the different (type) constructors differ also in color.” In a derivation
of S <T , a type constructor in S that gets changed in supertype T is always accompanied by
a change in the corresponding part from ⇑ to ⇓. Reading from S to T , this means that during
subsumption we cannot “guess” synthesized typing information that was supposed to come
from the term itself; reading the other way, this means that we cannot “discard” checked typing
information coming from the context unless the synthesized type of the term itself directs us to
do so. (The subtyping relation < works in a similiar way but with flipped modes – it is needed
because subtyping is contravariant in the domain of function types but modes are covariant. Its
rules are omitted as it is a mirror image of <)

Example To continue to build an intuition for these rules, assume that some expression F
synthesizes type (Int⇑ → Int⇑)⇑. This is not a subtype of (Int⇑ → >⇑)⇑, but is a subtype of
(Int⇑ → >⇓)⇑ – note the change in the mode of the codomain. This matches our expectation
that we should never guess when doing type subsumption – in this example, the promotion of the
codomain of F , Int, to> is valid only when directed by the context (>⇓). Similarly, if the context
of a term provides type (Int⇓ → >⇓)⇓ then this type can subsume (Int⇓ → Int⇑)⇓ (where
through synthesis of the term we learn the codomain was really Int) but not (Int⇓ → Int⇓)⇓,
because the context cannot both provide >⇓ and Int⇓ as the expected codomain type.

Reading the rules The first row of subtyping rules are colorful variations of reflexivity
and transitivity – note that the reflexivity rules mean that the mode annotations can also
switch when the type constructors agree, not just when they differ. The second row says that a
synthesized ⊥ is a subtype of every type formed by a checked constructor, and says what to fill
in for the types occurring in that constructor. For example, the smallest step to subsume ⊥⇑
into a checked arrow type (with no information given from the context about the domain and

codomain) is (>⇑ X→ ⊥⇑)⇓, the smallest arrow type possible. The rules in which >⇓ occurs as
a supertype are a mirror image of this. Last in the third row is the rule for functions with the
usual contravariant twist in the domain type, complicated by the fact that modes are covariant
and requiring the additional relation < . Finally, the last row concerns records: a synthesized
record type can be subsumed by a checked record type with fewer fields, and a record type is a
subtype of another of the same mode if the corresponding field types are in the subtype relation.

Aside The reader may at this point be concerned about whether the subtyping relation is
indeed syntax-directed. Clearly, it is crucial that it should be so – why do all this bidirectional
book-keeping if the subtyping relation itself is non-deterministic? Still, it is not obvious that,
for example, the transitivity rule is deterministic! Odersky et al. do not give give an explicit
argument saying that this is so, however. To argue that they are syntax-directed, we would
have to reason inductively (on the structure of types) about all possible subtyping derivations
using the transitivity rule, showing in each case the rule does not overlap with another and that
it is mode-correct6. As a brief example giving some intuition for why this should be provable,

12

(a) Matching rules S′ /X S

S⇓ /X S⇓
X ∈ X

T⇑ /X X⇓

T ∗1 /X T ∗2 S∗1 /X S∗2

(T ∗1
Y→ S∗1)⇓ /X (T ∗2

Y→ S∗2)⇓
T ∗1 /X S∗1 ... T ∗n /X S∗n

{x1 :T ∗1 , ..., xn :T ∗n}⇓ /X {x1 :S∗1 , ..., xn :S∗n}⇓

(b) Minimizes(X,R, T, T ′, S, S′)

for all R′,T ′′.(S′< [R′/X]S⇓ ∧ [R′/X]T⇑<T ′′ ∼ T ′ implies [R/X]T⇑< [R′/X]T⇓)

(c) Similarity of checked parts S ∼ T

T⇑ ∼ S⇑ T⇓ ∼ T⇓
T ∗1 ∼ S∗1 ... T ∗n ∼ S∗n

{x1 :T ∗1 , ..., xn :T ∗n}⇓ ∼ {x1 :S∗1 , ..., xn :S∗n}⇓
S∗1 ∼ S∗2 T ∗1 ∼ T ∗2

(S∗1
X→ T ∗1)⇓ ∼ (S∗2

X→ T ∗2)⇓

Figure 6: System OZZ (auxiliary definitions)

consider the following derivation showing that ⊥⇑ is a subtype of (Int→ {x :⊥⇑})⇓

⊥⇑< (>⇑ → ⊥⇑)⇓
1

Int⇓<>⇑ ⊥⇑< {x :⊥⇑}⇓

(>⇑ → ⊥⇑)⇓< (Int→ {x :⊥⇑})⇓
2

⊥⇑< (Int→ {x :⊥⇑})⇓
3

Only transitivity could conclude with this judgment (3); only one rule will bring ⊥⇑ closer a
super-type formed by a (checked) arrow (1); only one rule applies for two arrow types with
differing components (2). No guessing is performed at any step.

4.2 Rule App-Inf

We shall only cover the most complex rule of the system, App-Inf, which is used for typing bare
applications. This is the very rule that will allow us to type the motivating example from the

beginning of the section, g(fun(x)x) where g has type ((Int → X)
X→ X), and a careful study

of the rule yields a good understanding of the power of the system as a whole.

Typing F First, note that the mode of result type T ′ is arbitrary, meaning that as a special
case the rule applies when T ′ is a purely synthesizing or checking result type. So App-Inf of
System OZZ combines rules S-App-Inf and C-App-Inf of System PT (cf. Figure 4), as well as
supporting a mixed-mode result type. To proceed, we check the function F against a checked

arrow-type with synthesized domain and codomain types, (S⇑
X→ T⇑)⇓, indicating that through

its context we only know that F should type as some function, but S and T we learn from
inspecting F itself.

Typing E, matching, and result type T ′ After typing applicand F we next turn to argu-
ment E. Here it becomes apparent that, like S-App-Inf and C-App-Inf of System PT, App-Inf
is also a specificational rule. Deriving Γ `C E : S′ requires making an arbitrary choice for S′

(both in its shape and mixture of modes). This choice is constrained by the third premise
S′ /X S⇓, whose formation rules are given in Figure 6a. At a high level, judgment S′ /X S is
the mechanism by which the partial type information given by function F is passed down to
argument E – it says that S′ must match the structure and color of S⇓ modulo the type vari-
ables X. For technical reasons7 we need the fourth premise S′< [R/X]S⇓ to ensure E really is

6Subtley, mode-correctness for the subtyping relation is unrelated to the mode annotations of its subjects: the
former is a meta-language convention, the latter is an object-language feature.

7Specifically, the matching judgment does not account for solution sharing for type variables X – the same X
can match with two unrelatable types

13

a type-correct argument to F . The fifth premise says that the purely synthesized result type
[R/X]T⇑ is subsumed by any contextually-provided parts of T ′.

Minimization of R The fourth premise introduces another place where rule App-Inf is spec-
ificational, rather than syntax-directed: the choice of types R instantiating type variables X.
As with rule S-App-Inf in System PT (cf. Figure 4), multiple such R could make the ap-
plication well-typed, so this non-determinism must be constrained via the Minimizes relation
(given in Figure 6) to ensure that only one result type is possible when using this rule. The
reading for Minimizes(X,R, T, T ′, S, S′) in plain language is: select an instantiation R for type
variables X such that, for any other instantiation R′ and result type T ′′ that carries exactly
the same contextual information as T ′ (enforced by T ′′ ∼ T ′, discussed below), if [R′/X] makes
the application well-typed (by subsuming the argument type: S′< [R′/X]S⇓; and by being sub-
sumed by the result type: [R′/X]T⇑<T ′′), then this result type would be a super-type of the
(purely-synthesized) result type given by choosing R.

The need for judgment S ∼ T , indicating that types S and T coincide precisely in their
checked parts, is a little subtle. To give an intuition for this, first note that instantiating types
R′ could produce different types in the synthesized parts of result [R′/X]T , so the relation ∼
must allow synthesizing parts to differ between its supertypes T ′ and T ′′. Second, recall the key
difference between rules C-App-Inf and S-App-Inf in System PT was that the former did not
need a minimality statement. The same is true of the checked parts of T ′, so ∼ enforces that
our choice of R minimizes only the synthesized parts of T ′.

4.3 Examples

We now illuminate the preceding discussion by giving two example derivations. The first is of the
motivating example from the beginning of the section and shows how partial type propagation
is carried out in System OZZ, and the second is an inference failure showing how the different
sources of typing information are carefully managed.

Γ(g) = ((Int→ X)
X→ X)⇑

Γ `C g : ((Int→ X)
X→ X)⇑

Var

D1

Γ `C g : ((Int→ X)⇑
X→ X⇑)⇓

Sub
Γ, x :Int⇑ `C x : Int⇑

Γ `C fun(x)x : (Int⇓ → Int⇑)⇓
Abs-Inf

D2 D3 D4 Minimizes(...)

Γ `C g(fun(x)x) : Int⇑
App-Inf

D1 = ((Int→ X)⇑
X→ X⇑)⇑< ((Int→ X)⇑

X→ X⇑)⇓ D2 =

Int⇓ /X Int⇓ Int⇑ /X X⇓

(Int⇓ → Int⇑)⇓ /X (Int⇓ → X⇓)⇓

D3 =

Int⇓< Int⇓ Int⇑< Int⇓

(Int⇓ → Int⇑)⇓< (Int⇓ → Int⇓)⇓ D4 = Int⇑< Int⇑

Figure 7: System OZZ Ex. 1

Consider again the expression g(fun(x)x+ 1) where g : ((Int→ X)
X→ X)⇑. The full typing

derivation for this expression is listed in Figure 7. Typing begins with the application of g
to its argument, so to type g we pass down a checked arrow type with domain and codomain
to-be-synthesized. Seeing that g is a variable, we look up the purely-synthesized type for it
from the context and then promote this (via Sub) into the checked arrow type, resulting in type

((Int→ X)⇑
X→ X⇑)⇓.

Next, we need to find some type for the argument fun(x)x that matches (via judgment
/X) its partial expected type (Int→ X)⇓. Using rule Abs-Inf we can type argument fun(x)x

14

as (Int⇓ → Int⇑)⇓, indicating we know the domain type from the outside, and synthesize the
codomain from the inside of the term. Derivation D2 shows that this type does indeed match the
expected type given from g. Derivations D3 and D4 show resp. that with instantiation [Int/X]
the application is well-typed in the argument and result type. Finally, it is easy to see that the
only other possible instantiation for X is >, which does not produce a smaller result type – so
[Int/X] is the minimal instantiation for this application.

For the second example, we need make only one small change to the expression to cause type

inference to fail. Replace g with h of type ((X → X)
X→ X), and consider typing h(fun(x)x).

Intuitively, the reason this fails to type is that there is not enough information provided by h
to know what type x should be given. So, how does this system enforce this? We can still type
the argument of h with (Int⇓ → Int⇑)⇓, or any super-type of this of the form (Int→ S)⇓, but
none of these can be matched (using /X) against the partial expected type (X → X)⇓, because
when we reach the domain types we find Int⇓ /X X⇓ is not derivable, indicating that Int⇓ was
an arbitrary choice. So our matching judgment, just like the other rules really does enforce that
the unknown parts of the type are never guessed, but synthesized from the term.

4.4 Discussion

Implementation As was the case with System PT, System OZZ is a specificational type
system that is sound and complete with respect to a type inference algorithm also presented
in [OZZ01]. Mode annotations do not appear on types in the algorithmic system – instead, a new
grammatical category of prototypes is introduced to explicitly represent partial type information.
Prototypes introduce only one additional type constant “?”, marking an unknown part of the
type. For example, the “colored” judgment • `C fun(x)x : (Int⇓ → Int⇑)⇓ translates to the
algorithmic system as (Int→?), • `W fun(x)x : (Int→ Int), meaning that we start typing this
expression knowing it should be a function and that the domain type should be Int, but without
knowing what the codomain should be. When we finish typing it, this partial knowledge has
been completed – incomplete information is never produced as output by the typing judgment.

Perhaps not surprisingly, the constraint generation and solution algorithm used by the im-
plementation for System OZZ is almost exactly the same as the one used for the type inference
algorithm for System PT, with the straightforward extension of decomposing constraints on
record types to constraints on each record field. This is significant, as it means that the in-
creased power of this system comes solely from the more granular local propagation of type
information.

What’s the point? In the next section, I will discuss a type system that combines the local
propagation of type information with bidirectional rules and uses global methods of constraint
generation and solution. The specificational rules are elegant and far simpler than the rules of
System OZZ. Given this, the reader may well ask “Why go through all this trouble for a local
type inference system?” Aside from the advantages of local inference methods mentioned in
Section 1, for Odersky et al. [OZZ01] the answer was robustness to language extensions. The
authors report that part of the motivation for this work came from designing a functional net
language called Funnel [Ode00] based on System F< . As remarked earlier, full type inference for
(impredicative) System F is undecidable, and this is also true for its extension System F< with
its deep subtyping [TU96]. The authors found that placing careful restrictions on polymorphism
and subtyping to maintain decidability produced a rather brittle system – “every new language
construct, or even just a slight change of an existing language construct is a possible threat to
the decidability or tractability of the [system]”. Local inference methods allow for a decidable
system in which typing each language construct can be considered separately, safely, because
the only thing that matters for typing an expression is the typing information locally available.

15

5 Complete and Easy Bidirectional Typechecking for Higher-
Rank Polymorphism

5.1 System DK

The last type system we will look, System DK by Dunfield and Krishnaswami [DK13], is a
departure from the preceding systems. First, it supports fewer type language features: it is
predicative, meaning that type variables cannot be instantiated with polymorphic types. Second,
it is based on System F (rather than F<) and so lacks the type constants > and ⊥. In particular,
together these changes to the type system mean that the type-argument inference will no longer
concern itself with finding some “minimizing instantiation”, as usually at most one instantiation
is guaranteed to be type-correct. Finally, it performs non-local type-argument inference: in
the applications of polymorphic functions, the specification will not only abstract away how
instantiations are selected, but even which instantiations will not be (locally) obvious. The
trade-off for these changes is a type inference system with a refreshingly simple specification
that gracefully handles higher-rank polymorphism.

“More polymorphic than” 8In the type systems of the previous settings, polymorphic
functions could be related via subtyping only if they had the same “polymorphic shape” – that
is, both took the same number of type arguments, for example ∀X.S1 → T1< ∀X.S2 → T2. But,
consider: what if we wanted to type the expression f id, where f has type (Int→ Int)→ Int

and id has type ∀X.X → X? It is reasonable to expect that id should work wherever a
function of type Int → Int is expected, as we can infer the programmer really meant to give
argument id[Int]. Unfortunately, the subtyping rules of Systems PT and OZZ do not allow
us to derive ∀X.X → X < Int → Int, which we would need to type the application. We need
a rule that allows us to say that if some instantiation of X (e.g. [Int/X]) allows us to derive
X → X < Int→ Int, then we have ∀X.X → X < Int→ Int.

What other subtypes should a polymorphic supertype have? Even if two polymorphic types
do not have the same shape, we can make the case that some types are “more polymorphic
than” (i.e. subtypes of) others. For example, let f have type (∀Z.Z → Z → Z) → Int and
let const have type ∀X.∀Y.X → Y → X. Again, intuitively f const should be typeable – for
any type argument T instantiating Z, const can be provided T for both its type arguments, as
in const[T][T]. const takes two type arguments, but it can always be used as if it took only
one. For this case we need a rule saying that to derive ∀X.∀Y.X → Y → X < ∀Z.Z → Z → Z
it suffices to derive ∀X.∀Y.X → Y → X <Z → Z → Z, where Z is now a free type variable.
Then, using the reasoning in preceding paragraph, we can instantiate X and Y with Z.

Performing the two kinds of reasoning given above to an arbitrary contravariant9depth in a
type enables inference for higher-rank types. In the immediately preceding example, the function
f has a rank 2 type because the quantification of Z is twice nested on the left of an arrow.
Higher-rank types are not needed all too commonly, but “there are usually no workarounds; if
you need [them], you really need them” ([PJVWS07], Section 2 – see examples). Unfortunately,
combining these two rules and the usual subtyping rule for arrows with impredicativity results
in an undecidable subtyping relation [TU96]. Because one goal of System DK is to support
inference higher-rank types, it must compromise and use predicative polymorphism only.

Grammar The grammar of System DK is given in Figure 8a, and takes several departures
from the grammars of the previous two systems we have seen. In the language of types, functions

8The examples given come from Petyton-Jones et al. [PJVWS07], an earlier work that influenced System DK.
9Why not covariantly? A type with aquantifier that occurs within the codomain of an arrow type, such as

∀X.X → (∀Y. Y → X), is equivalent to a type in prenex form (e.g. ∀X,Y.X → Y → X). The same cannot be
said when the quantifier occurs contravariantly

16

(a) Grammar

Types S, T, U, V ::= 1 | X | ∀X.T | S → T
Monotypes τ, σ ::= 1 | X | τ → σ
Terms e ::= x | () | λx. e | e e | (e :S)
Contexts Ψ ::= • | Ψ, X | Ψ, x :S

(b) Subtyping Ψ ` S <T

X ∈ Ψ
Ψ ` X <X

<Var
Ψ ` 1<1

<Unit
Ψ ` T1<S1 Ψ ` S2<T2

Ψ ` S1 → S2<T1 → T2

<Arr

Ψ ` τ Ψ ` [τ/X]S <T

Ψ ` ∀X.S <T
<∀L

Ψ, X ` S <T
Ψ ` S < ∀X.T

<∀R

(c) Type Inference Rules: Synthesis, Checking, and Application

Ψ `⇑ e : T Ψ `⇓ e : T Ψ `⇒ S · e : T

Ψ `⇑ x : Ψ(x)
Var

Ψ `⇑ e : T ′ Ψ ` T ′<T
Ψ `⇓ e : T

Sub
Ψ `⇓ e : T

Ψ `⇑ (e :T) : T
Ann

Ψ, X `⇓ e : T

Ψ `⇓ e : ∀X.T ∀Intro

Ψ, x :S `⇓ e : T

Ψ `⇓ λx. e : S → T
→ Chk

Ψ `⇓ () : 1
1Chk

Ψ `⇑ e1 : S Ψ `⇒ S · e2 : T

Ψ `⇑ e1 e2 : T
App

Ψ `⇒ [τ/X]S · e : T

Ψ `⇒ ∀X.S · e : T
∀App

Ψ, x :σ `⇓ e : τ

Ψ `⇑ λx. e : σ → τ
→ Syn

Ψ `⇑ () : 1
1Syn

Ψ `⇓ e : S

Ψ `⇒ S → T · e : T
→ App

Figure 8: System DK

and type quantifications are uncurried and de-coupled from each other – these are the traditional
System F types. Second, an additional category has been carved out for types that are not
polymorphic. Distinguishing monotypes from polytypes is important for a predicative system,
as only the former can legally instantiate type variables in the latter. The last change in the
language of types is the inclusion of the “unit type” 1, which classifies only the term (). For
terms, we now no longer can directly annotate arguments to functions (here written λx. e), nor
indeed give explicit type abstractions! Instead, the roles of both of these are taken by the explicit
type annotation (e :S), which is discussed further below.

Subtyping Figure 8b lists the subtyping rules. Rule < Var and < Unit are reflexively rules
and < Arr is the subtyping rule for arrows we have already seen, though now without mention
of any quantified type variables. Instead, type variables are handled by the last two rules. Rule
<∀L says that, to determine that ∀X.S is a subtype of some T , we only need to find some
(monotype) instantiation τ of X that makes [τ/X]S a subtype of T . On the other hand, rule
<∀R says that trying to determine that S is a subtype of some polymorphic type ∀X.T , we
extend the context of types with variable X and try to derive S <T .

The intuition for why <∀L is sensible comes if we interpret types as sets of terms, and the
subtyping relation as a subset relation. The set of terms classified by the type ∀X.X → X
is, in a sense, the intersection of the set of terms classified by all types such as Int → Int,
1 → 1, etc. To show that some set T is a superset of an intersection of sets, it suffices to
show that T is a superset of just one of the intersected sets – here, the ones given resp. by the
instantiations [Int/X] and [1/X]. Giving an intuition for rule <∀R requires using the same
perspective – interpreting types as sets and ∀ as set intersection, to show that S is a subset of
some intersection we must show that S is a subset of every set in the intersection, which in turn

17

means showing that S is a subset of some arbitrary set in the intersection. In the subtyping
rule, this is done by adding X to the typing context, representing an arbitrary monotype.

Remark. Unlike the previous systems, the subtyping judgment for System DK is itself
specificational – in rule <∀L the type τ is guessed “out of thin air”. This translates to the
promise that if such an instantiation exists, the implementation will find it.

Typing rules The typing rules for System DK include the usual checking (`⇓) and synthesiz-
ing (`⇑) modes, and additionally have a third form (`⇒) for an application mode. The judgment
Ψ `⇒ S · e : T can be read as “a function of type S can be applied to term e, producing type
T ,” and the rules forming this judgment will instantiate the leading quantified type variables of
S as they check the application is well-typed. Recalling Section 2, the mode-annotation of this
judgment is Γ+ `⇒ S+ · t+ : T−. Before discussing this judgment in more detail, let us consider
some of the interesting rules of the more traditional bidirectional judgments.

Rule Sub is what we have come to expect in a subsumption rule in a bidirectional setting,
with type subsumption mediating an expression’s checked and synthesized type. Annotations,
meanwhile, cause a switch in mode going the other direction: an annotated expression (e : S)
synthesizes type S if e checks against S. This rule is vitally important as System DK lacks
explicit type abstractions or annotations on function arguments and so needs a reliable way to
contextually provide this typing information. We see this directly in rule ∀Intro, as nothing
about the form of the subject of typing e tells us that it ought to have a polymorphic type, only
its expected type ∀X.T , as well as more standard rule →Chk for bare abstractions.

Now we consider the application judgment `⇒, begun by rule App. After synthesizing type S
for the function e1 we must have that applying a function of this type to e2 produces result type T .
Rule ∀App is the critical specificational typing rule, saying that if our function type is ∀X.S, and
some instantiation τ for X will let us type the application, then the system will somehow find
τ . Finally, rule → App says that once our application judgment reveals an arrow type S → T ,
we check our argument e against the domain type S – even though S may contain “guessed”
type instantiations that (algorithmically) could only have been learned from inspecting e itself!

A notable exception There is one more rule to discuss that is a bit of an outlier for the
system: rule →Syn. This says that bare function abstractions can synthesize a type, but only a
monotype. Furthermore, somehow the body of the function e is checked with type τ , instead of
synthesizing it. If you read this rule algorithmically, it hardly makes any sense at all! Instead,
it should be read as saying that if λx. e can be typed at some monotype, then the algorithm will
find that monotype. Rather than being passed down to type the body of the function as part
of some contextual (local) type propagation, checking e against type τ is a way to guarantee
the implementation need not worry about synthesizing a polymorphic type for the expression –
if it happened to, rule Sub would subsume it into the monotype τ . Rule → Syn was added
by the authors to show that System DK can accommodate extensions that are not-so-strictly
bidirectional, making the system closer to the Damas-Milner type inference style.

5.2 Example

Figure 9 gives an example typing derivation in System DK that helps give an intuition for some
of its novel features. We start by trying to type f id suc, where f has type ∀X.X → X → X, id
has type ∀Y. Y → Y , and suc has type Int→ Int. Because id and suc have different types, and
because f expects its two arguments to be the same type, it is up to the application judgment
`⇒ and subtyping relation < to find the instantiation Int→ Int for X that will work for both.

After digging into the application and synthesizing a type for f , we kick off the application
judgment to see whether a function of type ∀X.X → X → X can be applied to argument id.
The sub-derivation for this is labelled D, and as its first step it (non-deterministically) picks

18

Ψ(f) = ∀X.X → X → X

Ψ `⇑ f : ∀X.X → X → X
Var

D
Ψ `⇑ f id : (Int→ Int)→ Int→ Int

App

Ψ `⇑ suc : Int→ Int
Var

...
Int→ Int< Int→ Int

Ψ `⇓ suc : Int→ Int
Sub

Ψ `⇒ ((Int→ Int)→ Int→ Int) · suc : Int→ Int
→ App

Ψ `⇑ f id suc : Int→ Int
App

D =

Ψ `⇑ id : ∀Y. Y → Y
Var

...
[Int/Y]Y → Y < Int→ Int

∀Y. Y → Y < Int→ Int
< ∀L

Ψ `⇓ id : Int→ Int
Sub

Ψ `⇒ [Int→ Int/X](X → X → X) · id : (Int→ Int)→ Int→ Int
→ App

Ψ `⇒ ∀X.X → X → X · id : (Int→ Int)→ Int→ Int
∀App

Ψ = f :∀X.X→X→X, id :∀Y. Y →Y, suc :Int→Int

Figure 9: System DK Ex. 1

instantiation Int → Int for X. This results in id being checked against monomorphic type
Int → Int. Of course, id synthesizes polymorphic type ∀Y. Y → Y , so these two types are
mediated in rule Sub, where the type variable Y is eventually instantiated with Int through use
of <∀L in the subtyping rules. This results in the application f id having type (Int→ Int)→
Int→ Int, which in turn can be applied to the second argument suc of type Int→ Int.

Implementation As mentioned earlier, the algorithm for System DK uses global methods
of constraint collection, which was hinted at when discussing rules ∀App and → Syn. In the
implementation, each specificational “guess” instantiating a type variable X is replaced by a
freshly-generated “existential variable” X̂ which is added to a typing context Γ that now contains
such variables as well as their solutions. The algorithmic judgments also produced “updated”
contexts, as in Γ `⇑ e : T a ∆ where existentials in Γ have been refined or solved in ∆ based on
the shape of e. For example, in the algorithmic version of →Syn,

Γ, X̂, Ŷ , x :X̂ `⇓ e : Ŷ a ∆, x :X̂,Θ

Γ `⇑ λx. e : X̂ → Ŷ a ∆

we can tell only that the subject should have a function type, but cannot tell what the domain
and codomain should be, so the rule generates X̂ and Ŷ and tries to learn more about these
when checking e. This is somewhat similar in effect to how System OZZ propagates partial
type information – except that an output context in System DK can have unsolved existentials,
whereas System OZZ insists that a complete type for the expression is known when we leave
its AST node. However, the two systems have this in common – the implementation details of
partial type propagation and type-argument inference are not needed to give a full account of
the type inference system.

5.3 Discussion

Refactoring Theorems Part of the elegance of System DK is that it is easy to reason about
where type annotations are required: “only on bindings of polymorphic type.” [DK13] To help
make this intuitive account more precise, the authors provide a number of “refactoring” and
“annotation removal” theorems. For example, the refactoring theorem

If Ψ `⇑ e : A and Ψ `⇓ [(e :A)/x]e′ : C then Ψ, x :A `⇑ e′ : C

reads as “any re-occurring annotated expression can be factored out of a program to a let
binding”, and the annotation-removal theorem

If Ψ `⇑ e1 (e2 :A) : C then Ψ `⇑ e1 e2 : C

19

reads as “function arguments never need annotations.” The upshot of all this is that, using their
specificational type systems, the authors can give a precise account of where annotations are
required, where they may be removed, and the program transformations that preserve typeability
– and they did that by using bidirectionality to carefully control how polytypes were inferred.

Checked applications The reader may wonder whether it is significant that applications in
System DK can only synthesize their types, whereas in Systems PT and OZZ we saw that
checking an application greatly affected type-argument inference by relaxing the minimality
constraint on the application result type. System DK does not use any such side condition,
so there is none to relax! But that begs the question – are multiple result types inferable for
polymorphic function applications that a minimality condition could help make precise? The
answer is no: local type inference must make a decision before leaving a sub-expression, whereas
(the implementation of) System DK can propagate “under-specified” instantiations for type
variables through the whole program until it learns the exact monotype needed. That said,
checking such an under-specified synthesizing application with a monotype forces only one type
instantiation be legal for the affected type variables, so in this sense checking mode plays a related
role – helping the constraint solver infer type arguments in polymorphic function applications.

6 Conclusion

This report has examined bidirectionality and its role in type inference systems. The defining
characteristic of bidirectional typing is the local propagation of typing information from two
sources: the term itself (“synthesis”) and from the context surrounding it (“checking”). This
characterization of what bidirectionality is does not seem to be, at face value, related to one of
its most important uses: to help provide a high-level, specificational account of type inference
for both users and implementers. This seeming gap is closed when we introduce any form of
subtyping into our type system, and throughout this report the mantra has been “subsumption
of the type of a term is governed entirely by the term’s context”. The details for where and how
subsumption occurs are effectively communicated by bidirectional inference rules, which give a
greater degree of precision in describing the flow of typing information without reference to the
implementation. Importantly, in all three works considered the specificational bidirectional type
systems were shown sound and complete with respect to their algorithmic versions.

Bidirectionality can be combined with either local or global type inference methods. The
first two systems covered in this report, System PT and OZZ, are forms of local type inference
because they rely on bidirectionality and local type-argument inference only. Though languages
that use local type inference require more type annotations than those using global inference,
they also tend to be more easily extended to have richer type languages (e.g. impredicative
System F<), without threatening the decidability, or even comprehensibility, of the type infer-
ence system – after all, the presence of rich subtyping introduces some ambiguity in what types
are inferred for some expressions, which bidirectionality helped to tame. When it is used in
combination with more global methods of type inference, bidirectionality still helps to provide
a full account of the system. In System DK, it was used to both describe and restrict a more
advanced form of type inference that better supports higher-rank polymorphic types.

I close with a quote from [Dun09], a work proceeding and heavily influencing [DK13], that
I myself have taken to heart: “I attribute the virtues of my work to the essential simplicity of
bidirectional typechecking... To designers of languages and type systems, consider bidirectional
typechecking; as your type system becomes more powerful, you will likely outgrow Damas-Milner
inference, and making it bidirectional from the beginning should lead to a cleaner and more
logical system than what you get after retrofitting bidirectionality.”

20

References

[Chr13] David Christiansen. Bidirectional typing rules: A tutorial.
http://davidchristiansen.dk/tutorials/bidirectional.pdf, October 2013.

[Cur34] H. B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences of the United States of America, 20(11):584–590, 1934.

[DK13] Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirec-
tional typechecking for higher-rank polymorphism. SIGPLAN Not., 48(9):429–442,
September 2013.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional programs.
In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’82, pages 207–212, New York, NY, USA, 1982.
ACM.

[Dun09] Joshua Dunfield. Greedy bidirectional polymorphism. In Proceedings of the 2009
ACM SIGPLAN Workshop on ML, ML ’09, pages 15–26, New York, NY, USA,
2009. ACM.

[Mca00] Bruce J. Mcadam. Generalising techniques for type debugging. In Trends in Func-
tional Programming, pages 49–57. Intellect, 2000.

[Ode00] Martin Odersky. Functional nets. In Gert Smolka, editor, Programming Languages
and Systems, pages 1–25, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[Ode02] Martin Odersky. Inferred type instantiation for GJ. Note sent to the types mailing
list, January 2002.

[OZZ01] Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored local type infer-
ence. SIGPLAN Not., 36(3):41–53, January 2001.

[Pfe04] Frank Pfenning. Lecture notes on bidirectional type checking.
https://www.cs.cmu.edu/˜fp/courses/15312-f04/handouts/15-bidirectional.pdf,
October 2004.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st
edition, 2002.

[PJVWS07] Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields.
Practical type inference for arbitrary-rank types. J. Funct. Program., 17(1):1–82,
January 2007.

[PT00] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans.
Program. Lang. Syst., 22(1):1–44, January 2000.

[TU96] J. Tiuryn and P. Urzyczyn. The subtyping problem for second-order types is un-
decidable. In Proceedings 11th Annual IEEE Symposium on Logic in Computer
Science, pages 74–85, Jul 1996.

[Wel98] J. B. Wells. Typability and type checking in system F are equivalent and undecid-
able. ANNALS OF PURE AND APPLIED LOGIC, 98:111–156, 1998.

21

	Abstract
	Introduction
	Bidirectional Type Inference
	System F-sub
	Example
	Subsumption

	Local Type Inference
	System PT
	Discussion

	Colored Local Type Inference
	System OZZ
	Rule App-Inf
	Examples
	Discussion

	Complete and Easy Bidirectional Typechecking for Higher-Rank Polymorphism
	System DK
	Example
	Discussion

	Conclusion

