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Abstract

This report considers the rôle of elaboration in providing a translational semantics of
programming language features to polymorphic lambda calculi, using as case studies bidi-
rectional type inference and inductive definitions. Elaboration is a term of art describing
the process by which programs written in a practical, feature-rich surface language (the
source language) are translated down into a minimal core calculus or sub-language (the tar-
get language). It allows the object of study (the target language) to be small, aiding in
meta-theoretic analysis, without sacrificing programmer conveniences that may require com-
plex features be implemented in the surface language. Meta-theoretic properties of the target
language such as logical soundness and termination can then be imported into the surface
language via a static and dynamic soundness theorem for the translation. A discipline of
design by elaboration can inform the way new features are added, clarifying what is merely
notational convenience and what requires true extension to the core theory.

1 Introduction

Programmers love language features: algebraic datatypes, pattern matching and recursion, sub-
typing, and many others provide notational convenience for problem solving. But, programming
languages are themselves complex software artifacts and seemingly unrelated features may have
subtle and undesirable interactions. For general-purpose languages these interactions may re-
sult in unintuitive edge cases, regressions, or at the worst even runtime crashes or logical errors.
For programming languages that serve also as proof assistants or implementations of some type
theory, we interpret via the Curry-Howard correspondence [SU06] types as propositions and
programs as proofs, and consequences of bugs in such systems may be even as dire as logical
inconsistency and thus loss of trust in proofs carried out within them.

A notable example concerns the language Agda and a feature called dependent pattern match-
ing [Coq92]. To make dependent pattern matching compatible with homotopy type theory
(HoTT) [Uni13], Agda supports an optional flag --without-K, which disables certain unifi-
cation rules from which the K axiom of Streicher [Str93] (incompatible with HoTT) could
be derived. An earlier implementation of this flag (described in [NAD12]) was demonstrated
by Cockx in [Coc14] to be still incompatible with HoTT, requiring further changes to Agda’s
implementation. Cockx put dependent pattern matching without K back on solid theoretical
foundations in his dissertation [Coc17] by formulating elaborating unification rules. A less alarm-
ing (but sill significant) example of unintended feature interactions concerns the Lean theorem
prover. The combination of an impredicative Prop sort with a strong form of proof-irrelevance
(two very desirable features) results in a failure of strong normalization [AC19].

To avoid scenarios such as these, it is desirable to prove that a given type theory satisfies
properties such as logical consistency or normalization. This raises a new difficulty: each time
language implementors add or extend a feature, must they re-do all meta-theoretic results for
the entire system? The answer is no! For some features, language designers may instead choose
definitional language extensions justified by elaboration, which is a term of art describing:

1. a high-level surface (source) language with convenient features for users;

2. a low-level internal (target) language, usually a small core (sub-)language, which is
the object of meta-theoretic study;

3. a translation from the surface language to the internal language; and

4. a soundness proof showing that this translation preserves meaning between the two
languages.

Elaboration can thus be seen as a translational semantics to surface-language features, and
usually requires that such features be only definitional (notational) extensions to the core theory.



1.1 Raison d’être

This report considers the rôle of elaboration for giving a translational semantics of a feature of
primary importance in programming languages: inductive definitions, by which we mean decla-
rations of algebraic datatypes (ADTs) and functions defined over them by pattern matching and
recursion. For the most part, the target language we consider will be the polymorphic lambda
calculus (System F) [Gir72, Rey74], considered to be the “gold standard” of expressivity for
functional languages. We specifically focus on the Curry-style (extrinsically typed) formulation
of System F. Our interest in extrinsic type theories arises from our active research into im-
predicative encodings of datatypes in the Curry-style calculus of dependent lambda eliminations
(CDLE), which is discussed informally in Section 6.

This report is organized as follows. In Section 2, we recall some basic notions of the un-
typed lambda calculus and System F. In Section 3, we use the relatively simple case study of
bidirectional type inference to motivate a general formulation of elaborating type inference rules
and the static and dynamic soundness property of the translation, terminology we have found
convenient to coin. In preparation for giving a translational semantics of inductive definitions,
in Section 4 we recall their mathematical (algebraic, categorical) semantics and their encod-
ings in polymorphic lambda calculi. In Section 5, we combine all that proceeded to present an
extended case study on elaborating polynomial and recursive types, the basic ingredients for
inductive definitions. We state the static and dynamic soundness property for the translation,
and demonstrate how some meta-theoretic properties of the statics and dynamics of target lan-
guage (System F) are imported into the source language. Finally, in Section 6 we conclude with
a discussion of related work and gesture toward future investigations.

2 Background: Lambda calculi

2.1 Untyped lambda calculus

Grammar The lambda calculus was invented (or discovered) by Alonzo Church [Chu41] as part
of his research on foundational mathematics, and is often the subject of study in programming
language theory as it serves as a minimal specification of a functional language. For untyped
lambda calculus, terms u are inductively defined using three constructors (Figure 1): variables
x, lambda abstractions (or function abstractions) λx. u, and applications u1 u2.

We assume that the set of variables V is (countably) infinite, and that given some finite
set X ⊆ V there is always a way to pick a variable x ∈ V \X; if we have an x satisfying this
criterion, we say that x is fresh w.r.t X. When reading lambda terms we adopt the convention
that the scope of the lambda extends as far to the right as possible, e.g., the term λx. x λ x. x
should be read as λx. x (λx. x x), and application associates to the left, e.g., the term λx. x x x
should be read λx. (x x) x.

α-equivalence and free and bound variables The identity function can be equivalently
expressed as the lambda terms λx. x and λ y. y. In general, we say that x is locally bound in an
abstraction λx. u, and that x possibly occurs free in u. The variable x may also occur bound
in a lambda expression λx. u′ occurring as a sub-expression of u, which should be interpreted

variables x, y, z, x1, ...
terms u, u′, u1, u2, ... ::= x | λx. u | u1 u2

Figure 1: Grammar of the untyped lambda calculus
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as name-shadowing of the x bound in λx. u. If y is fresh w.r.t FV (u) (the free variables of u),
then we say λx. u is α-equivalent to λ y. (u[y/x]), where u[y/x] indicates the capture-avoiding
substitution of x for y in u. Thus, λx. x is α-equivalent to λ y. y.

The meaning of the stipulation capture-avoiding is illustrated as follows. Consider the term
x λ y. x. The variable y is not a free variable of this term, but it is locally bound. After applying
a substitution [y/x], we do not wish to have as a result y λ y. y, which would be an instance
of variable capture. The result of capture-avoiding substitution for this term should instead be
y λ z. y, renaming the locally bound y to avoid capture. A proper definition of bound and free
occurrences of variables, α-equivalence, and capture-avoiding substitution can be found in any
reference textbook on lambda calculus and programming languages, such as [Stu13].

β-equivalence and operational semantics What is the semantics, or meaning, of a pro-
gram? A common and rather pragmatic answer is that the meaning of a program is given by the
way it runs (computes, executes, etc); this is known as the operational semantics of a language,
specifically its small-step operational semantics. We describe this for the untyped lambda cal-
culus. The relation u 99Kβ u′ between terms u and u′ indicates that u reduces to u′ in a single
computational step. The main rule governing reduction of a term to another term in lambda
calculus is the β-rule, given by

(λx. u) u′ 99Kβ u[u′/x]

Lambda expressions of the form (λx. u) u′ are called β-reducible expressions, or β-redexes for
short. The reduction relation 99Kβ, called full β-reduction, is given by the compatible closure
of the β-reduction rule. That is to say, if u contains a β-redex u1 as a sub-expression, and
u1 99Kβ u2 by the β-rule, then we have u 99Kβ u′ if replacing that occurrence of the redex u1 in
u with the resulting expression u2 (the contractum) produces u′. For example, in λx. (λ y. y) x
the underlined sub-expresses is a β-redex, and the whole expression reduces to λx. x in one step.

We notate by
∗
99Kβ the reflexive and transitive closure of 99Kβ, and by ∼=β the symmetric closure

of
∗
99Kβ.

η-equivalence In functional languages we expect that the meaning of a function u is un-
changed if we were to wrap u itself within another function which takes an argument and
applies u to that argument. An additional useful rule for rewriting lambda terms that captures
this intuition is the η-rule,

λx. u x 99Kη u

provided x /∈ FV (u). Throughout this paper, we will write 99K as the compatible closure of the

union of the β and η reduction rules presented, write
∗
99K for the reflexive and transitive closure

of 99K, and ∼= for the symmetric closure of
∗
99K.

2.2 Polymorphic type theory

Elaboration in programming languages is closely tied to type systems, a popular and effective
form of static analysis in programming languages. Even the simplest of type systems can guaran-
tee, for example, that a function which expects an int argument is not given a string instead.
More generally, guarantees such as this are instances of type safety, the mantra for which is
well-typed programs cannot “go wrong” [Mil78]. Type systems may provide other guarantees: in
general, a term having any type at all might guarantee termination (executing the program with
any strategy is guaranteed to produce a value); in type systems rich enough to be interpreted
as logics under the Curry-Howard isomorphism, a term of type T corresponds to a proof of the
logical interpretation of T . The downside to type systems (at least, non-trivial ones) is that

3



term variables x...
type variables X,Y, Z,R,X1, ...
types S, T, U, V, T1, ... ::= X | S → T | ∀X.T
terms t, t1, t2, t

′, ... ::= x | λ x:T. t | ΛX. t | t1 t2 | t · T

typing contexts Γ,∆, ... ::= ∅ | Γ, x :T | Γ, X

(a) Grammar and typing context formation

Γ ` t : T

FV (T ) ⊆ DV (Γ) Γ, x :T ` t : S

Γ ` λ x:T. t : T → S
Abs

Γ ` t1 : S → T Γ ` t2 : S
Γ ` t1 t2 : T

App

(x :T ) ∈ Γ

Γ ` x : T
Var

Γ, X ` t : T

Γ ` ΛX. t : ∀X.T Poly
Γ ` t : ∀X.S FV (T ) ⊆ DV (Γ)

Γ ` t · T : S[T/X]
Inst

(b) Type inference

|x| = x, |λ x:T. t| = λx. |t|
|t1 t2| = |t1| |t2|, |ΛX. t| = |t|
|t · T | = |t|

(c) Erasure

Figure 2: Fully annotated System F

sometimes it is either not clear how to type some program of interest, or even possible that an
interesting program cannot be typed within some system!

It is standard to present type systems using judgments [ML96], which are relations on the
language constructs. For example, the judgment Γ ` t : T is read “under a typing context Γ,
the term t has type T”, and can be understood as the assertion that the components of the
triple (Γ, t, T ) are in a three-place relation ( ` : ) ⊆ Contexts × Terms × Types. Judgments
are inductively defined by inference rules, a two-dimensional notation whose vertical dimension
is separated by a horizontal line for deriving some conclusion (given below the horizontal bar)
from zero or more premises (given above the horizontal bar).

We now give such a presentation for System F [Gir72,Rey74]. System F is of great interest to
programming language theorists: although its formal description is quite small, it is expressive
enough to encode all of second-order Peano arithmetic [Gir71]. This expressivity comes at a
cost: the type-assignment problem for System F is undecidable [Wel99]. In order to make type
inference algorithmic, a system of typing annotations for terms is required. We provide one such
system, the fully annotated System F, in Figure 2.

2.2.1 Type-annotated language

Grammar The grammar of annotated System F is given in Figure 2a. As before, x, y, z, ...
indicate term variables. In addition, we use meta-variables X,Y, Z, ... to denote type variables,
and meta-variables t, t1, t2, ... to denote terms of annotated System F. Types S, T, ... are com-
prised of variables, function types S → T , and polymorphic types ∀X.T . Terms of annotated
System F are variables (as before), function abstractions λ x : T. t wherein the bound variable
x is given with a type annotation (x :T ), type abstractions ΛX. t for introducing polymorphic
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terms, applications t1 t2 (as before), and type instantiation t · T . Typing contexts Γ are not in
the term or type language of annotated System F, but are required for the type inference rules:
a typing context can be empty (∅) or can contain term variables of a given type Γ, x :T (where
in formulating inference rules we should take care that the free type variables of T are declared
within the context Γ), and type variables (Γ, X); we assume that all such variables in a context
Γ, called the declared variables of Γ or DV (Γ), are distinct.

Typing rules The typing rules for System F are given in Figure 2b. In listings of inference
rules, we use a box to indicate the judgment being inductively defined by those rules. Read rule
Var as saying that a variable x has type T if x is declared to have type T in Γ. Rule Abs says
function λ x : T. t has type T → S if we can type its body t at type S by extending the given
typing context Γ with the assumption x :T , assuming the free variables of T are declared in Γ.
Rule App says simply that if function t1 has type S → T and t2 has type S, the application
t1 t2 has type T . Rule Poly is similar to Abs, and concerns the introduction of polymorphic
terms. Rule Inst says that if t is a polymorphic term of type ∀X.S, and the free variables of
T are declared in Γ, then t · T has type S[T/X], where capture-avoiding substitution replaces
all free occurrences of X in S with T .

We illustrate with a simple example: the polymorphic identity function ΛX.λ x :X.x has
type ∀X.X → X. We can take this identity function, instantiate variable X to ∀X.X → X,
and apply the result to the identity function again: (ΛX.λ x:X.x) ·(∀X.X → X) ΛX.λ x:X.x,
which also has type ∀X.X → X.

2.2.2 Operational semantics (erasure and Curry-style theories)

What we have just described is the “statics” of System F. From this, it should be clear that
the polymorphic lambda calculus corresponds to the implicative fragment of second-order intu-
itionistic propositional logic. To be considered as a programming language, we need to breathe
life into the system by specifying its operational semantics, i.e., the “dynamics”. Usually, this is
done by reformulating the operational semantics for the untyped lambda calculus for the term
language of annotated System F and adding a new reduction rule:

(ΛX. t) · T 99K t[T/X]

However, we find it more pleasant to provide a semantics by subtraction. We take the point-
of-view that types should play no computational rôle in terms, and that the system of type
annotations is merely a syntactic mechanism for algorithmically determining a type assignment
for some term of the untyped lambda calculus.

Our erasure rules for annotated System F are given in Figure 2c. Type erasure should be
viewed as a method of program extraction for proofs. The notion of some “code” underly-
ing a proof in intuitionistic logic goes back to Kleene’s realizability semantics for intuitionistic
number theory [Kle45]. In this view, we have a semantic interpretation of types as sets of
(αβη-equivalences classes of) terms of the untyped lambda calculus which realize them. This in-
terpretation underlies Tait’s method [Tai75] for proving termination of System F (which is itself
a modification of Girard’s original “candidats de reductibilité” method [Gir72]). More recently,
type erasure has been uses as a feature of Curry-style type theories (rather than being a meta-
theoretic notion) like the implicit calculus of constructions (ICC) [BB08] and CDLE [Stu17].
These theories are dependently typed, and thus type-checking may require determining whether
two terms are equal; a notion of erasure permits definitional equality of terms “up to erasure”
of typing annotations.
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Elaborating the language of dynamics We remark that, with respect to designing elab-
orating inference rules, there is some technical overhead introduced by this point-of-view. We
now have two source languages (one for the statics, one for the dynamics), and thus two target
languages. For the design of our bidirectional type system, which is concerned only with the
placement of type annotations, this will not prove to be a significant burden. In general, one
can extract the rules for the judgment ` u u′ for elaborating the language of dynamics from
the rules given for the language of statics by removing from typing judgments all typing con-
texts and types, and by replacing the subject t of the judgment and its elaboration t′ with their
erasures. For the bidirectional system, the resulting elaboration rules for the dynamic language
are a no-op.

3 Bidirectional type inference

We now consider a relatively simple case of using elaboration to guide the design of a new
language feature, bidirectional type inference. Annotated System F, though powerful, is not a
language in which one wishes to write programs directly, as it requires excessive discipline of
type annotation. For example, if we know that f has type (S → S) → T (for some S and T ),
we should like to write f λ x. x, rather than f λ x:S. x as would currently be required, because
the type that should be associated with the bound variable x in λx. x is determined already
by the type of the function f . Additionally, it would be desirable to have notation for giving a
more top-level typing annotation χ T - t to better separate the type (i.e., specification) of, and
the term (i.e., implementation) for, a program.

A popular technology for inferring missing type annotations is Damas-Hindley-Milner type
inference (DHM) [Dam84, Hin69, Mil78]. In its simplest form, DHM guarantees complete type
inference for a restriction of the polymorphic lambda calculus. This means no type annotations
in source programs are ever required. However, and as discussed previously, unrestricted System
F is beyond the power of any complete method of inference.

Considerations such as these lead one to search for partial methods of type inference (mean-
ing that some annotations will still be required in the source language) such as bidirectional
typechecking. Bidirectional typechecking, described by Pierce and Turner in [PT00], uses the
typing information available locally (that is, from neighboring nodes of the abstract syntax tree
of the language) to infer missing type annotations in programs. The utility of bidirectional type-
checking goes well beyond the modest use we will give here. For example, it can be employed to
infer missing type arguments to polymorphic functions [PT00, OZZ01, DK13], to support over-
loading of datatype constructors [APTS13], and even for giving algorithmic elaboration rules
for language constructs like algebraic datatypes [DM12].

Bidirectional typechecking is elegantly described with inference rules by splitting the typing
judgment into two forms, synthesis mode written Γ ` e ∈ T indicating the type T is coming “up
and out of” term e, and checking mode written Γ ` T 3 e indicating that T is being pushed
“down and into” e. Following the convention of [DM12], for elaborating type inference rules we
extend these judgments to Γ ` e  t ∈ T and Γ ` T 3 e  t, where we call t the elaboration
of e. The intended reading in inference rules is that inputs to type inference go to the left of  
and outputs go to the right.

3.1 Elaboration

Grammar Recall from Section 1 that elaboration means designating an internal, minimal
language and an external, extended language. Our chosen internal language is annotated System
F (Figure 2), and our external language, bidirectional System F, is given in Figure 3. The
language of types, and typing context formation, is the same in both, so we specify only the

6



external terms e, e1, e2, f, ... ::= x | λ x:T. e | λx. e | ΛX. e | f e | e · T | χ T - e

(a) Grammar

Γ ` e t ∈ T

FV (T ) ⊆ DV (Γ) Γ, x :T ` e t ∈ S
Γ ` λ x:T. e λ x:T. t ∈ T → S

Abs∈
Γ ` e1  t1 ∈ S → T Γ ` S 3 e2  t2

Γ ` e1 e2  t1 t2 ∈ T
App

Γ, X ` e t ∈ T
Γ ` ΛX. e ΛX. t ∈ ∀X.T Poly∈

Γ ` e t ∈ ∀X.S FV (T ) ⊆ DV (Γ)

Γ ` e · T  t · T ∈ [T/X]S
Inst

Γ ` x x ∈ Γ(x)
Var

Γ ` T 3 e t FV (T ) ⊆ DV (Γ)

Γ ` χ T - e t ∈ T Ann

Γ ` T 3 e t

T1 = T2 Γ, x :T2 ` S 3 e t

Γ ` T1 → S 3 λ x:T2. e λ x:T2. t
Abs3

Γ, x :T ` S 3 e t

Γ ` T → S 3 λx. e λ x:T. t
Bare

Γ, X ` T 3 e t

Γ ` ∀X.T 3 ΛX. e ΛX. t
Poly3

¬Abs(e) Γ ` e t ∈ T2 T1 = T2

Γ ` T1 3 e t
Sub

Abs(e) = (∃X, e′. e = ΛX. e′) ∨ (∃x, T, e′. e = λ x:T. e′)

(b) Type inference

|x| = x,
|χ T - e| = |e|,

|λ x:T. e| = λx. |e|,
|λx. e| = λx. |e|,
|ΛX. e| = |e|

|f e| = |f | |e|
|e · T | = |e|

(c) Erasure

Figure 3: Bidirectional System F
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grammar of the term language. The external term language (Figure 3a) simply adds two new
term constructs: “bare” function abstractions λx. e and type annotations χ T - e.

Typing rules Figure 3b gives the type inference rules for bidirectional System F. Read the
judgment Γ ` e  t ∈ T as “under context Γ, external term e elaborates to internal term t
and synthesizes type T”; read Γ ` T 3 e  t as “under Γ, use T to check e and elaborate t”.
Associated with the subjects Γ, e, t, and T of both judgments is a mode: in both judgments, Γ
and t are considered inputs, and t is an output; in the synthesis judgment T is also an output,
but in the checking judgment it is an input. We remark on some interesting rules.

For type synthesis, rule App says we synthesize type T from an application e1 e2 and elab-
orate t1 t2 if e1 synthesizes type S → T and elaborates to t1, and we can check e2 with type S
and have it elaborate to t2 – S is contextually available from the type of e1. For rule Var, we
remove the possibly confusing notation (x :T ∈ Γ) and say instead that a variable x elaborates to
itself and synthesizes Γ(x), the type associated to it in the context Γ (if this exists). Rule Ann
demonstrates a more drastic change between internal and external terms: top-level annotations
with χ are not part of annotated System F, and so elaboration removes them.

For type checking, rule Bare shows how elaboration handles bare abstractions λx. e. It is
not obvious from the syntax alone what type should be associated with the bound variable x,
so we require that this be provided contextually in the form of a checked type T → S. Then,
if the body e can be checked against the type S and elaborates to t under a context extended
with the assumption x : T , the bare abstraction elaborates to λ x : T. t. Finally, rule Sub is
a “mode-switch” rule: terms for which there is no other checking rule (function application,
polymorphic instantiation, variables, and top-level annotations) can be checked against type T1

if they synthesize type T2, and these two types are equal (up to α-conversion). In order to avoid
ambiguity for checkable annotated function abstractions (Abs3) and checkable polymorphic
terms (Poly3), wherein type information is available both (partially) in the syntax of the term
and (fully) contextually, we require that the subject e of rule Sub not have the form of a λ- or
Λ-abstraction with the premise ¬Abs(e).

Erasure The erasure rules for bidirectional System F (Figure 3c) are straightforward. For
bare abstractions we simply erase the body; for type annotations, the ascribed type T plays no
rôle in the computation of |e|, and so is erased.

3.2 Properties

Having designed elaborating type inference rules for bidirectional System F, we are now in-
terested in verifying that certain essential properties hold of the system. In this report, the
properties we state serve to illustrate the principles that language designers should keep in mind
when formulating elaborating type inference rules. In particular, those properties labeled as
“conjecture” had not been formally proven. When appropriate, we point to instances of similar
properties in the literature on elaboration.

To begin, not every set of inference rules determines and algorithm, but to claim that we have
given a translational semantics of the external language to the internal one, it is essential that
there is an algorithmic reading of the inference rules comprising the judgments for type synthesis
and checking. Specifically, we must have a bottom-up proof search reading of the inference rules
wherein the form of the goal (the desired typing judgment) uniquely determines which rule (if
any) could have it as a conclusion, and each rule must be mode-correct [Pfe01, War77]. The
recipe for mode-correctness is:

1. Assume that the inputs of the judgment in the conclusion are given
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2. Show that the inputs of the judgment in the premise can be constructed

3. Assume that the outputs of the judgment in the premise are given (if there are multiple
premises, read them left to right and propagate outputs to premises further to the right)

4. Show that the output of the judgment in the conclusion can be constructed

Proposition 3.1 (Algorithmic type inference).

1. Every rule is mode-correct for a moding Γ− ` e−  t+ ∈ T+ and Γ− ` T− 3 e−  t+ of
the two judgments (where − indicates input and + indicates output).

2. For all Γ, e, t, and T , there is at most one rule whose conclusion matches the syntactic
form of the judgment Γ ` e t ∈ T

3. For all Γ, e, t, and T , there is at most one rule whose conclusion matches the syntactic
form of the judgment Γ ` T 3 e t (where we consider rule Sub as abbreviating multiple
rules, one for each of the possible ways e could be constructed such that ¬App(e)).

Proof sketch. By inspection of the type inference rules.

An easy consequence of Proposition 3.1 is that type inference is deterministic.

Corollary 3.1.1 (Determinism). For all Γ, e, t, t′, T , and T ′:

1. if Γ ` e t ∈ T and Γ ` e t′ ∈ T ′ then t = t′ and T = T ′

2. if Γ ` T 3 e t and Γ ` T 3 e t′ then t = t′

Where ‘=’ indicates formal (syntactic) equality.

Proof sketch. By mutual induction on typing derivations of Γ ` e  t ∈ T and Γ ` T 3 e  t,
appealing to Proposition 3.1(2,3) at each step.

The next property of interest comes from the observation that every term of the internal
language is also a term of the external language. We might like to verify, as a kind of sanity
check, that the type inference rules for bidirectional System F are sufficient for typing the terms
of annotated System F, and furthermore that elaboration for such a term re-produces that term.
We expect this because our internal language is a sublanguage of the external one. We borrow
the term sufficiency from Swamy et al. [SHB09], who use it to state a similar property concerning
the elaboration of subtyping by the insertion of type coercions.

Proposition 3.2 (Sufficiency). For all Γ, t, and T , if Γ ` t : T then Γ ` t t ∈ T

Proof sketch. By induction on the assumed typing derivation, where in the case that t is an
application we use Proposition!3.5 after appealing to the inductive hypothesis for the argument
in that application.

Soundness of our bidirectional type inference rules states that well-typed terms e of the
external language are elaborated to well-typed (at the same type) terms t of the internal lan-
guage. We call this static soundness of our elaboration rules. In literature on elaboration, such
as [DM12, SHB09, JS18], this is often simply referred to as “soundness”; in [CA18], it is called
“type preservation” which is more descriptive but uses overloaded terminology.
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For our purposes, however, it is not enough to specify only that e and t have the same (or
related) type in their respective systems. For example, if e is the Boolean value true (using
standard techniques to encode the type of Booleans in System F), we certainly do not wish
that its elaboration t is false. Thus, we need also dynamic soundness of elaboration, which here
means that e and t are equal “up to erasure”. Examples of dynamic soundness properties appear
in the work of Gougen et al. [GMM06] and [CA18] in their translation of dependent pattern
matching to eliminators, and by Jenkins et al. [JMS19] in unpublished work on elaborating
simple pattern-matching and course-of-values induction to lambda encodings in CDLE.

Conjecture 3.3 (Static and dynamic soundness).
For all Γ, e, T , and t,

• if Γ ` e t ∈ T then Γ ` t : T and |e| = |t|

• if Γ ` T 3 e t then Γ ` t : T and |e| = |t|

As our bidirectional type inference rules describe a partial typechecking method, we do not
have a general completeness theorem stating that all terms of the external language can have
their types inferred. However, we can instead define what it means to be complete assuming
some restriction R relating internal and external terms whose erasures are the same.

Definition 3.4 (R-restricted completeness). Given some relation R between external and in-
ternal terms of the static language, we say that the inference system of Figure 3b is R-complete
if for any Γ, t, e, and T , if Γ ` t : T and |e| = |t| and R(e, t) then Γ ` e t ∈ T .

This definition of completeness may also be called the annotation character of the bidirectional
system [DK19]. As a trivial example, take R(e, t) to be the property that e and t are formally
identical. Then, Proposition 3.2 gives us R-restricted completeness (this was referred to as
“trivial completeness” in [JS18]). A more useful definition of R, typical of bidirectional systems,
is the property that e require type annotations only on lambda abstractions in β-redexes (c.f.
Dunfield and Krishnaswami [DK13]).

Finally, a simple property that bidirectional typechecking systems should enjoy is that any
term whose type we can synthesize is able to be checked against that type. We expect also that
the elaborated term in both cases is the same:

Proposition 3.5 (Synthesis and checking).
For all Γ, e, t, and T , if Γ ` e t ∈ T then Γ ` T 3 e t

Proof sketch. By mutual induction on the assumed typing derivation. The restriction in the
premise of Sub means that we must use the inductive hypothesis in the cases given by rules
Abs∈ and Poly∈.

3.3 Related Work

There is much literature on elaborating type inference systems. Regarding the design of type-
checking systems for inferring missing type annotations, Pierce and Turner [PT00] formulated
the problem generally in three parts. We quote (emphasis theirs):

• Syntax, typing rules, and semantics for a fully annotated internal language.

• An external language in which some type annotations are made optional or omitted entirely.
This is the language that the programmer actually uses.

• Some specification of a type inference relation between the external language and the
internal one.
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This formulation is especially useful for studying partial typechecking methods such as lo-
cal type inference, as it facilitates a specification of the annotation character R. Ibid. work
within the theory F6, an extension of System F with subtyping, and give an analogue to Con-
jecture 3.3 and a combined from of Propositions 3.2 and 3.5 relating checking mode and type
subsumption. Jenkins and Stump [JS18] presented a similar bidirectional system called spine-
local type inference, using elaboration for similar ends. Jones et al. [JVWS07] studied a (non-
local, unification-based) bidirectional type inference method for higher-rank polymorphism (i.e.,
arbitrarily left-nested type quantification), providing a “type-directed translation” (i.e., elabo-
rating type inference rules) from their system to (predicative) System F. Their system features
a form of subtyping derived from the “more polymorphic than” relation of [OL96], and elabora-
tion of subtyping derivations produces retyping functions a lá Mitchell [Mit88] – type coercions
whose underlying computational content (given by the complete erasure of type abstractions,
annotations, and instantiation) is β-equivalent to the identity function.

4 Algebraic Semantics of Inductive Definitions

We now turn to a feature of great importance in programming languages – user-defined datatypes.
In functional programming languages, this feature is usually made available via algebraic datatype
declarations, wherein a type D is defined by specifying the collection of (necessarily disjoint)
constructors ci which generate it. These constructors may take arguments, the types of which
may furthermore recursively refer to the datatype D being defined. For example, in the Cedille
programming language [Stu18b, JMS19], the type of natural numbers Nat and the type of lists
List ·A (where here the center dot denotes application of a type to a type, which we have not
defined) of some element type A can be defined using the syntax given in Figure 4.

data Nat : ?
= zero : Nat

| suc : Nat → Nat

data List (A: ?): ?
= nil : List

| cons : A → List → List

Figure 4: Example datatype declarations in Cedille

Algebraic datatypes first appeared in the HOPE programming language [BMS80], and since
then have become a popular feature in functional programming languages such as Haskell, ML,
and Scala, as well as in implementations of dependent type theories like Agda, Coq, Idris, and
Lean. Before we attempt to translate ADTs and functions over them ourselves, however, it
behooves us to review the literature on the translational and algebraic semantics of inductive
definitions.

4.1 Lambda encodings

4.1.1 Church encoding

One of the most venerable semantical accounts of datatypes is lambda encoding, which can
be understood as identifying datatypes with some scheme for defining functions over them.
The most famous such encoding is known as Church-encoding, named after Alonzo Church who
demonstrated the technique for simple datatypes such as natural numbers and Booleans [Chu41].
The Church encoding identifies datatypes with their iteration scheme. In the case of Nat, this
can be given by expressed by the following typing and reduction rules for iterNat:
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Γ ` t1 : T Γ ` t2 : T → T

Γ ` iterNat · T t1 t2 : Nat→ T

iterNat · T t1 t2 zero 99K t1, iterNat · T t2 t2 (succ t) 99K t2 (iterNat · T t1 t2 t)

This method of lambda-encoding is alternatively called the Böhm-Berraduci encoding, as
[BB85] gave a systematic translation of datatype systems expressed in the language of univer-
sal algebras into lambda expressions typeable in System F, meaning that the foregoing type
inference and reduction rules need not be added as primitives to System F, but are derivable

for the definitions of Nat, zero, and succ (replacing 99K with
∗
99K) that can be algorithmically

determined by the data declaration of Nat. We give this below, as well as the corresponding
schematic definition for List · T .

For the types Nat and List · T :

Nat =df ∀X.X → (X → X)→ X, List · T =df ∀X.X → (T → X → X)→ X

for their respective constructors:

zero =df χ Nat - ΛX.λ z. λ s. z
suc =df χ (Nat→ Nat) - λn.ΛX.λ z. λ s. s (n ·X z s)

nil =df χ (List · T ) - ΛX.λn. λ c. n
cons =df χ (T → List · T → List · T ) - λ hd . λ tl .ΛX.λn. λ c. c hd (tl ·X n c)

for their iteration schemes:

iterNat =df χ (∀X.X → (X → X)→ Nat→ X) -
ΛX.λx1. λ x2. λ n. n ·X x1 x2

iterList·T =df χ (∀X.X → (T → X → X)→ List · T → X) -
ΛX.λx1. λ x2. λ l. l ·X x1 x2

Almost as well-known as the method of Church encoding itself is its primary deficiency
(shown by Parigot in [Par90]) as a representation of datatypes in lambda calculi: subdata
accessors, such as the predecessor function for naturals or the tail function for lists, can take
no better than linear time to compute. Other methods of encoding exist which address this
deficiency, and come with their own trade-offs. We discuss two of these briefly (the Scott and
Parigot encoding). A third encoding, the Mendler encoding, appears to have the same deficiency
in System F, and receives much more attention in this section. See [SF16] for a more detailed
analysis of the efficiency of lambda encodings in type theory (they do not remark on the Mendler
encoding).

4.1.2 Scott encoding

The Scott encoding first appeared in unpublished lecture notes by Dana Scott [Sco62], and was
studied (without attribution) by Michel Parigot in [Par88], wherein it is called the “stack” rep-
resentation. The Scott encoding identifies datatypes with their case-distinction scheme [Geu14],
which for the type Nat is given by type inference and reduction rules for the operator caseNat:

Γ ` t1 : T Γ ` t2 : Nat→ T

Γ ` caseNat · T t1 t2 : Nat→ T

caseNat · T t1 t2 zero 99K t1, caseNat · T t1 t2 (succ t) 99K t2 t

12



It is immediate that one can define a constant-time predecessor function over Nat using this
case scheme. What is not clear, however, is whether there is a solution for Nat in System F
satisfying this specification. Sp lawski and Urzyczyn in [SU99] point to a negative result: in
brief, they show that datatype systems with recursion schemes (of which the case-distinction
scheme above is a degenerate instance) can be efficiently simulated in System F extended with
recursive types, but that an arbitrary well-typed term of System F with recursive types cannot
be efficiently simulated in System F. If we seek to define Nat in terms of its case scheme, the
occurrence of Nat in the premises of the typing rule becomes a recursive one, and it seems (but
is not proven to be) inevitable that we must reach for recursive types to do so, or else face
a linear-time penalty in iterative rebuilding the predecessor [ACP93]. With recursive types,
the definition of Nat is easily given (for brevity we omit the corresponding definition of the
constructors and case scheme):

Nat =df µN. ∀X.X → (N → X)→ X

where µ is a recursive type former equipped with operations roll : T [µX. T/X]→ µX. T and
unroll : µX. T → T [µX. T/X] forming an isomorphism.

Adding unrestricted recursive types has the dire consequence of ruining the meta-theoretic
property of termination [Men87]. We thus require some form of restriction on the formation,
introduction, or elimination of recursive types to preserve termination, such as a syntactic cri-
terion of positive occurrences of type variables or internalized witnesses of positivity as pursued
by [Mat02]. Concerning the Scott encoding, it is clear that in the presence of general recursion
(which would be given by unrestricted recursive types [MJ69]) an iteration scheme can be given
for them, but it is rather less clear how to do so without it. In [Par88], Parigot gave a strongly
normalizing iterator for Scott-encoded naturals, using meta-theoretic reasoning to argue that it
could safely be assigned a suitable type. Taking advantage of this argument within a type theory
seems to require rather exotic features: Lepigre and Raffalli [LR19] accomplish this in a theory
with recursive types and a subtyping judgment with “circular but well-founded” derivations;
Jenkins and Stump [JS20] use a method related to theirs with derivable (monotone) recursive
types and an internalized notion of subtyping amenable to proof by induction (though they
failed to observed that a Parigot’s original proof can be carried out directly in Cedille).

Finally, the Scott encoding has an unexpected trade-off in comparison to the Church encod-
ing. Concretely, for the Church encoding of Nat it is possible to define addition in constant
time, and (symmetrically to the case of predecessor) it is provably impossible to do so for the
Scott encoding [Par90].

4.1.3 Parigot encoding

When considering the Church and Scott encoding, a natural question arises: is there some way
to combine these two encodings such that the benefits of both can be enjoyed? Put another
way: if the Church encoding identifies datatypes with their iterators, and the Scott encoding
identifies datatypes with their case schemes, what is the encoding that identifies datatypes with
there recursion scheme, which subsumes these? Such considerations lead one to the Parigot
encoding, first described in [Par88] for natural numbers. In [Geu14], Geuvers calls this method
the “Church-Scott” encoding, and connects them to the general form of the recursion scheme
for datatypes. For the type Nat, the recursion scheme is given by type inference and reduction
rules for the operator recNat:
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Γ ` t1 : T Γ ` t2 : Nat→ T → T

Γ ` recNat · T t1 t2 : Nat→ T

recNat · T t1 t2 zero 99K t1, recNat · T t1 t2 (succ t) 99K t2 t (recNat · T t1 t2 t)

As with the Scott encoding, expressing the type of Parigot-encoded data appears to require
some form of recursive types. The type of Parigot-encoded naturals is given by:

Nat =df µN. ∀X.X → (N → X → X)→ X

Parigot-encoded datatypes enjoy both constant-time destructors (e.g., predecessor for Nat),
impossible for the Church encoding, and ease in the definition of recursive functions over them,
which is not the case for the Scott encoding without more exotic type features. However, these
conveniences come with a price: the space complexity of the closed normal form of a natural
number n (i.e., the representation of n and a term of the lambda calculus for which there are
no further β-redexes) is exponential in the size of n [Par88]. Additionally, there is another,
more subtle issue plaguing the Parigot encoding: its type is not precise enough, and it admits
“bogus numbers” as well as the intended set of naturals [Geu14]. To illustrate, let n denote the
Parigot encoding of the number n. Then, the term roll (ΛX.λ z:X.λ s:Nat→ X → X. s 0 z)
corresponds to a natural number (specifically, 1), but the term roll (ΛX.λ z : X.λ s : Nat →
X → X. s 10 z) does not. This difficulty does note arise Parigot’s original presentation of the
encoding, as the language of types he uses, second-order predicate logic, is strong enough to rule
out such cases.

4.1.4 Mendler encoding

Barring concerns of efficiency, in System F the Church encoding is adequate for expressing many
of the desired recursive functions over datatypes. As it identifies datatypes with their associated
iteration scheme, using them is similar to the “Squigoll style” of programming [BW88,MFP91],
where for example (in the simplest case) all recursive functions over natural numbers are written
using iterNat. We illustrate with the definition of a function computing the sum of two numbers:

add t1 t2 =df iterNat · Nat t1 (λx. succ x) t2

The Squiggol style of programming enjoys many benefits: it facilitates automatic program
calculation from specification; it can be used to guarantee program termination; and it distills
equational reasoning for recursive programs into a handful of general properties (cancellation,
reflection, and fusion, which we discuss in Section 4.2.2). However, it arguably suffers from
a rather pragmatic drawback: programmers accustomed to defining functions using general
recursion can find the insistence on working only with the previous recursively computed values
rather unidiomatic. For example, in the definition of add above confusion possibly arises for the
uninitiated as to whether the bound variable x refers to the previously computed sum (which it
does) or to some predecessor of the number over which we are recursing (which it does not).

In [UV00], Uustalu and Vene propose an alternative “Mendler style” of programming which
enjoys the same benefits of the Squiggol style but which more closely resembles the idiomatic
approach of making explicit recursive calls when defining functions over datatypes. Intuitively
(and somewhat informally), rather than working with previously computed results the program-
mer instead works with “approximate versions” of the recursively defined function itself. More
concretely, if f : Nat→ T is the recursive function we seek to define, then we can do so assuming
some f ′ : R → T in a context extended by a type variable R. One considers R to be a sort of
“subtype” of Nat, since when defining how f computes over an argument of the form succ t, the
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predecessor t has type R; the only type-correct application of f ′ is to this predecessor, entitling
us to interpret R as a subtype of Nat for which recursive calls are guaranteed to be well-founded.

We make the foregoing more precise by giving the type inference and reduction rules for
miterNat, the Mendler-style combinator for iteration.

Γ ` t1 : T Γ ` t2 : ∀R. (R→ T )→ R→ T

Γ ` miterNat · T t1 t2 : Nat→ T

miterNat · T t1 t2 zero 99K t1, miterNat · T t1 t2 (succ t) 99K t2 · Nat (miterNat · T t1 t2) t

Notice that for the computation rules in the case of successor, the universally quantified type R
of t2 is instantiated to the type Nat, and the argument which is intended to serve as an approx-
imation to function being recursively defined is none other than miterNat ·T t1 t2. Additionally,
in the Mendler style the confusion in the definition of add mentioned earlier disappears:

add t1 t2 =df miter
Nat · Nat t2 (ΛR. λ f ′. λ x. succ (f ′ x)) t1

where we now interpret the lambda-bound f ′ as the approximation (in the sense of having
its domain restricted to the type R) of the recursively defined function which adds t1 to its
argument, and x as some given predecessor of t1 having type R.

As with the Church encoding, types for Mendler-encoded data can be defined in System F
with no further extension:

Nat =df ∀X.X → (∀R. (R→ X)→ R→ X)→ X

with constructors:

zero =df χ Nat - ΛX.λ z. λ s:z.
succ =df χ (Nat→ Nat) - λn.ΛX.λ z. λ s. s · Nat (λx. x ·X z s) n

and iterator

miterNat =df χ (∀X.X → (∀R. (R→ X)→ R→ X)→ Nat→ X) -
ΛX.λx1. λ x2. λ n. n ·X x1 x2

The categorical account of the Church and Mendler encoding we consider in Section 4.2.2 tells
us that they are equally expressive as encodings (for the categorically disinclined reader, we leave
it as an exercise to show these two definitions of Nat are isomorphic). We are unaware of any
formal proof concerning the efficiency of predecessor for the Mendler encoding, but conjecture
that the situation is the same as for the Church encoding: when defining a recursive function
using Mendler-style iteration, there is no way to “reveal” the fact that some term of type R
“really is” a term of type Nat (since R introduced by universal abstraction), and so one appears
left with no choice but to iteratively rebuild such a term if that is required.

4.2 Algebraic semantics of inductive definitions

4.2.1 Universal algebras

The moniker “algebraic datatype” comes from a semantic understanding of inductive definitions
in programming languages as universal algebras [BG82]. We do not require universal algebras
in their full generality, so for simplicity we present them here in a restricted form (specifically,
we only require free universal algebras). Our presentation is adapted from [BB85].

Definition 4.1 (Algebra). An algebra is a pair (C,G) where
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• C = {Ck}k∈K is a family of sets Ck (called the carriers of the algebra) indexed by some
finite set K;

• G = {gj}j∈J is a family of finitary operations (called the actions of the algebra) indexed
by some finite set J where each gj defines a mapping

gj : Cδ(1,j) × ...× Cδ(α(j),j) → Cι(j)

with α(j) ∈ N giving the arity of gj , δ(i, j) ∈ K giving the index for the carrier set of the
ith component (for i ∈ {1, ..., α(j)}) of the domain of gj , and ι(j) ∈ K giving the index
for the carrier set of the codomain of gj .

Definition 4.2 (Term algebra). A term algebra is an algebra (C,G) such that, for any two
operators g1 and g2 and tuples (x1, ..., xn) and (y1, ..., ym) in the respective domains of g1 and
g2, if g1(x1, ..., xn) = g2(y1, ..., yn) then m = n, (x1, ..., xm) = (y1, ..., yn), and g1 = g2, where ‘=’
indicates formal identity (syntactic equality).

The following two examples express natural numbers and lists as term algebras:

Example. Let Nat be the least set generated by uninterpreted constant zero ∈ Nat and unin-
terpreted function succ : Nat→ Nat. Then ({Nat}, {zero, succ}) is a term algebra.

Example. Let A be an arbitrary non-empty set. Let ListA be the least set generated by
uninterpreted constant nil ∈ ListA and uninterpreted function cons : A × ListA → ListA.
Then ({A, ListA}, {nil, cons}) is a term algebra.

At this point, one may be tempted to think that the notion of “term algebra” is enough
to express what intuition tells us an inductive datatype should be. The following example
demonstrates that this is mistaken.

Example. For any element x ∈ Nat, ({Nat}, {x, succ}) is a term algebra.

Expressing inductive datatypes as universal algebras requires some subtlety. For a term
algebra (C,G), if we were to require that for every carrier C ∈ C its elements are precisely those
elements in the images of operators g ∈ G such that C = cod(g) (the codomain of g), this
would exclude the list datatype – the carrier A of the term algebra ({A, ListA}, {nil, cons})
representing lists of elements of type A is not a codomain of any action, because we wish
to consider it as a parameter to the definition of lists, and not part of the definition itself!
In [BB85], Böhm and Berarducci overcome this technical difficulty by carefully distinguishing
between parametric and non-parametric carriers. Rather than detail this, we shall instead reach
for greater conceptual (and notational) clarity by turning to category theory for an understanding
of algebras and datatypes.

To ease the passage from universal algebras to the categorical notion of F -algebras, it is
useful to note in the special case of an algebra ({C}, {gj}j∈J) with a single carrier C that
the set of actions {gj}j∈J can be replaced with a single action a whose domain is the disjoint
union of the domains of each g ∈ G. We express this disjoint union as

∐
j∈J

dom(gj) and its

J-indexed set of injections as injj′ : dom(gj′) →
∐
j∈J

dom(gj). Then, the generalized algebra

action a : (
∐
j∈J

dom(gj))→ C is defined by

a(injj(x1, ..., xαj)) =df gj(x1, ..., xαj) for all j ∈ J

Thus arises the phrase “sum-of-products” when describing the general form of defining alge-
braic datatypes. One result of the next section will be the complete removal of any need mention
the set of actions {gj}j∈J , allowing us to work directly with the generalized action a.
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4.2.2 F -algebras

We begin with some definitions of basic concepts in category theory. For a more thorough
treatment of category theory and its applications to computer science, consult [Pie91].

Definition 4.3 (Category). A category C consists of

1. a collection of objects (denoted with upper-case Latin letters A,B,C, ...);

2. a collection of morphisms (denoted with lower-case Latin letters f, g, h, ...), where each
arrow f is associated with a domain object A and codomain object B written f : A→ B.

3. an associative composition operator ◦ such that for all objects A, B, and C and morphisms
f : A→ B and g : B → C, g ◦ f : A→ C.

4. for every object A there is an identity morphism idA which is a neutral element wrt ◦.

For the discussion of this section, we are interested in those categories which can provide
semantics for type theories, with the objects corresponding to types and morphisms correspond-
ing to functions. As with type theory and set theory, in category theory we can express what it
means for an object A× B to be a binary product of objects A and B (corresponding resp. to
2-tuples and Cartesian products), a nullary product > (resp. the empty tuple and {∅}), binary
coproducts A + B of objects A and B (resp. a binary sum type and disjoint union of sets),
and nullary coproducts ⊥ (resp. the uninhabited type and the empty set). These constructions
appear only in the examples of this section, so for space considerations we omit their formal
definitions and rely on the reader’s intuition of their counterparts in type theory and set theory.

Definition 4.4 (Functor). Let C and D be categories. A functor F between C and D (written
F : C → D) is a mapping that

• takes each object C of C to an object F (C) of D

• takes each morphism f : A→ B of C to a morphism F (f) : F (A)→ F (C) of D

and that satisfies the following laws (called the functor identity and composition laws)

• for all objects C of C, F (idC) = idF (C)

• for all morphisms f : A→ B and g : B → C of C, F (g ◦ f) = F (g) ◦ F (f)

In Section 4.2.1, we said that for a universal algebra ({C}), {gj}j∈J) we could specify a
generalized algebra action without reference to the actions gj . Endofunctors (functors whose
source and target categories are the same) are the technical device that allows us to do so; when
a functor F is used in this fashion, we call it the signature functor (or pattern functor) of the
algebra. Signature functors allow us to express the family of algebras whose actions share a
certain “shape” independent of the definitions of those actions and the particular carrier they
are defined over.

Example. In a category with binary coproducts and a nullary product, the signature functor for
the universal algebras ({Nat}, {zero, succ}) and ({Nat}, {x, succ}) (for any x ∈ Nat) is given
by X 7→ 1 + X (we omit the morphism mapping). We arrive at this definition by interpreting
constants x and zero as morphisms from 1 to Nat, forming the coproduct 1 + Nat from the
domains of the actions of each algebra, and abstracting away with X all occurrences of the
carrier Nat.
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Example. In a category with binary and nullary products, and binary coproducts, the signature
functor for the universal algebra ({A, ListA}, {nil, cons}) is given by X 7→ 1 + (A×X), where
object A is some suitable representative of the set A. We arrive at this definition in a fashion
similar to the example above, but additionally we now designate A not as a carrier but as a
parameter to the definition of the signature functor: for any object A, X 7→ 1 + (A×X) is the
signature functor for lists of elements of A.

With the foregoing preliminaries, we can now express F -algebras – algebras with a signature
functor F – in purely category-theoretic terms.

Definition 4.5 (F -algebras). Given an endofunctor F : C → C, an F -algebra is a pair (X, a)
where X is an object of C (called the carrier of the algebra) and a : F (X)→ X is a morphism
of C (called the action of the algebra).

An F -algebra corresponds to a “plan” or “scheme” for giving an inductive definition. To
see this, notice that if F is the signature functor for Nat, then the type inference and reduction
rules given for iterNat for defining functions by iteration in Section 4.1.1 can be rephrased in
terms of F -algebras, where below 〈〉 is the single element of 1, and inj 1 and inj 2 are resp. the
left and right injections for coproducts.

Γ ` a : (1 + T )→ T

Γ ` iterNat · T a : Nat→ T

iterNat · T a zero 99K a (inj 1 〈〉), iterNat · T a (succ t) 99K a (inj 2 (iterNat · T a t))

This suggests the following definition for datatypes when we consider them as algebras.

Definition 4.6 (Initial F -algebra). An initial F -algebra (µF, in) is one such that for any other
F -algebra (X, a) there exists a unique morphism L a M : µF → X (called the catamorphism of a)
such that L a M ◦ in = a ◦ F (L a M). This equation can be alternatively expressed as a commuting
categorical diagram:

F (µF ) µF

F (X) X

in

F (L a M) L a M

a

Example. Consider the inductive datatype Nat of natural numbers with constructors zero :
1 → Nat and succ : Nat → Nat. Let F be the functor defined by the mapping X 7→ 1 + X.
Then, (Nat, [zero, succ]) is an F -algebra (where [ , ] is the eliminator for binary sum types;
alternatively, a case distinction for disjoint unions). It is also initial, with the catamorphism for
an arbitrary algebra (X, a) given by iterNat ·X a.

There are two parts to the definition of an initial F -algebra: an existence claim for the
catamorphism and a uniqueness claim [JR11]. The existence claim entitles us to a definition
principle for iterative functions over datatypes; the uniqueness claim entitles us to a proof
principle for equational reasoning over terms, just as in the Squigoll-style of programming. Of
particular note are the cancellation, reflection, and fusion laws (c.f [Ven00], Cor. 2.1)

Proposition 4.7 (Cancellation, reflection, fusion). Let (µF, in) be an initial F -algebra.

• Cancellation: For any F -algebra (X, a), L a M ◦ in = a ◦ F (L a M)

(this expresses how L a M computes over elements constructed with in, and holds by the
definition of initiality for F -algebras)
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• Reflection: L in M = idµF

(this says iteratively rebuilding data with its constructors produces the original data)

• Fusion: For any F -algebras (X, a) and (Y, b) and morphism f : X → Y , if f ◦a = b◦F (f)
then f ◦ L a M = L b M

(this provides a useful optimization rule for “fusing” f with the iterative function L a M)

The notation µF for the carrier of an initial algebra suggests that is least a fixpoint1 of F .
That this is so – i.e., that there exists a generalized destructor in−1 : µF → F (µF ) which is an
inverse to in – is a result due to Lambek [Lam68] (see also [Ven00], Thm. 2.2).

Proposition 4.8 (Lambek’s lemma). The action in of the initial algebra (µF, in) is an isomor-
phism, with the inverse in−1 : µF → F (µF ) given by LF (in) M.

Finally, we remark that the initial F -algebras can be expressed in polymorphic type theory,
and that this expression is essentially the type of Church-encoded data. It is folklore knowledge
[Wad90] (and a generalization of Tarski’s fixpoint theorem [T+55,Mat02]) that for any positive
type scheme F , its least fixpoint µF can be expressed by the type ∀X. (F ·X → X) → X. In
the case that F · X = 1 + X, it is easy to see that the type (1 + X) → X is isomorphic to
X × (X → X), and thus (by currying) µF ∼= ∀X.X → (X → X) → X. Lambek’s lemma can
therefore be understood as a generalized version of Kleene’s solution for the predecessor function
for the Church encoding of natural numbers [Cro75].

4.2.3 Mendler-style F -algebras

As discussed in Section 4.1.4, the Mendler style of coding recursive functions provides an ar-
guably more natural alternative for programmers to the Squiggol style by making recursive
calls explicit. As commented upon by [UV00], part of Mendler’s motivation for formulating the
lambda encoding underling this style [Men87, Men91] was a type-theoretic dissatisfaction with
the conventional style. Unlike in category theory, in type theory a type scheme F is first defined
only by its mapping of types to types, and only after this might also a function mapping be
defined. However, in the conventional (Squiggol) style, the morphism-mapping component of
the signature functor F is needed in the defining equation of the iterative combinator (i.e., the
right-hand side of the cancellation law explicitly mentions it).

A surprising consequence of Mendler’s approach, that not even Mendler himself was aware
of at the time, is that the Mendler-style encoding applies also to mixed-variant type schemes.
In [UV99], Uustalu and Vene give a thorough category-theoretic treatment of the Mendler style
using initial Mendler-style F -algebras (where F is an endodifunctor, the categorical represen-
tation of a mixed-variant type scheme) and show that datatypes represented in this way are
equivalent to initial (ordinary) F -algebras, with the reduction from initial Mendler algebras to
initial classical ones requiring the presence of “restricted existential types”. For simplicity, we
shall consider Mendler-style F -algebras where F is required to be a functor.

Recall that the typing rule of the combinator for Mendler-style iteration over natural num-
bers (Section 4.1.4) required that the inductive case be given as a polymorphic higher-order
function ∀R. (R→ T )→ R→ T . To arrive at a suitable expression for Mendler-style inductive
types in category theory, we first need to express the notion of a polymorphic function and a
function between sets of functions. These are resp. natural transformations2 and hom-sets. A

1Leastness is given by initiality of in: for every F -algebra (X, a), including ones where a is an isomorphism,
there is a unique F -algebra homomorphism from (µF, in)

2Dinatural transformations express polymorphic functions in their full generality, but these are not needed for
the discussion.
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more detailed explanation of these concepts can be found in any textbook on category theory
(c.f. [Pie91,Awo10]).

Definition 4.9 (Natural transformation). Given two functors F,G : C → D, a natural trans-
formation Φ : F .−→ G between them is a function mapping objects A of C to morphisms
ΦA : F (A) → G(A) in D such that for every f : A → B in C we have ΦB ◦ F (f) = G(f) ◦ ΦA.
This can be depicted diagrammatically as:

F (A) G(A)

F (B) G(B)

ΦA

F (f) G(f)

ΦB

The equational constraint given for every f : A→ B can be understood in type theory as a
(meta-theoretic) parametricity condition: inputs F (A) and F (B) related by F (f) are mapped
by the polymorphic function Φ to outputs G(A) and G(B) related by G(f). In standard poly-
morphic lambda calculi, such a condition holds for any definable polymorphic function and can
thus be considered a “theorem for free” a lá Wadler [Wad89].

Definition 4.10 (Opposite category). If C is a category, then Cop is the category whose objects
are the objects of C and whose morphisms f : D → C are the morphisms f : C → D in C.

Opposite categories can be used to express “contravariant” functors (type-theoretically, neg-
ative type schemes), which we shall need for expressing hom-functors.

Definition 4.11 (Hom-set, hom-functor). Let C be a category. For every two objects A and B
of C, the hom-set C(A,B) is the set of all morphisms f : A→ B in C.

Furthermore, for every object C of C, the (contravariant) hom-functor C(−, C) : Cop → Sets
(where Sets is the category of sets) maps objects B to the hom-set C(B,C) and morphisms f :
A→ B of C (which is a morphism f : B → A in Cop) to morphisms C(f,B) : C(B,C)→ C(A,C)
in Sets defined by (h : B → C) 7→ h ◦ f .

Definition 4.12 (Mendler-style F -algebras). Let F : C → C be an endofunctor. A Mendler-
style F -algebra (or F -malg for short) is a pair (X,Φ) where X is an object of C and Φ :
C(−, X) .−→ C(F−, X) is a natural transformation. (C(F−, X) denotes the hom-functor whose
object mapping takes R to C(F (R), X)).

In requiring F to be a functor, F -malgs are isomorphic to ordinary F -algebras, which tells
us that F -malgs give a suitable alternative semantics for inductive definitions.

Proposition 4.13. The following transformations between F -malgs and F -algebras form an
isomorphism:

1. Given an F -malg (X,Φ), produce F -algebra (X,ΦX(idX))

2. Given an F -algebra (X, a), produce F -malg (X,Ψ), where for all R and f : R → X,
ΨR(f) = a ◦ F (f)

Proof. This is a consequence of the Yoneda lemma [Mac98].
In the forward direction, we wish to show that the given F -malg (X,Φ) is equal to the

produced (X,Ψ), where for all R and b : R→ X, ΨR(b) = ΦX(idX)◦F (b). Assume an arbitrary
R and b : R → X, and we therefore wish to show ΦR(b) = ΦX(idX) ◦ F (b). This is a direct
consequence of assuming Φ is a natural transformation between hom-functors.

In the other direction, we wish to show that the given F -algebra (X, a) is equal to the
produced (X,ΦX(idX)), where for all R and b : R → X, ΦR(b) = a ◦ F (b). Instantiating with
the given argument idX , we wish to show that a = a ◦ F (idX), which is given by the functor
identity law.
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Definition 4.14 (Initial Mendler-style F -algebras). An initial F -malg (µF, in) is one such that,
for every other F -malg (X,Φ) there exists a unique morphism L Φ M : µF → X such that for every
object R and morphisms a : R→ µF and b : R→ X, if b = L Φ M ◦ a then L Φ M ◦ inR(a) = ΦR(b).
This is depicted diagrammatically below by saying that commutation of the left diagram implies
commutation of the right.

R µF

C

a

b L Φ M implies

F (R) µF

C

inR(a)

Φ
R (b)

L Φ M

In concordance with the discussion at the beginning of this section, notice that Definition 4.14
does not contain any reference the morphism-mapping component of the functor F ; this only
appears in the naturality condition associated with each F -malg action. However, to define out :
µF → F (µF ), the inverse of inµF (idµF ), we use the morphism-mapping component directly:
out = F (L in M). The reflects the observation by Mendler in [Men87] that, even without explicit
language features for recursion, case analysis for datatypes with negative recursive occurrences
in the types of constructor arguments is enough to write diverging programs (see also Section 2 of
[AS11]) – the assumption of a morphism-mapping component of F corresponds to a requirement
that the type scheme it represents is positive.

5 Elaborating Inductive Definitions

In this section, we combine the proceeding sections on polymorphic lambda calculi, elaborating
type inference rules, and the algebraic semantics of inductive definitions. For simplicity of
presentation, we make the following design choices for our source and target languages. First,
we shall choose as our target language bidirectional System F (Figure 3), as the lighter annotation
requirements improve the readability of inference rules. Next, we will not consider elaborating
the convenient syntactic declarations for inductive datatypes, as done in [DM12,JMS19]. Instead,
we show the elaboration of polyrec bidirectional System F, which extends bidirectional System
F with a certain recursive type constructor and type constructors corresponding to polynomial
functors.

To avoid concerning ourselves with elaborating also positivity witnesses for the type schemes
used in recursive types, as undertaken in [Mat02, Mat98], we shall diverge from the usual pre-
sentation of recursive types and use a Mendler-style formulation for the unrolling operation. For
technical reasons concerning the meta-theoretic properties of datatype constructors discussed in
Section 5.4 (specifically Proposition 5.8), we will maintain the classical formulation for rolling
recursive types. This means that while nominally polyrec bidirectional System F supports recur-
sive types using arbitrary type schemes, as would a fully Mendler-style formulation (see remarks
by [UV02]), in practice the conditions under which they may be introduced are quite restricted.
Additionally, the choice of Mendler-style unroll means that the programmer is burdened with
manually defining the case-distinction scheme for positive datatypes.

Grammar The grammar for the statics of polyrec bidirectional System F is given in Figure
5a; the grammar of its dynamics, which extends the untyped lambda calculus, is given in Figure
5b. We omit the erasure rules, as these can be inferred directly from the two grammars and the
discussion in Section 2.2.2. Similarly, we do not give a separate listing for the elaboration rules
of the language of dynamics, as these can be inferred from the elaboration of the language of
statics (remove context and types from judgments, and replace terms with their erasures).

To the language of types we add the unitary type >, the empty type ⊥, product types S×T ,
sum (variant) types S + T , and recursive types µR. T (where µ binds R in T ). For terms, we
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types S, T, U, ... ::= ... | > | ⊥ | S × T | S + T | µR. T
terms e, e1, e2, e

′, ... ::= ... | trv | falso(e, S) |
pair(e1, e2) | prj1(e) | prj2(e) |
inj1(e) | inj2(e) | case(e, U)[x.e1 ; y.e2] |
in(e) | fold(e1, U)[R.x.y.e2]

(a) Static language (extends Figure 3a)

terms u, u1, u2, u
′, ... ::= ... | trv | falso(u) |

pair(u1, u2) | prj1(u) | prj2(u)
inj1(u) | inj2(u) | case(u)[x.u1 ; u.t2] |
in(u) | fold(u1)[x.y.u2]

(b) Dynamic language (extends Figure 1)

Figure 5: Grammar of polyrec bidirectional System F

have: the single element trv (“trivial”) of >; the eliminator falso for ⊥; pair introduction pair

and first and second projections prj1 and prj2 for S × T ; first and second injections inj1 and
inj2 and case distinction case for sum types; and the constructor in and eliminator fold for
recursive types µR. T . These new term constructs are better understood in the context of their
type inference and reduction rules, discussed in Sections 5.1 and 5.2.

The entirety of the system we present in this section has been broken down to ease digestion.
It spans the grammar in Figure 5, the rules of Figure 6 for polynomial type constructors, the
rules in Figure 7 for recursive types, and the rules in Figure 8 for elaboration of typing contexts
and the bidirectional System F subsystem. The operational semantics of the dynamic language
is given by the compatible closure of the β- and η-reduction rules in Section 2.1 augmented
with the additional reduction rules for redexes in Figures 6c and 7c. As a whole, polyrec
bidirectional System F minus its bidirectionality is essentially the language EMIT studied by
Matthes in [Mat98] §4.1.

5.1 Polynomial functors

Polynomial functors are named as such because they arise from the translation to category
theory of the notion of a polynomial in ring theory. Specifically, addition, multiplication, and
exponentiation correspond resp. to disjoint union (+), pairs (×), and function types (→), with
> the neutral element for × and ⊥ the neutral element for +. Our choice to include these new
type constructors is not arbitrary: axiomatic type theory a lá Martin-Löf [ML75] uses W-types
as the basis of inductive datatypes, which are precisely the class of initial algebras for polynomial
functors [Abb03] when these are suitably generalized to dependent types. Polynomial functors
as presented here are easily representable in System F with impredicative encodings – as these
types are not recursive, they share the same representation across all impredicative encodings
we have considered so far.

5.1.1 Elaboration rules

Type formation rules Figure 6a gives the inference rules for judgment Γ `I T  T ′ type for
just those cases where the subject T has been formed by a type constructor corresponding to a
polynomial functor. We use label “I” on the turnstile `I to distinguish the system from that of
bidirectional System F. The inference rules for recursive types are listed in Figure 7a, and the
cases involving the type constructors present already in System F in Figure 8.
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Γ ` T  T ′ type

Γ ` S  S′ type Γ ` T  T ′ type

Γ ` S + T  ∀X. (S′ → X)→ (T ′ → X)→ X type
Sum

Γ ` ⊥ ∀X.X type
Bot

Γ ` S  S′ type Γ ` T  T ′ type

Γ ` S × T  ∀X. (S′ → T ′ → X)→ X type
Prod

Γ ` > ∀X.X → X type
Top

(a) Type formation

Γ ` e e′ ∈ T Γ ` T 3 e e′

Γ ` S 3 e e′

Γ ` S + T 3 inj1(e) ΛX.λx. λ y. x e′
Inj1

Γ ` T 3 e e′

Γ ` S + T 3 inj2(e) ΛX.λx. λ y. y e′
Inj2

Γ ` e e′ ∈ S + T Γ ` U  U ′ type Γ, x :S ` U 3 e1  e′1 Γ, y :T ` U 3 e2  e′2
Γ ` case(e, U)[x.e1 ; y.e2] e′ · U ′ (λx. e′1) (λ y. e′2) ∈ U Case

Γ ` S 3 e1  e′1 Γ ` T 3 e′2  e′2
Γ ` S × T 3 pair(e1, e2) ΛX.λx. x e′1 e

′
2
Pair

Γ ` e e′ ∈ S × T Γ ` S  S′ type

Γ ` prj1(e) e′ · S′ (λx. λ y. x) ∈ S
Prj1

Γ ` e e′ ∈ S × T Γ ` T  T ′ type

Γ ` prj2(e) e′ · T ′ (λx. λ y. y) ∈ S
Prj2

Γ ` > 3 trv ΛX.λx. x
Trv

Γ ` e e′ ∈ ⊥ Γ ` U  U ′ type

Γ ` falso(e, U) e′ · U ′ ∈ U Falso

(b) Introduction and elimination

u1 99K u2

case(inj1(u))[x.u1 ; y.u2] 99K u1[u/x], case(inj2(u))[x.u1 ; y.u2] 99K u2[u/y],
prj1(pair(u1, u2)) 99K u1, prj2(pair(u1, u2)) 99K u2

(c) Reduction rules

Figure 6: Polynomial types
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Read the judgment Γ `I T  T ′ type as “under a typing context Γ, the type T elaborates
to T ′”. In inference rules and prose, we shall maintain as a notational invariant that T ′ and
every other primed type meta-variable is formed only from type constructors of System F (see
Lemma 5.3). These new types are elaborated to the types of their impredicative encodings in
System F, e.g., in rule Sum if S elaborates to S′ and T elaborates to T ′, then the type S + T
elaborates to the type of functions polymorphic in X and taking two function arguments – one
of type S′ → X and one of type T ′ → X – and returning a value of type X. This corresponds
to the type of the case-distinction scheme for sum types.

Introduction and elimination rules Figure 6b gives the inference rules comprising the
bidirectional judgments Γ `I e  e′ ∈ T (for type synthesis) and Γ `I T 3 e  e′ (for
type checking). Similar to type elaboration, we intend for primed term meta-variables to denote
terms formed from bidirectional System F constructs only. Following the proof-theoretic recipe of
bidirectional type-checking [WCPW04,DK19], our inference rules have the types for introduction
forms checked and the types for elimination forms synthesized.

For sum types, the constructors inj1 and inj2 (rules Inj1 and Inj2) must be given with an
argument e and checked against a type S + T ; if e can be checked against type S (resp. T ), the
whole expression elaborates to a polymorphic lambda term where the first argument x (resp.
second argument y) is applied to e′, the elaboration of e. Elaborating to the bidirectional term
language spares us from annotating for example the bound variable x with the type S′ → X.
The eliminator case in rule Case is given four arguments: some term e which synthesizes a type
of the form S + T ; a type U to eliminate into; and case branches for handling the two ways e
was constructed (inj1 or inj2), where the syntax x.e1 indicates the binding of free occurrences
of x in e1. The body of each case branch is checked against type U under a context extended
with the assumption x has type S (resp. y has type T ). Finally, we elaborate the term given by
applying e′ (the elaboration of e) to the type U ′ and elaborated case bodies e′1 and e′2, where
lambda abstractions bind the free variables x and y.

A similar reading can be given for the constructor pair(e1, e2) and eliminators prj1 and
prj2 for pairs. We remark upon a minor asymmetry in the presentation of sums and products:
for the former, we did not need to appeal to the judgment Γ `I T  T ′ type in the rule Case
for elimination, whereas we do require this for the rules Prj1 and Prj2. The discrepancy arises
from the fact that the impredicative encoding of S × T corresponds to the positive presentation
of product types, in which there is a single eliminator unpack(e1)[x.y.e2] in which the first and
second components of the pair e1 are resp. bound by x and y in e2. For our extended language,
we choose instead the more familiar negative presentation (c.f. [nLa12] for the equivalence of the
two presentations).

Finally, the unitary type > has a single constructor trv (which elaborates to the polymorphic
identity function) and no eliminator, and the empty type ⊥ has no constructor and single
eliminator falso(e, U) which has type U , where U is an arbitrary type well-formed under the
current typing context Thus, falso embodies the principle of ex falso quodlibet.

Reduction rules When axiomatically introducing new type constructors to a (constructive)
type theory with associated introduction and elimination forms, one must also at least say what
the computation (β) laws are for them – that is, how eliminators compute over constructors.
Figure 6c gives this for the counterparts in the dynamic language of the term constructs we have
been discussing in the static language. As our dynamic language is intended to be a definitional
extension to the untyped lambda calculus, we must take care that these reduction rules agree
with the ordinary notion of β-reduction for the elaborations of these untyped terms (though
perhaps with some constant overhead in the number of steps taken). For case-distinction on
sum types, we take the left or right branch depending on whether the scrutinee was constructed
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with inj1(u) or inj2(u), replacing all occurrences of the bound variable for that branch with
the term u. The computation rules for the first and second projections for terms pair(u1, u2)
are as expected.

Example: Booleans With polynomial type constructors, we can give definitions for many
non-recursive datatypes. To illustrate, consider the definition of Booleans and their if-then-else
elimination principle (ite):

Bool =df 1 + 1

tt =df χ Bool − inj1(trv)
ff =df χ Bool − inj2(trv)

ite =df χ (∀X.X → X → Bool→ X) −
ΛX.λx. λ y. λ z. case(z,X)[x′. x ; y′. y]

|ite| u1 u2 |tt|
∗
99K u1

|ite| u1 u2 |ff|
∗
99K u2

5.2 Recursive types

The origin of recursive types in programming languages can be traced back to the work by Dana
Scott [Sco76] to give a denotational semantics for the untyped lambda calculus. Internalized
within a language, such as System F extended with recursive types, if T is a type in which
R ∈ FV (T ) then the type µR. T is to be interpreted as a self-referential type wherein the free
occurrences of R in T stand in for recursive occurrences of µR. T itself. For example, with
polynomial types the type of natural numbers can be defined as µR. 1 + R – natural numbers
are either zero, corresponding to the left disjunct 1 wherein there is no useful subdata, or
the successor of another natural number, corresponding to the right disjunct R which is to be
interpreted as the type µR. 1 + R itself. As another example, lists of some element type S are
given by the type µR. 1 + (S ×R).

True recursive types µR. T can be characterized by their relation to their one-step unfolding
T [µR. T/R]. In one formulation, there is an isomorphism given by roll : T [µR. T/R]→ µR. T
and its inverse unroll. Alternatively, these two types may be seen as equal by definition,
and no new term constructs are introduced. These two formulations are respectively called
iso-recursive types and equi-recursive types; this terminology was introduced by Crary et al.
in [CHP99], though the formulations themselves existed much earlier (c.f. [Pie02] §20.4).

In this report, we are interested only in definitional extensions of System F. However, recur-
sive types as just discussed enable the definition of a general fixpoint combinator [MJ69], which
is not possible in System F. Therefore (and at the cost of somewhat misleading terminology),
this report takes a rather different approach by using as a semantics the Mendler-style version of
“free” recursive types in System F [Wad90,Men91]. In particular, this means that an unfolding
operation µR. T → T [µR. T/R] is not given, and only definable for types T in which R only
occurs positively. The type schemes for natural numbers and lists fall in this class; the type
µR.R→ R does not (with the offending negative occurrence underlined).

5.2.1 Elaboration rules

Type formation rules Figure 7a gives the inference rule for the judgment Γ `I T  T ′ type
for just that case where the subject is of the form µR. T . This definition is derived from the
type inference rule for miter, the Mendler-style iteration scheme (Section 4.1.4): a function
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Γ `I T  T ′ type

Γ, R `I T  T ′ type

Γ `I µR. T  ∀X. (∀R. (R→ X)→ T ′ → X)→ X type
Rec

(a) Recursive types: type formation

Γ `I e e′ ∈ T Γ `I T 3 e e′

Γ `I T [µR. T/R] 3 e e′ Γ `I µR. T  S type

Γ `I µR. T 3 in(e) ΛX.λ a. a · S (λx. x ·X a) e′
In

Γ `I e1  e′1 ∈ µR. T Γ `I U  U ′ type Γ, R, x :R→ U, y :T `I U 3 e2  e′2
Γ `I fold(e1, U)[R.x.y.e2] e′1 · U ′ (ΛR. λx. λ y. e′2) ∈ U Fold

(b) Recursive types: introduction and elimination

u1 99K u2

fold(in(u1))[x.y.u2] 99K u2[(λ z. fold(z)[x.y.u2])/x, u1/y]

(c) Recursive types: reduction rules

Figure 7: Recursive types

polymorphic in X, which takes another function polymorphic in R mapping functions R → X
to functions T ′ → X (where T ′ is the elaboration of T , both of which having R as a free variable),
and returning a value of type X.

Introduction and elimination rules Figure 7b gives the introduction rule In and elimina-
tion rule Fold for our formulation of recursive types. In In, the typing rule for the constructor
in is the same as that expected for roll for iso-recursive types: in(e) can be checked against
the type µR. T if e can be checked with type T [µR. T/R]. To keep the type inference rule
brief, we use the premise Γ ` µR. T  S type to make the meta-variable S a “local definition”
of the rule (the definition of S is determined by the rule Rec and by inversion of the type
formation judgment, as well as by the fact that the system of inference rules is algorithmic).
The expression in(e) then elaborates to a function polymorphic in X taking an argument a of
type ∀R. (R → X) → T ′ → X (where T ′ is the elaboration of T ) and: instantiates the type
argument of a to S; provides a function of type (S → X) by applying the given S argument to
a itself (λx. x ·X a); and provides as the final argument e′, the elaboration of e.

The elimination rule Fold is the point of divergence from classical formulations of recursive
types. Rather than an unrolling operator, it facilitates the definition of iterative functions in
the Mendler style. The expression fold(e1, U)[R.x.y.e2] synthesizes type U when the term
argument e1 synthesizes type µR. T , the given type U is well-formed under Γ, and the body e2

of the function being recursively defined can be checked against type U assuming that x has
type R → U (for a fresh type variable R) and y has type T (wherein R may occur free). If
e1 elaborates to e′1 and e2 elaborates to e′2 (under a suitably extended typing context), then
fold(e1, U)(R.x.y.e2) elaborates to an application where: the head is e′1; the type argument
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given is U ′ (the elaboration of U); and the term argument is a function with body e′2 where the
free variables R, x, and y of e′2 are bound by lambda abstractions.

Reduction rules We now address how the eliminator fold computes over values constructed
with in in the dynamic language. The expression fold(in(u1))[x.y.u2] reduces to u2 with free
variables x (the handle for making recursive calls) and y (our unfolded data) substituted resp.
for λ z. fold(z)[x.y.u2] and u1. This corresponds to the commuting diagram of Definition 4.14
(instantiating the object R with µF and morphism a : R→ µF with idµF ).

Example: natural numbers With both polynomial and recursive types, we can give defini-
tions for many inductive datatypes. We illustrate with the example of natural numbers.

Nat =df µR. 1 +R

zero =df χ Nat − in(inj1(trv))
succ =df χ (Nat→ Nat) − λx. in(inj2(x))

iter =df χ (∀X.X → (X → X)→ Nat→ X) −
ΛX.λx1. λ x2. λ y. fold(y,X)[R.z.y′.case(y′, X)[y1.x1 ; y2.x2 (z y2)]]

|iter| u1 u2 |zero|
∗
99K u1

|iter| u1 u2 (|succ| u)
∗
99K u2 (fold(u)[z.y′.case(y′)[y1.u1 ; y2.u2 (z y2)]])

∗
L99 u2 (|iter| u1 u2 u)

Notice that for the reduction rule involving succ, we do not have the more desirable behavior

|iter| u1 u2 (|succ| u)
∗
99K u2 (|iter| u1 u2 u) expected for the iteration scheme for natural

numbers (Section 4.1.1). Instead, this holds only up to joinability of the reduction relation:
there exists some term u3 (given above) to which both expressions can reduce.

5.3 Contexts and the bidirectional System F subsystem

To complete our discussion of the elaboration rules for polyrec bidirectional System F, we must
also give a (mostly tedious and unsurprising) account of how the bidirectional System F subsys-
tem elaborates. This is done for types and terms in Figure 8. In addition, in order even to state
certain properties of the inference system, such as claiming that the elaborations of well-typed
terms are themselves well-typed in bidirectional System F, we require a notion of elaboration
for typing contexts – after all, typing contexts for the external language are not necessarily valid
typing contexts of the internal language, as they may contain declarations of term variables with
polynomial and recursive types. This is also given in Figure 8.

Typing contexts In Figure 8a, read the judgment `I Γ  Γ′ as “the typing context Γ
elaborates to Γ′”. The three inference rules are straight-forward: the empty context elaborates
to itself, type variables elaborate to themselves, and term variable declarations x :T elaborate
to x :T ′ if T elaborates to T ′.

Types In addition to elaborating polynomial and recursive types, the judgment Γ `I T  
T ′ type ensures the type T is well-formed, i.e., that its free variables are declared in the typing
context Γ (replacing the explicit checks we used in Figure 3b). Type variables elaborate to
themselves, and arrows and type quantification are first decomposed, the corresponding sub-
expressions elaborated, and re-composed with the original type constructor.
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`I Γ Γ′

`I ∅ ∅
`I Γ Γ′

`I Γ, X  Γ′, X

`I Γ Γ′ Γ `I T  T ′ type

`I Γ, x :T  Γ′, x :T ′

(a) Typing contexts

Γ `I T  T ′ type

X ∈ DV (Γ)

Γ `I X  X type

Γ `I S  S′ type Γ `I T  T ′ type

Γ `I S → T  S′ → T ′ type

Γ, X `I T  T ′ type

Γ `I ∀X.T  ∀X.T ′ type

(b) Types

Γ `I e e′ ∈ T

Γ `I T  T ′ type Γ, x :T `I e e′ ∈ S
Γ `I λ x:T. e λ x:T ′. e′ ∈ T → S

Γ `I e1  e′1 ∈ S → T Γ `I S 3 e2  e′2
Γ `I e1 e2  e′1 e

′
2 ∈ T

Γ, X `I e e′ ∈ T
Γ `I ΛX. e ΛX. e′ ∈ ∀X.T

Γ `I e e′ ∈ ∀X.S Γ `I T  T ′ type

Γ `I e · T  e · T ′ ∈ [T/X]S

Γ `I x x ∈ Γ(x)

Γ `I T  T ′ type Γ `I T 3 e e′

Γ `I χ T - e χ T ′ - e′ ∈ T

(c) Synthesizing terms

Γ `I T 3 e e′

T1 = T2 Γ `I T2  T ′2 type Γ, x :T2 `I S 3 e e′

Γ `I T1 → S 3 λ x:T2. e λ x:T ′2. e
′

Γ, x :T `I S 3 e e′

Γ `I T → S 3 λx. e λx. e′

Γ, X `I T 3 e e′

Γ `I ∀X.T 3 ΛX. e ΛX. e′
¬Abs(e) Γ `I e e′ ∈ T2 T1 = T2

Γ `I T1 3 e e′

(d) Checkable terms

`I u u′

(e) Untyped terms (rules omitted)

Figure 8: Additional elaboration rules
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Synthesizing and checkable terms The elaborating type inference rules for synthesizing
terms in Figure 8c are mostly the same as those discussed in Section 3 (Figure 3b) for elaborating
bidirectional System F to annotated System F, modulo the change in the target language.
Notable exceptions are the rule for polymorphic type instantiation e ·T , in which the elaborated
term e′ · T ′ is an instantiation using the elaborated type T ′, and the rule for explicit type
annotations wherein the annotation remains in the elaborated term and the type is replaced
with its elaboration. The situation is similar for checkable terms in Figure 8d. Since bare
abstractions are also term constructors of our internal language, the rule for them in polyrec
bidirectional System F elaborates a bare abstraction.

Untyped terms The last judgment we need, `I u  u′, is for elaborating the dynamic
terms of polyrec bidirectional System F. As discussed earlier, we omit the rules comprising this
judgment as they consist of a repetition of the rules for elaborating typed terms where typing
contexts and well-formedness checks for types have been removed and the subjects and their
elaborations have been replaced by their erasures. This also means removing from the judgment
those rules in which the erasure of the subject does not change between the conclusion and the
premise, such as the rules for explicit type annotations and polymorphic instantiation. To give
an example of a rule that remains, the rule for elaborating untyped in would thus be:

`I u u′

`I in(u) λ a. a (λx. x a) u′

5.4 Properties

Recall from Section 3.2 that in order for the system of inference rules given above to sensibly
be considered elaborating type inference rules – which is to say that they provide a translational
semantics for the source language in the target language – it must satisfy certain properties:

• the inference rules must describe an algorithm for the translation;

• the inference rules must be sufficient for typing terms of the internal language;

• the translation of the external language must be sound with respect to the statics and
dynamics of the internal language.

Unlike the case for bidirectional type inference, we have extended the type and dynamic term
language, so the statement of our theorems must be adjusted accordingly.

Proposition 5.1 (Algorithmic type inference).

1. Every rule is mode-correct for a moding Γ− `I e−  e′+ ∈ T+ and Γ− `I T− 3 e−  e′+

(where − and + indicate resp. input and output modes).

2. For all Γ, e, t, and T

• there is at most one inference rule whose conclusion matches the syntactic form of
the judgment Γ `I e e′ ∈ T

• there is at most one inference rule whose conclusion matches the syntactic form of
the judgment Γ `I T 3 e e′

Proof sketch. By inspection of the type inference rules.

Proposition 5.2 (Sufficiency). For all Γ, e, and T in the language bidirectional System F, and
for all t in the language of fully-annotated System F:
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1. if Γ ` e t ∈ T then Γ `I e e ∈ T

2. if Γ ` T 3 e t then Γ `I T 3 e e

Proof sketch. By mutual induction on the assumed typing derivation, replacing each rule used
in the derivation with the corresponding rule of the bidirectional System F subsystem.

Lemmas 5.3 and 5.4 are useful for showing static and dynamic soundness. They state resp.
that elaborated types and terms really are in the grammar of bidirectional System F, and that
terms in the external language whose type can be synthesized and which are not abstractions
elaborate to terms which are not abstractions (this is needed when showing type soundness for
the rule corresponding to Sub in polyrec bidirectional System F).

Lemma 5.3 (Grammar soundness).

1. For all Γ, T , and T ′, if Γ `I T  T ′ type then T ′ is formed entirely by the type constructors
of Figure 2a.

2. For all Γ, e, e′, and T , if Γ `I e e′ ∈ T (or if Γ `I T 3 e e′) then e′ is formed entirely
by the term constructors of Figure 3a.

3. For all u and u′, if `I u u′ then u′ is a term of untyped lambda calculus.

Proof sketch. By mutual induction on the assumed typing derivation, using the fact that each
rule of the static language introduces only type and term constructors of bidirectional System F,
and each rule of the dynamic language introduces only constructs of untyped lambda calculus.

Lemma 5.4. For all Γ, T , e, and e′, if Γ `I e e′ ∈ T and ¬Abs(e) then ¬Abs(e′).

Prook sketch. By case analysis on the assumed derivation.

We now elaborate on the difference between the statement of elaboration soundness in Con-
jecture 5.5 and that of Conjecture 3.3. Concerning the statics, if we have a derivation of
Γ `I e  e′ ∈ T , we cannot expect that e′ synthesizes T , but rather that it synthesizes the
type T ′ to which T elaborates under Γ. Furthermore, we cannot expect to be able to synthe-
size T ′ from e′ under Γ, but only under the context Γ′ to which Γ elaborates. Concerning the
dynamics, every reduction step u1 99K u2 in the source language must correspond to number of
steps (at least one, and preferably bounded by some constant) for the elaborated terms in the
target language.

Conjecture 5.5 (Static and dynamic soundness).

1. For all Γ, T , and T ′, if Γ `I T  T ′ type and `I Γ  Γ′ then T ′ is a well-formed type
under Γ′, i.e., FV (T ′) ⊆ DV (Γ′)

2. For all Γ, e, e′, and T ,

• if Γ `I e e′ ∈ T (resp. Γ `I T 3 e e′)

• and `I Γ Γ′

• and Γ `I T  T ′ type

then Γ′ ` e′  t ∈ T ′ (resp. Γ′ ` T ′ 3 e′  t) for some t.

3. For all u1 and u2 of the dynamic external language, and for all u′1 and u′2 of the dynamic
internal language:
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• if u1 99K u2

• and `I u1  u′1

• and `I u2  u′2

then u′1 99K ◦
∗
99K u′2.

An easy consequence of dynamic soundness is that equivalence of terms by the operational
semantics in the dynamic external language implies equivalence of their elaborations in the
internal language.

Corollary 5.5.1. For all u1 and u2 of the dynamic external language and for all u′1 and u′2 of
the dynamic internal language such that `I u1  u′1 and `I u2  u′2, if u1

∼= u2 then u′1
∼= u′2.

Proof sketch. By induction on derivation of u1
∼= u2, appealing to Proposition 5.5(3) for each

revealed reduction step.

Importing meta-theoretic properties The main benefit to considering only definitional
extensions of some internal language is that, after having established that our elaboration rules
provide a sound translational semantics of the external language, we can re-use meta-theoretic
results of the internal language. In particular, static soundness of the translation to bidirectional
System F gives us logical soundness of our extended type system (not all types are inhabited),
and static and dynamic soundness gives us termination for well-typed programs.

Corollary 5.5.2 (Logical soundness).
There are no closed terms e and e′ such that ∅ `I e e′ ∈ ∀X.X

Proof (of negation). Assume that there is some e and e′ such that ∅ `I e  e′ ∈ ∀X.X. It
is clear by inspection of the rules of Figures 8b and 8b that we can construct derivations of
`I ∅  ∅ and ∅ `I ∀X.X  ∀X.X type. Thus, by static soundness ∅ ` e′  t ∈ ∀X.X
for some t. But, this contradicts logic soundness for bidirectional System F (which is itself a
consequence of logical soundness of annotated System F and static soundness of the translation
into it from bidirectional System F).

Corollary 5.5.3 (Termination).
For all Γ, e, e′, T , if Γ `I e e′ ∈ T (resp. Γ `I T 3 e e′), then |e| is terminating.

Proof (of negation). Assume there exists a Γ, e, e′, and T such that Γ `I e  e′ ∈ T . Further-
more, assume there is an infinite sequence of reductions |e| 99K u1 99K u2 99K ... . By coinduction
on this infinite sequence we can produce an infinite reduction sequence for |e′|, contradicting
termination for bidirectional System F (since e′ is a well-typed term of bidirectional System F
by static soundness), as follows.

First, we make use of the implicit fact that every term of dynamic polyrec System F elabo-
rates to a term of untyped lambda calculus. So, for each term (ui)i∈N of the infinite reduction
sequence starting from u0 = |e|, `I ui  u′i for some u′i. Next, observe that by dynamic sound-

ness u′i 99K ◦
∗
99K u′i+1. We thus have an infinite reduction sequence starting from u′0 = |e′|.

Some meta-theoretic properties of interest for the source language are not so easily imported
from the internal language. Consider confluence3, the property that any two terms produced
from reducing a term u are joinable. Because our operational semantics is untyped, we could
easily add reduction rules to the source language that take introduction forms (e.g., inj1(u)) to
their lambda representations (e.g., λx. λ y. x u). This would preserve dynamic soundness, and

3Matthes, [Mat98] §8.2: “Unfortunately there is no result on preservation of confluence via embeddings.”
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destroy confluence of the system. Fortunately, polyrec bidirectional System F is essentially the
system EMIT studied by Matthes in §4.1.1 of [Mat98], for which confluence was claimed in
§8.2. We take that as license to assert the following:

Conjecture 5.6 (Confluence). For all u, u1, and u2 in the external dynamic language, if

u
∗
99K u1 and u

∗
99K u2 then there exists some u3 such that u1

∗
99K u3 and u2

∗
99K u3.

Meta-theoretic properties of new features The final sort of property we will consider are
those concerning the nature of inductive types themselves. By verifying expected characteristics
of features we have added (where our expectations are informed by the feature’s mathematical
semantics), we can be assured that we have not soundly translated rubbish.

Inductive types are expected to enjoy the following properties [MGM04]:

1. the ability to write (terminating) programs over data using case-analysis and structural
recursion [Gim94];

2. disjointness and injectivity of constructors [CT95]; and

3. acyclicity (for example, there are no terms u such that u ∼= in(u))

For 1. we content ourselves with Mendler-style iteration (as discussed above, the case-distinction
scheme is not in general available for recursive types formed from arbitrary type schemes). The
properties listed in 2. and 3., in the context of the works cited, are considered for interactive
proof assistants based on dependent type theory, and the goal of those works is to establish such
properties within the theory automatically (and even better, generically). Our concern here is
to formulate these properties meta-theoretically with respect to our translational semantics.

Definition 5.7 (Constructors). Meta-linguistically, a constructor c of our dynamic external
language is an element of the set of pairs {(trv, 0), (pair, 2), (inj1, 1), (inj2, 1), (in, 1)}, where
the first component is a string identifier for the constructor and the second is the arity of the
constructor, written arity(c). If

→
u is a sequence of terms whose length #

→
u is equal to arity(c),

then we write c(
→
u) to denote the term whose outermost formation is the identifier of c with

arguments
→
u . For example, if c = (trv, 0), then c() denotes (the term) trv; if c = (pair, 2),

then c(u1, u2) denotes the term pair(u1, u2).

Proposition 5.8 (Injectivity of constructors). For all Γ, e1, e2, e′1, e′2, T1, T2,
→
u1,

→
u2, and c

• if Γ `I e1  e′1 ∈ T1 and Γ `I e2  e′2 ∈ T2

• and #
→
u1 = #

→
u2 = arity(c)

• and |e1| = c(
→
u1) and |e2| = c(

→
u2)

• and c(
→
u1) ∼= c(

→
u2)

then
→
u1
∼= →
u2 (the corresponding terms of the two sequences are βη-equivalent).

Proof. By an appeal to termination (Corollary 5.5.3) and confluence (Conjecture 5.6), from

c(
→
u1) ∼= c(

→
u2) we have that both reduce to the same value v. By inspection of the reduction

rules, v has the form c(
→
v ) and the reduction sequence producing v consists entirely of reducing

→
u1 and

→
u2 to

→
v . Thus,

→
u1
∼= →
u2.

Proposition 5.9 (Disjointness of constructors). Assume c1 and c2 such that c1 6= c2. For all

sequences of terms
→
u1 and

→
u2 such that arity(c1) = #

→
u1 and arity(c2) = #

→
u2, and for all u′1

and u′2 such that `I c1(
→
u1) u′1 and `I c2(

→
u2) u′2, u′1 � u′2.
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Proof (of negation) sketch. By inspection of the elaboration rules for introduction forms, making
use of the fact that they each produce lambda abstractions whose body is an application whose
head is a bound variable. We consider a particularly tricky case:

Case c1 := pair, c2 = in: Assume arbitrary u1, u2, and u3 in the external dynamic
language. From rules Pair and In, it is clear that `I pair(u1, u2)  λx. x u′1 u′2 and `I

in(u3)  λ a. a (λx. x a) u′3 for some u′1, u′2, and u′3 such that (`I ui  u′i)i∈{1,2,3}. Without
loss of generality, the bound variable a is assumed to be fresh with respect to FV (u′1). Since
the term λx. x a is normal, u′1 � λx. x a and thus that the two elaborations of the introduction
forms are βη-inequivalent.

To show acyclicity in full generality would require us to develop a notion that a term u1

is constructor-guarded in a term u2. Informally, this means that u2 is formed by a nesting of
constructors in which u1 occurs as an argument, for example u2 = pair(u3, inj1(u1)). For
simplicity, we consider only the special case in which u1 is shallowly constructor-guarded in u2.

Definition 5.10 (Shallow constructor-guarding). Let u1 and u2 be dynamic external terms. We
say that u1 is shallowly constructor-guarded in u2 if there is some constructor c and sequence of
terms

→
u such that u2 = c(

→
u) and u1 ∈

→
u .

Proposition 5.11 (Shallow acyclicity). For all Γ, e1, e2, e′1, e′2, T1, and T2:

• if Γ `I e1  e′1 ∈ T1

• and Γ `I e2  e′2 ∈ T2

• and |e1| is shallowly constructor-guarded in |e2|

then |e′1| � |e′2|.

Proof (of negation) sketch. Assuming |e′1| ∼= |e′2|, by confluence (of untyped lambda calculus)
and termination (of bidirectional System F, using static soundness and the assumption that e1

and e2 are well-typed terms of polyrec bidirectional System F), these both reduce to the same
value v. By inspection of the elaboration rules for introduction forms, |e′2| is formed by some
number of lambda abstractions whose body is a variable-headed application with |e′1| as an
argument, meaning v must contain itself as a sub-expression, which is impossible.

6 Conclusion and Future Work

In this report, we have studied the rôle of elaborating type inference rules for giving a transla-
tional semantics for two language features, bidirectional type inference and inductive definitions.
Having fixed some core internal language, such as annotated or bidirectional System F, we
can use elaboration to guide the design of a more sophisticated (and more convenient) exter-
nal language with features given as definitional extensions. This setup allows us to import
meta-theoretic results of the internal language by establishing static and dynamic soundness
of the translation. Inductive definitions are rather complex machinery in any language, and
so in preparation for giving a translational semantics for these we studied several mathemati-
cal (algebraic) semantics first. We chose a Mendler-style semantics for simplicity in designing
the resulting external language, as it relieves us (the designers) from the burden of elaborating
positivity witnesses for type schemes – at the cost of burdening others (language users) with
manually defining the case-distinction scheme for inductive types when this is required.

33



CDLE With a feature as massive as inductive definitions, we might wish to consider also
several enticing features in its orbit. For the discussion of future work, we turn away from
System F and definitional extensions of it and instead consider these features informally in
the context of the calculus of dependent lambda eliminations (CDLE) [Stu17,Stu18b]. CDLE
is an impredicative Curry-style pure type system that extends the calculus of constructions
(CC) [CH88]. As CC contains System F as a subsystem, inductive datatypes as we have
considered them here can also be defined using impredicative encodings in CC (and therefore
also in CDLE). Unlike CC, in CDLE it is possible to generically derive the induction principle
for these encodings [Stu18a,FS18]. By generically, we mean that the derivation is carried for an
arbitrary (positive) datatype signature. The impossibility of deriving induction for impredicative
encodings in second-order dependent type theory was shown by Geuvers [Geu01], and the higher-
order nature of CC does not appear change the situation.

Derivable induction for datatypes within the core theory means, for example, that rather
than giving meta-theoretic proofs of constructor disjointness and injectivity and for datatype
acyclicity (as we did in Section 5.4), we could consider equipping inductive datatypes in the
surface language with these reasoning principles automatically, justifying them with a proof of
the translated property in the internal language. This was the undertaking of Dagand and
McBride in [DM12], with their target language being a modest extension of Luo’s extended cal-
culus of constructions (ECC) [Luo94]. Their goal was to remove technically complex properties
of datatypes such as these, and positivity checking for datatype declarations, from the trusted
computing base of interactive theorem provers, in keeping with the design principles for proof
assistants [Geu09] of having a small kernel and satisfying the de Bruijn criterion (the ability to
produce proof objects which are independently checkable).

These very same goals motivate ongoing work on, and within, CDLE. Cedille, an imple-
mentation of CDLE, currently supports declarations for datatypes and definitions of functions
over data with pattern-matching and recursion. These surface-language features are justified
by a translational semantics to Cedille Core, a minimal (∼1K Haskell LoC) implementation
of CDLE. The details of this translation, including elaboration of positivity witnesses, as well
as proofs of the corresponding static and dynamic soundness, are described by Jenkins et al.
in [JMS19].

6.1 An efficient recursion and case-distinction scheme

In this report, we have elected to avoid discussing the elaboration of positivity witnesses for type
schemes, and thus the system we presented lacks the crucial feature of a built-in operator for the
case-distinction scheme. As previously remarked upon, Matthes [Mat98,Mat02] studied several
type theories supporting an efficient recursion scheme for datatypes (with the case-distinction
scheme a special instance of this), using positivity witnesses of “functorial strength” to given an
embedding (translation) of these theories into System F. This embedding does not preserve what
we have called here “dynamic soundness”, and the desired efficiency of the recursion scheme is
lost in translation to System F.

Recent work by Firsov et al. [FBS18], and Jenkins and Stump in [JS20], established two
distinct methods of generically deriving lambda encodings of datatypes enjoying an efficient
recursion scheme. In common to both approaches is that positivity of a type scheme is expressed
by a much weaker property than that considered by Matthes: rather than there being a lifting,
for all types S and T , of arbitrary functions f : S → T to a function of type F ·S → F ·T , there
need only be a lifting defined for an “identity” (or “retyping”) function from S to T – meaning,
functions f : S → T that are (propositionally) equal to λx. x. Cedille’s type theory is rich
enough to express the existence of an identity function between types S and T , which we will
notate S 6 T , and many non-trivial instances of it can be given by a direct computation axiom
(similar to that described by Allen et al. in [ABC+06], §2.2). This strong computation axiom
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allows one, among other things, to assign the type S → T to λx. x if there exists some f : S → T
which is extensionally equal to the identity function (that is, for every x : S, f x is equal modulo
erasure to x). In Firsov et al. [FBS18], this is utilized to exchange a function that iteratively
re-builds data with a retyping function in order to produce a predecessor in constant-time. In
essence, this guarantees an efficient recursion scheme by proof of the reflection law (Section
4.14) for the initial algebra the datatype represents. Ongoing work by the present author and
others [JMS19] seeks to elaborate inductive datatypes with efficient recursion schemes down to
their generic derivations in CDLE, using the same techniques discussed in this report.

6.2 Subtyping and zero-cost program reuse

Let us reconsider the type S 6 T of identity functions in CDLE. It is tempting to interpret
this type as an internalized subtyping judgment, as it states that every term of type S is defi-
nitionally equal to a term of type T . This observation goes back (at least) to Mitchell [Mit88]
(from which we borrow the terminology retyping function) in his study of type containment in
polymorphic lambda calculi, and appears also in work by Chen [Che98] on subtyping in CC.
In [Miq01], Miquel made a similar observation in his presentation of the implicit calculus of
constructions (ICC), which extends CC and whose primary novel type constructor, implicit
products, appears also in CDLE. The observation is this: a suitable subtyping judgment might
be given as definitional extension of the theory by

Γ ` S 6 T =df Γ, x :S ` x : T

from which it is easy to derive Γ ` λx. x : Π x:S. T (or Γ ` λx. x : S → T if x is not free in T ).
We consider the possibilities that this derived notion of subtyping has for program reuse in

dependently typed programming languages. In such languages, every “ordinary” datatype of
functional programming has any number of possible dependently-typed variations, depending
upon what particular property the programmer wishes for the type system to track. The stan-
dard example is length-indexed lists, referred to as “vectors”, and the desire to write a total
function head taking a non-empty list and returning its first element. While the ability to define
such a datatype is certainly useful, it poses a problem: how should one reuse other functions
over lists for length-indexed lists? Often, there is no better option than defining functions to
convert between ordinary and length-indexed lists by iteratively tearing down one structure to
build the other, incurring linear-time overhead in each passing between the two representations.

We illustrate with the datatype declarations of List and Vec in Cedille, given in Figure 9

data List (A: ?) : ?
= nil : List

| cons : A → List → List .

data Vec (A: ?) : Nat → ?
= vnil : Vec zero

| vcons : ∀ n: Nat. A → Vec n → Vec (succ n) .

Figure 9: Lists and length-indexed lists (Vec)

The syntax for datatype declarations in Cedille is similar to that for GADTs in Haskell [XCC03].
In the definition of Vec, the natural number serves to track the length of the list, with vnil

having length zero and a vector assembled with vcons having length succ n if the tail of that
list has length n. To convert from Vec to List, one could define a recursive function which
replaces all occurrences of vnil with nil and vcons with cons.

In [DFS18], Diehl et al. established the desirable alternative of zero-cost reuse between
ordinary datatypes and their dependently-decorated variants. They observed that, in CDLE,
it is possible for the underlying lambda encodings for the constructors of these datatypes to be
definitionally equal (after erasure), meaning that a function replacing e.g. vnil with nil and
vcons with cons is really doing no work at all – it is extensionally equal to the identity function!
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Using the notation introduced earlier, this means it is possible to prove that Vec ·T n 6 List ·T
and also that (xs : List·T ) 6 Vec·T (length xs), with the latter to be interpreted as a dependent
subtyping judgment where the supertype depends on the given element of the subtype.

The current status of this work still requires programmers to insert explicit type coercions
to take advantage of zero-cost reuse. Pointing towards a possible solution for this, ibid. also
define several generic reuse combinators which refine certain reuse problems to smaller sub-goals,
evidence that this technique can be automated with a type-class system similar to Haskell’s so
that programmers need not insert type coercions explicitly in programs. Another alternative is
ornaments for datatypes [McB11], a technique in which a type like Vec is declared explicitly in
terms of List by describing how the former refines the latter. Either solution would be in need
of justification with respect to the core theory CDLE in the form of a translational semantics.

6.3 Dependent pattern matching

Pattern matching in functional programming, originating in the work of Burstall [Bur69] and
McBride [McB70], provides a convenient notation for the recursion scheme over data, allowing
for conditional branching based on the shape of data and binding of immediate subdata. In
languages with dependent types, datatype constructors carry more information, as they may
constrain the shape of the indices of the datatype. For example, when performing case-analysis
on a term of type Vec · T n, in the case that this term is vnil we have learned that n is equal
to zero. In [Coq92], Coquand extended the familiar notation of pattern matching to dependent
types, presenting a constructor-based unification algorithm enabling constraints on types and
terms revealed by pattern-matching to refine the current typing context. In particular, if the
constraints introduced by a particular constructor are impossible to satisfy, this means that the
data could not have been so constructed. Dependent pattern matching permits the user to avoid
handling such absurd cases entirely. We illustrate with a Cedille-style pseudocode example of a
function vhead which returns the first element of a non-empty list.

vhead : ∀ A: ?. ∀ n: Nat. Vec ·A (succ n) → A ;

vhead ·A -.(succ m) (vcons -m x xs) = x .

In the code listing, hyphens prefixing an argument in a function indicate erased application
(associated with functions whose types are formed by implicit products with ∀, the same notation
for type quantification); for the purposes of this discussion, hyphens can safely be ignored. The
function proceeds by pattern-matching on its vector argument. The case where the vector
argument is vnil need not be given – it introduces an equational constraint zero = succ n,
which (by constructor disjointness) is impossible. In the case that the vector argument is of the
form vcons -m x xs, we have a solution n = succ m, indicated by the forced “dot-pattern”
.(succ m).

The theoretical foundations of dependent pattern-matching, given by elaboration to datatype
eliminators [GMM06,CA18,Coc17], has been studied extensively in Church-style theories. How-
ever, to our best knowledge it has not been studied in the context of Curry-style theories like
CDLE. One significant difference between the two styles that impacts dependent pattern match-
ing concerns injectivity of constructors for type arguments. To illustrate, assume that t1 has type
S[T1/X] and t2 has type S[T2/X], and consider the equation c(T1, t1) = c(T2, t2), where the
constructor c takes a type argument X and a term argument of type S (with X free in S). In a
Church-style theory, we can infer from this equation that T1 = T2 and t1 = t2. In a Curry-style
theory, only t1 = t2 is a valid conclusion, because the equality holds up to erasure of type
annotations. For such an example, when using forced “dot-patterns” in clauses of constructor
patterns to rewrite occurrences of t1 to t2, care must be taken to preserve the information that
t2 is equal to a term that has type S[T2/X]. What we find promising in this line of investigation
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is that, in fact, CDLE already has a mechanism to do this in the form of intersection types:
refinement by dependent pattern matching in such a situation could reveal to the user that t2
has type S[T1/X] ∧ S[T2/X].
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