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ABSTRACT

We present spine-local type inference, a partial type inference sys-

tem for inferring omi�ed type annotations for System F terms based

on local type inference. Local type inference relies on bidirectional

inference rules to propagate type information into and out of ad-

jacent nodes of the AST and restricts type-argument inference to

occur only within a single node. Spine-local inference relaxes the

restriction on type-argument inference by allowing it to occur only

within an application spine and improves upon it by using contex-

tual type-argument inference. As our goal is to explore the design

space of local type inference, we show that, relative to other vari-

ants, spine-local type inference enables desirable features such as

first-class curried applications, partial type applications, and the

ability to infer types for some terms not otherwise possible. Our ap-

proach enjoys usual properties of a bidirectional system of having

a specification for our inference algorithm and predictable require-

ments for typing annotations, and in particularmaintains some the

advantages of local type inference such as a relatively simple imple-

mentation and a tendency to produce good-quality error messages

when type inference fails.

CCS CONCEPTS

•So�ware and its engineering→ Language features;
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1 INTRODUCTION

Local type inference[18] is a simple yet effective partial technique

for inferring types for programs. In contrast to complete methods

of type inference such as the Damas-Milner system[3] which can

type programswithout any type annotations by restricting the lan-

guage of types, partialmethods require the programmer to provide

some type annotations and, in exchange, are suitable for use in pro-

gramming languages with rich type features such as impredicativ-

ity and subtyping[15, 18], dependent types[25], and higher-rank

types[16], where complete type inference may be undecidable.

Local type inference is also contrasted with global inference

methods (usually based onunification) which are able to infermore

missing annotations by solving typing constraints generated from

the entire program. �ough more powerful, global inference meth-

ods can also be more difficult for programmers to use when type

inference fails, as they can generate type errors whose root cause

is distant from the location the error is reported[11]. Local type in-

ference address this issue by only propagating typing information

between adjacent nodes of the abstract syntax tree (AST), allowing
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programmers to reason locally about type errors. It achieves this

by using twomain techniques: bidirectional type inference rules and

local type-argument inference.

�e first of these techniques, bidirectional type inference, is not

unique to local type inference ([5, 16, 23, 26] are just a few exam-

ples), and uses two main judgment forms, o�en called synthesis

and checking mode. When a term t synthesizes type T , we view

this typing information as coming up and out of t and as avail-

able for use in typing nearby terms; when t checks against type T

(called in this paper the contextual type), this information is being

pushed down and in to t and is provided by nearby terms.

�e second of these techniques, local type-argument inference,

finds the missing types arguments in polymorphic function appli-

cations by using only the type information available at an applica-

tion node of the AST. For a simple example, consider the expres-

sion id z where id has type ∀X .X → X and z has type N. Here

we can perform synthetic type-argument inference by synthesiz-

ing the type of z and comparing this to the type of pair to infer

that the missing type argument instantiating X is N.

Using these two techniques, local type inference has a number

of desirable properties. �ough some annotations are still required,

in practice a good number of type annotations can be omi�ed, and

o�en those that need to remain are predictable and coincide with

programmers’ expectations that they serve as useful and machine-

checked documentation[8, 18]. Without further instrumentation,

local type inference already tends to report type errors close to

where further annotations are required; more recently, it has been

used in [19] as the basis for developing autonomous type-driven de-

bugging and error explanations. �e type inference algorithms of

[15, 18] admit a specification for their behavior, helping program-

mers understand why certain types were inferred without requir-

ing they know every detail of the type-checker’s implementation.

Add to this its relative simplicity and robustness when extended

to richer type systems and it seems unsurprising that it has been a

popular choice for type inference in programming languages.

Unfortunately, local type inference can fail even when it seems

like there should be enough typing information available locally.

Consider trying to check that the expression pair (λ x . x) z has

type 〈(N→ N) ×N〉, assuming pair has type ∀X . ∀Y .X → Y →

〈X ×Y 〉). �e inference systems presented in [15, 18] will fail here

because the argument λ x . x does not synthesize a type. �e tech-

niques proposed in the literature of local type inference for deal-

ing with cases similar to this include classifying and avoiding such

“hard-to-synthesize” terms[8] and utilizing the partial type infor-

mation provided by polymorphic functions[15]; the former was

dismissed as unsatisfactory by the same authors that introduced it

and the la�er is of no help in this situation, since the type of pair

tells us nothing about the expected type of λ x . x . What we need in

http://arxiv.org/abs/1805.10383v1
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this case is contextual type-argument inference, utilizing the infor-

mation available from the expected type of the whole application

to know argument λ x . x is expected to have type N→ N.

Additionally, languages using local type inference usually use

fully-uncurried applications in order to maximize the notion of

“locality” for type-argument inference, improving its effectiveness.

�e programmer can still use curried applications if desired, but

“they are second-class in this respect.”[18]. It is also usual for type

arguments to be given in an “all or nothing” fashion in such lan-

guages, meaning that even if only one cannot be inferred, all must

be provided. We believe that currying and partial type applications

are useful idioms for functional programming andwish to preserve

them as first-class language features.

1.1 Contributions

In this paper, we explore the design space of local type inference in

the se�ing of System F[6, 7] by developing spine-local type infer-

ence, an approach that both expands the locality of type-argument

inference to an application spine and augments its effectiveness by

using the contextual type of the spine. In doing so, we

• show that we can restore first-class currying, partial type

applications, and infer the types for some “hard-to-synthesize”

terms not possible in other variants of local type inference;

• provide a specification for contextual type-argument in-

ference with respect to which we show our algorithm is

sound and complete

• give a weak completeness theorem for our type system

with respect to fully annotated System F programs, indi-

cating the conditions under which the programmer can

expect type inference succeeds and where additional an-

notations are required when it fails.

Spine-local type inference is being implemented in Cedille[20], a

functional programming language with higher-order and impred-

icative polymorphismand dependent types and intersections. �ough

the se�ing for this paper is much simpler, we are optimistic that

spine-local type inference will serve as a good foundation for type

inference in Cedille that makes using its rich type features more

convenient for programmers.

�e rest of this paper is organized as follows: in Section 2 we

cover the syntax and some useful terminology for our se�ing; in

Section 3 we present the type inference rules constituting a specifi-

cation for contextual type-argument inference, consider its annota-

tion requirements, and illustrate its use, limitations, and the type

errors it presents to users; in Section 4 we show the prototype-

matching algorithm implementing contextual type-argument in-

ference; and in Section 5 we discuss how this work compares to

other approaches to type inference.

2 INTERNAL AND EXTERNAL LANGUAGE

Type inference can be viewed as a relation between an internal

language of terms, where all needed typing information is present,

and an external language, in which programmerswork directly and

where some of this information can be omi�ed for their conve-

nience. Under this view, type inference for the external language

not only associates a term with some type but also with some elab-

orated term in the internal language in which all missing type in-

formation has been restored. In this section, we present the syntax

for our internal and external languages as well as introduce some

terminology that will be used throughout the rest of this paper.

2.1 Syntax

We take as our internal language explicitly typed System F (see

[7]); we review its syntax below:

Types S,T ,U ,V ::= X ,Y ,Z | S → T | ∀X .T

Contexts Γ ::= · | Γ,X | Γ,x :T

Terms e,p ::= x | λ x :T . e | ΛX . e | e e ′ | e[T ]

Types consist of type variables, arrow types, and type quantifica-

tion, and typing contexts consist of the empty context, type vari-

ables (also called the context’s declared type variables), and term

variables associated with their types. �e internal language of

terms consists of variables, λ-abstractionswith annotations on bound

variables,Λ-abstractions for polymorphic terms, and term and type

applications. Our notational convention in this paper is that term

meta-variable e indicates an elaborated term for which all type ar-

guments are known, and p indicates a partially elaborated term

where some type arguments are type meta-variables (discussed in

Section 3).

�e external language contains the same terms as the internal

language as well as bare λ-abstractions – that is, λ-abstractions

missing an annotation on their bound variable:

Terms t , t ′ ::= x | λ x :T . t | λ x . t | ΛX . t | t t ′ | t[T ]

Types and contexts are the same as for the internal language and

are omi�ed.

2.2 Terminology

In both the internal and external languages, we say that the ap-

plicand of a term or type application is the term in the function

position. A head a is either a variable or λ-abstraction (bare or an-

notated), and an application spine[2] (or just spine) is a view of an

application as consisting of some head (called the spine head) fol-

lowed by a sequence of (term and type) arguments. �e maximal

application of a sub-expression is the spine in which it occurs as

an applicand, or just the sub-expression itself if it does not. For

example, spine x[S] y z is the maximal application of itself and

its applicand sub-expressions x , x[S], and x[S] y, with x as head

of the spine. Predicate App(t) indicates term t is some term or

type application (in either language) and we define it formally as

(∃ t1, t2. t = t1 t2) ∨ (∃ t ′, S . t = t ′[S]).

Turning to definitions for types and contexts, function DTV (Γ)

calculates the set of declared type variables of context Γ and is de-

fined recursively by the following set of equations:

DTV (·) = ∅

DTV (Γ,X ) = DTV (Γ) ∪ {X }

DTV (Γ, x :T ) = DTV (Γ)

PredicateWF (Γ,T ) indicates that type T is well-formed under Γ –

that is, all free type variables ofT occur as declared type variables

in Γ (formally FV (T ) ⊆ DTV (Γ)).
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3 TYPE INFERENCE SPECIFICATION

�e typing rules for our internal language are standard for explic-

itly typed System F and are omi�ed (see Ch. 23 of [17] for a thor-

ough discussion of these rules). We write Γ ⊢ e : T to indicate that

under context Γ internal term e has type T . For type inference in

the external language, Figure 1 shows judgment ⊢δ which consists

mostly of standard (except for AppSyn and AppChk) bidirectional

inference rules with elaboration to the internal language, and Fig-

ure 2 shows the specification for contextual type-argument infer-

ence. Judgment ⊢P in Figure 2b handles traversing the spine and

judgment ⊢· in Figure 2c types its term applications and performs

type-argument inference (both synthetic and contextual). Figure

2a gives a “shim” judgment ⊢I which bridges the bidirectional rules

with the specification for rhetorical purposes (discussed below).

�ough these rules are not algorithmic, they are syntax-directed,

meaning that for each judgment the shape of the term we are typ-

ing (i.e. the subject of typing) uniquely determines the rules that

applies.

Bidirectional Rules. We now consider more closely each judg-

ment form and its rules starting with ⊢δ , the point of entry for

type inference. �e two modes for type inference, checking and

synthesizing, are indicated resp. by ⊢⇓ (suggesting pushing a type

down and into a term) and ⊢⇑ (suggesting pulling a type up and out

of a term). Following the notational convention of Peyton Jones et

al.[16] we abbreviate two inference rules that differ only in their

direction to one by writing ⊢δ , where δ is a parameter ranging

over {⇑,⇓}. We read judgment Γ ⊢⇑ t : T  e as: “under context

Γ, term t synthesizes typeT and elaborates to e ,” and a similar read-

ing for checking mode applies for ⊢⇓. When the direction does not

ma�er, we will simply say that we can infer t has typeT .

Rule Var is standard. Rule Abs says we can infer missing type

annotationT on a λ-abstraction when we have a contextual arrow

type T → S . Rules AAbs and TAbs say that Λ- and annotated λ-

abstractions can have their types either checked or synthesized.

TApp says that a type application t[S] has its type inferred in ei-

ther mode when the applicand t synthesizes a quantified type. �e

reason for this asymmetry between the modes of the conclusion

and the premise is that even when in checking mode, it is not clear

how to work backwards from type [S/X ]T to ∀X .T .

AppSyn and AppChk are invoked on maximal applications and

are the first non-standard rules. To understand how these rules

work, we must 1) explain the “shim” judgment ⊢I serving as the in-

terface for spine-local type-argument inference and 2) define meta-

language function MV . Read Γ;T? ⊢I t t ′ : T  (p,σ ) as: “under

context Γ and with (optional) contextual typeT?, partially infer ap-

plication t t ′ has typeT with elaboration p and solution σ ,” where

σ is a substitution mapping a some meta-variables (i.e. omi�ed

type arguments) in p to contextually-inferred type arguments.

In ruleAppSyn, ? is provided to ⊢I indicating no contextual type

is available. We constrain σ to be the identity substitution (wri�en

σid ) and that elaborated term p has no unsolved meta-variables,

matching our intuition that all type arguments must be inferred

synthetically. In ruleAppChk , we provide the contextual type to ⊢I

and check (implicitly) that it equals σ T and (explicitly) that all re-

maining meta-variables inp are solved byσ , then elaborateσ p (the

replacement of each meta-variable in p with its entry in σ ). Shared

by both is the second premise of the (anonymous) rule introduc-

ing ⊢I that σ solves precisely the meta-variables of the partially

inferred type T for application t t ′.

Meta-variables. What are the “meta-variables” of elaborations

and types? When t is a term application with some type argu-

ments omi�ed in its spine, its partial elaborationp from spine-local

type-argument inference under context Γ fills in each missing type

argument with either a well-formed type or with a meta-variable

(a type variable not declared in Γ) depending on whether it was

inferred synthetically. For example, if t = pair (λ x . x) z and we

wanted to check that it has typeT = 〈(N→ N)×N〉 under a typing

context Γ associating pair with type ∀X . ∀Y .X → Y → 〈X × Y 〉

and z with type N, then we could derive

Γ;T ⊢I t : 〈X × N〉  (pair[X ][N] (λ x :N. x) z, [N→ N/X ])

(assuming some base typeN, some family of base types 〈S ×T 〉 for

all types S and T , and assuming X is not declared in Γ.) Looking

at the partial elaboration of t , we would see that type argument X

was inferred from its contextual type 〈(N → N) × N〉 and that Y

was inferred from the synthesized type of the arguments z to pair.

Meta-variables never occur in a judgment formed by ⊢δ , only

in the judgments of Figure 2. In particular, these rules enforce that

meta-variables in a partial elaboration p can occur only as type ar-

guments in its spine, not within its head or term arguments. �is

restriction guarantees spine-local type-argument inference and helps

to narrow the programmer’s focus when debugging type errors.

Furthermore, meta-variables correspond to omi�ed type arguments

injectively, significantly simplifying the kind of reasoning needed

for debugging type errors. We make this precise by defining meta-

language functionMV (Γ, )which yields the set of meta-variables

occurring in its second argument with respect to the context Γ. MV

is overloaded to take both types and elaborated terms for its second

argument: for types we define MV (Γ,T ) = FV (T ) − DTV (Γ), the

set of free variables in T less the declared type variables of Γ; for

terms,MV (Γ,p) is defined recursively by the following equations:

MV (Γ,p) = ∅ when ¬App(p)

MV (Γ,p[X ]) = MV (Γ,p) ∪ {X } when X < DTV (Γ)

MV (Γ,p[S]) = MV (Γ,p) whenWF (Γ, S)

MV (Γ,p e) = MV (Γ,p)

Using our running example where the subject t is pair (λ x . x) z

we can now show how the meta-variable checks are used in rules

AppSyn and AppChk . We have for our partially elaborated term

that MV (Γ, pair[X ][N] (λ x :N. x) z) = {X } and also for our type

that MV (Γ, 〈X × N〉) = {X }. If we have a derivation of the judg-

ment above formed by ⊢I we can then derive with rule AppChk

Γ ⊢⇓ t : 〈(N→ N) × N〉  pair[N→ N][N] (λ x :N. x) z)

because substitution [N→ N/X ] solves the remaining meta-variable

X in the elaborated term and type, and when utilized on the par-

tially inferred type 〈X ×N〉 yields the contextual type for the term.

However, we would not be able to derive with rule AppSyn

Γ ⊢⇑ t : 〈(N→ N) × N〉  pair[N→ N][N] (λ x :N. x) z)

since we do not haveσid as our solution andwe havemeta-variable

X remaining in our partial elaboration and type. Together, the
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Γ ⊢δ t : T  e Γ ⊢δ x : Γ(x) x
Var

Γ,x :T ⊢⇓ t : S  e

Γ ⊢⇓ λ x . t : T → S  λ x :T . e
Abs

Γ, x :T ⊢δ t : S  e

Γ ⊢δ λ x :T . t : T → S  λ x :T . e
AAbs

Γ,X ⊢δ t : T  e

Γ ⊢δ ΛX . t : ∀X .T  ΛX . e
TAbs

Γ ⊢⇑ t : ∀X .T  e

Γ ⊢δ t[S] : [S/X ]T  e[S]
TApp

Γ; ? ⊢I t t ′ : T  (e,σid ) MV (Γ, e) = ∅

Γ ⊢⇑ t t ′ : T  e
AppSyn

Γ;σ T ⊢I t t ′ : T  (p,σ ) MV (Γ,p) = dom(σ )

Γ ⊢⇓ t t ′ : σ T  σ p
AppChk

Figure 1: Bidirectional inference rules with elaboration

(a) Shim (specification)

T? ::= T | ?

Γ ⊢P t t ′ : T  (p,σ ) MV (Γ,T ) = dom(σ )

Γ;T? ⊢
I t t ′ : T  (p,σ )

(b) Γ ⊢P t : T  (p, σ )

¬App(t) Γ ⊢⇑ t : T  e

Γ ⊢P t : T  (e,σid )
PHead

Γ ⊢P t : ∀X .T  (p,σ )

Γ ⊢P t[S] : [S/X ]T  (p[S],σ )
PTApp

Γ ⊢P t : T  (p,σ ) Γ ⊢· (p :T ,σ ) · t ′ : T ′
 (p ′,σ ′)

Γ ⊢P t t ′ : T ′
 (p ′,σ ′)

PApp

(c) Γ ⊢· (p :T , σ ) · t ′ : T ′
 (p′, σ ′)

σ ′′ ∈ {σ , [S/X ] ◦ σ } WF (Γ, S) Γ ⊢· (p[X ] :T ,σ ′′) · t ′ : T ′
 (p ′,σ ′)

Γ ⊢· (p :∀X .T ,σ ) · t ′ : T ′
 (p ′,σ ′)

PForall
MV (Γ,σ S) = ∅ Γ ⊢⇓ t ′ : σ S  e ′

Γ ⊢· (p :S → T ,σ ) · t ′ : T  (p e ′,σ )
PChk

MV (Γ,σ S) = Y , ∅ Γ ⊢⇑ t ′ : [U /Y ] σ S  e ′

Γ ⊢· (p :S → T ,σ ) · t ′ : [U /Y ] T  (([U /Y ] p) e ′,σ )
PSyn

Figure 2: Specification for contextual type-argument inference

checks inAppSyn andAppChk ensure thatmeta-variables are never

passed up and out of a maximal application during type inference.

Specification Rules. Judgment ⊢I serves as an interface to spine-

local type-argument inference. In Figure 2a it is defined in terms

of the specification for contextual type-argument inference given

by judgments ⊢P and ⊢·; we call it a “shim” judgment because in

Figure 4a we give for it an alternative definition using the algo-

rithmic rules in which the condition MV (Γ,T ) = dom(σ ) is not

needed. Its purpose, then, is to cleanly delineate what we consider

specification and implementation for our inference system.

�ough the details of maintaining spine-locality and perform-

ing synthetic type-argument inference permeate the inference rules

for ⊢P and ⊢·, these rules form a specification in that they fully

abstract away the details of contextual type-argument inference,

describing how solutions are used but omi�ing how they are gen-

erated. Spine-locality in particular contributes to our specifica-

tion’s perceived complexity – what would be one or two rules in

a fully-uncurried language with all-or-nothing type argument ap-

plications is broken down in our system in to multiple inference

rules to support currying and partial type applications.

Judgment ⊢P contains three rules and serves to dig through a

spine until it reaches its head, then work back up the spine typing

its term and type applications. �e reading for it is the same as for

⊢I, less the optional contextual type. Rule PHead types the spine

head t by deferring to ⊢⇑; our partial solution is σid since no meta-

variables are present in a judgment formed by ⊢⇑. PTApp is similar

toTApp except it additionally propagates solution σ . Rule PApp is

used for term applications: first it partially synthesizes a type for

the applicand t and then it uses judgment ⊢· to ensure that the

elaborated term p with this type can be applied to argument t ′.

Judgment ⊢· performs synthetic and contextual type-argument

inference and ensures that term applications with omi�ed type ar-

guments are well-typed. We read Γ ⊢· (p :T ,σ ) · t ′ : T ′
 (p ′,σ ′)

as “under context Γ, elaborated applicand p of partial type T to-

gether with solution σ can be applied to term t ′; the application

has typeT ′ and elaborates p ′ with solution σ ′.”

Contextual type-argument inference happens in rule PForall ,

which says that when the applicand has type ∀X .T we can choose

to guess any well-formed S for our contextual type argument by

picking σ ′′
= [S/X ] ◦ σ (indicating σ ′′ contains all the mappings
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present in σ and an additional mapping S for X ), or choose to at-

tempt to synthesize it later from an argument by picking σ ′′
= σ .

�e details of which S to guess, or whether we should guess at

all, are not present in this specificational rule. In both cases, we

elaborate the applicand to p[X ] of type T and check that it can be

applied to t ′ – we do this even when we guess S for X to maintain

the invariant that for all elaborations p and solutions σ generated

from the rules in Figures 2b and 2c we have dom(σ ) ⊆ MV (Γ,p),

which we need when checking in the (specificational) rule for ⊢I

that these guessed solutions are ultimately justified by the contex-

tual type (if any) of our maximal application.

We illustrate the use of PForall with an example: if the input

presented to judgment ⊢· is

(pair :∀X . ∀Y .X → Y → 〈X × Y 〉,σid ) · (λ x . x)

then a�er two uses of rule PForall where we guess N → N for X

and decline to guess for Y we would generate:

(pair[X ][Y ] :X → Y → 〈X × Y 〉, [N→ N/X ]) · (λ x . x)

A�er working through omi�ed type arguments, ⊢· requires that

we eventually reveal some arrow type S → T to type a term appli-

cation. When it does we have two cases, handled resp. by PChk

and PSyn: either the domain type S of applicand p together with

solution σ provide enough information to fully know the expected

type for argument t ′ (i.e. MV (Γ,σ p) = ∅), or else they do not and

we have some non-empty set of unsolved meta-variables Y in S

corresponding to type arguments we must synthesize. Having full

knowledge, in PChk we check t ′ has type σ S ; otherwise, in PSyn

we try to solve meta-variables Y by synthesizing a type for t ′ and

checking it is instantiation [U /Y ] (vectorized notation for the si-

multaneous substitution of types U for Y ) of σ S . Once done, we

conclude with result type [U /Y ]T and elaboration ([U /Y ] p) e for

the application, as themeta-variablesY ofp corresponding to omit-

ted type arguments have now been fully solved by type-argument

synthesis. Together, PChk and PSyn prevent meta-variables from

being passed down to term argument t ′, as we require that it either

check against or synthesize a well-formed type.

We illustrate the use of rule PSyn with and example: suppose

that under context Γ the input presented to judgment ⊢· is

(pair[X ][Y ] (λ x :N. x) :Y → 〈X × Y 〉, [N→ N/X ]) · z

and furthermore that Γ ⊢⇑ z : N. �en we have instantiation [N/Y ]

from synthetic type-argument inference and use it to produce for

the application the result type [N/Y ] 〈X × Y 〉 = 〈X × N〉 and the

elaboration pair[X ][N] (λ x : N. x) z. Note that synthesized type

arguments are used eagerly, meaning that the typing information

synthesized from earlier arguments can in some cases be used to

infer the types of later arguments in checking mode (see Section

3.2). �is is reminiscent of greedy type-argument inference for

type systems with subtyping[1, 4], which is known to cause unin-

tuitive type inference failures due to sub-optimal type arguments

(i.e. less general wrt to the subtyping relation) being inferred. As

System F lacks subtyping, this problem does not affect our type

inference system and we can happily utilize synthesized type ar-

guments eagerly (see Section 5).

3.1 Soundness, Weak Completeness, and
Annotation Requirements

�e inference rules in Figure 2 for our external language are sound

with respect to the typing rules for our internal language (i.e. ex-

plicitly typed System F), meaning that elaborations of typeable ex-

ternal terms are typeable at the same type1:

Theorem 3.1. (Soundness of ⊢δ ):

If Γ ⊢δ t : T  e then Γ ⊢ e : T .

Our inference rules also enjoy a trivial form of completeness

that serves as a sanity-check with respect to the internal language:

since any term e in the internal language (i.e., any fully annotated

term) is also in the external language, we expect that e should be

typable using the typing rules for external terms:

Theorem 3.2. (Trivial Completeness of ⊢δ ):

If Γ ⊢ e : T then Γ ⊢δ e : T  e

A more interesting form of completeness comes from asking

which external terms can be typed – a�er all, this is precisely what

a programmer needs to know when trying to debug a type infer-

ence failure! Since our external language contains terms without

any annotations and our type language is impredicative System F,

we know from [24] that type inference is in general undecidable.

�erefore, to state a completeness theorem for type inference we

must first place some restrictions on the set of external terms that

can be the subject of typing.

We start by defining what it means for t to be a partial erasure

of internal term e . �e grammar given in Section 2 for the external

language does not fully express where we hope our inference rules

will restore missing type information. Specifically, the rules in Fig-

ures 1 and 2 will try to infer annotations on bare λ-abstractions

and only try to infer missing type arguments that occur in the

applicand of a term application. For example, given (well-typed)

internal term x[S1][S2] y[T ] and external term x y, our inference

rules will try to infer the missing type arguments S1 and S2 butwill

not try to infer the missing T .

A more artificial restriction on partial erasures is that the se-

quence of type arguments occurring between two terms in an ap-

plication can only be erased in a right-to-le� fashion. For exam-

ple, given internal term x[S1][S2] y[T1][T2] z, the external term

x y[T1] z is a valid erasure (S1 and S2 are erased between x and y,

and between y and z rightmostT2 is erased), but term x[S2] y[T2] z

is not. �is restriction helps preserve soundness of the external

type inference rules by ensuring that every explicit type argument

preserved in an erasure of an internal term e instantiates the same

type variable it did in e ; it is artificial because we could instead

have introduced notation for “explicitly erased” type arguments in

the external language, such as x[ ][S2] y, to indicate the first type

argument has been erased, but did not to simplify the presentation

of our inference rules and language.

�e above restrictions for partial erasure aremade precise by the

functions ⌊ ⌋ and ⌊ ⌋a which map an internal term e to sets of

1A complete list of proofs for this paper can be found in the proof appendix at TODO
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partial erasures ⌊e⌋. �ey are defined mutually recursively below:

⌊λ x :T . e⌋ = {λ x :T . t | t ∈ ⌊e⌋} ∪ {λ x . t | t ∈ ⌊e⌋}

⌊ΛX . e⌋ = {ΛX . t | t ∈ ⌊e⌋}

⌊e e ′⌋ = {t t ′ | t ∈ ⌊e⌋a ∧ t ′ ∈ ⌊e ′⌋}

⌊e[S]⌋ = {t[S] | t ∈ ⌊e⌋}

⌊e[S]⌋a = {t | t ∈ ⌊e⌋a} ∪ {t[S] | t ∈ ⌊e⌋}

⌊e⌋a = ⌊e⌋ otherwise

We are now ready to state a weak completeness theorem for typing

terms in the external language which over-approximates the anno-

tations required for type inference to succeed (we write ∀X .T to

mean some number of type quantifications over typeT )

Theorem 3.3. (Weak completeness of ⊢⇑):

Let e be a term of the internal language and t be a term of the

internal languages such that t ∈ ⌊e⌋. If Γ ⊢ e : T then Γ ⊢⇑ t :

T  e when the following conditions hold for each sub-expression

e ′ of e , corresponding sub-expression t ′ of t , and corresponding sub-

derivation Γ
′ ⊢ e ′ : T ′ of Γ ⊢ e : T :

(1) If e ′ = λ x : S . e ′′ for some S and e ′′, then t ′ = λ x : S . t ′′ for

some t ′

(2) If e ′ occurs as a maximal term application in e and if

Γ
′ ⊢P t ′ : T ′′

 (p,σid ) for some T and p, thenMV (Γ,p)=

∅.

(3) If e ′ is a term application and t ′ = t1 t2 for some t1 and t2,

and if Γ′ ⊢P t1 : T ′′
 (p,σid ) for some T ′′ and p, then

T ′′
=∀X . S1 → S2 for some S1 and S2.

(4) If e ′ is a type application and t ′ = t ′′[S] for some t ′′ and

S , and Γ
′ ⊢P t ′′ : T ′′

 (p,σid ) for some T ′′ and p, then

T ′′
=∀X . S ′ for some S ′.

�eorem 3.3 only considers synthetic type-argument inference,

and in practice condition (1) is too conservative thanks to contex-

tual type-argument inference. �ough a li�le heavyweight, our

weak completeness theorem can be translated into a reasonable

guide for where type annotations are required when type synthe-

sis fails. Conditions (3) and (4) suggest that when the applicand

of a term or type application already partially synthesizes some

type, the programmer should give enough type arguments to at

least reveal it has the appropriate shape (resp. a type arrow or

quantification). (2) indicates that type variables that do not occur

somewhere corresponding to a term argument of an application

should be instantiated explicitly, as there is no way for synthetic

type-argument inference to do so. For example, in the expression

f z if f has type ∀X . ∀Y .Y → X there is no way to instantiate X

from synthesizing argument z. Finally, condition (1) we suggest as

the programmer’s last resort: if the above advice does not help it

is because some λ-abstractions need annotations.

Note that in conditions (2), (3), and (4) we are not circularly as-

suming type synthesis for sub-expressions of partial erasure t suc-

ceeds in order to show that it succeeds for t , only that if a certain

sub-expression can be typed then we can make some assumptions

about the shape of its type or elaboration. Conditions (3) and (4) in

particular are a direct consequence of a design choice we made for

our algorithm to maintain injectivity of meta-variables to omi�ed

type arguments. As an alternative, we could instead refine meta-

variables whenwe know something about the shape of their instan-

tiation. For example, if we encountered a term application whose

applicand has a meta-variable type X , we know it must have some

arrow type and could refine X to X1 → X2, where X1 and X2 are

fresh meta-variables. However, doing so means type errors may

now require non-trivial reasoning from users to determine why

some meta-variables were introduced in the first place.

Still, we find it somewhat inelegant that our characterization of

annotation requirements for type inference is not fully indepen-

dent of the inference system itself. For programmers using these

guidelines, this implies that there must be some way to interac-

tively query the type-checker for different sub-expressions of a

program during debugging. Fortunately, many programming lan-

guages offer just such a feature in the form of a REPL, meaning

that in practice this is not too onerous a requirement to make.

�eorem 3.3 only states when an external term will synthesize

its type, butwhat aboutwhen a term can be checked against a type?

It is clear from the typing rules in Figure 1 that some terms that

fail to synthesize a type may still be successfully checked against

a type. Besides typing bare λ-abstractions (which can only have

their type checked), checking mode can also reduce the annotation

burden implied by condition (2) of �eorem 3.3: consider again

the example f z where f has type ∀X . ∀Y .Y → X . If instead of

a�empting type synthesis we were to check that it has some type

T then we would not need to provide an explicit type argument to

instantiate X .

From these observations and our next result, we have that check-

ingmode of our type inference system can infer the types of strictly

more terms than can synthesizing mode – whenever a term syn-

thesizes a type, it can be checked against the same type.

Theorem 3.4. (Checking extends synthesizing):

If Γ ⊢⇑ t : T  e then Γ ⊢⇓ t : T  e

3.2 Examples

Successful Type Inference. Weconclude this sectionwith some

example programs for which the type inference system in Figures

1 and 2 will and will not be able to type. We start with the motivat-

ing example from the introduction of checking that the expression

pair (λ x . x) z has type 〈(N → N) × N〉, which is not possible in

other variants of local type inference. For convenience, we assume

the existence of a base typeN and a family of base types 〈S×T 〉 for

all types S and T . �ese assumptions are admissible as we could

define these types using Church encodings. A full derivation for

typing this program is given in Figure 3, including the following

abbreviations:

I× X Y = X → Y → 〈X × Y 〉

Γ = pair :∀X . ∀Y . I× X Y , z :N

σ = [N→ N/X ]

p = pair[X ][N] (λ x :N. x) z

To type this application pair (λ x . x) z we first dig through the

spine, reach the head pair, and synthesize type ∀X . ∀Y . I× X Y .

No meta-variables are generated by judgment ⊢⇑ and thus there

can be no meta-variable solutions, so we generate solution σid .
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Γ ⊢⇑ pair : ∀X . ∀Y . I× X Y  pair
Var

Γ ⊢P pair : ∀X . ∀Y . I× X Y  (pair,σid )
PHead

D1

Γ ⊢P pair (λ x . x) : Y → 〈X × N〉  (pair[X ][N] (λ x :N. x),σ )
PApp

D2

Γ ⊢P pair (λ x . x) z : 〈X × N〉  (p,σ )
PApp

MV (Γ,X × N) = dom(σ )

Γ ⊢I pair (λ x . x) z : 〈X × N〉  (p,σ ) MV (Γ,p) = dom(σ )

Γ ⊢⇓ pair (λ x . x) z : 〈(N→ N) × N〉  pair[N→ N][N] (λ x :N. x) z
AppChk

D1 =

MV (Γ,σ X ) = ∅

Γ, x :N ⊢⇓ x : N x
Var

Γ ⊢⇓ λ x . x : N→ N λ x :N. x
Abs

Γ ⊢· (pair[X ][Y ] : I× X Y ,σ ) · (λ x . x) : Y → 〈X × Y 〉  (pair[X ][Y ] (λ x :N. x),σ )
PChk

Γ ⊢· (pair[X ] :∀Y . I× X Y ,σ ) · (λ x . x) : Y → 〈X × Y 〉  (pair[X ][Y ] (λ x :N. x),σ )
PForall

Γ ⊢· (pair :∀X . ∀Y . I× X Y ,σid ) · (λ x . x) : Y → 〈X × Y 〉  (pair[X ][Y ] (λ x :N. x),σ )
PForall

D2 =

MV (Γ,Y ) = {Y } Γ ⊢⇑ z : N z
Var

Γ ⊢· (pair[X ][Y ] (λ x :N. x) :Y → 〈X × Y 〉,σ ) · z : 〈X × N〉  (pair[X ][N] (λ x :N. x) z,σ )
PSyn

where: I× X Y = X → Y → 〈X × Y 〉

Γ = pair :∀X . ∀Y . I× X Y , z :N

σ = [N→ N/X ]

p = pair[X ][N] (λ x :N. x) z

Figure 3: Example typing derivation with the specification rules

Next we type the first application, pair (λ x . x), shown in sub-

derivation D1. In the first invocation of rule PForall we guess so-

lution σ forX , and in the second invocation we decline to guess an

instantiation for Y (in this example we could have also guessed N

for Y as this information is also available from the contextual type,

but choose not to in order to demonstrate the use of all three rules

of ⊢·). �en using rule PChk we check argument λ x . x against

σ X = N → N. �is is the point at which the local type inference

systems of [15, 18] will fail: as a bare λ-abstraction this argument

will not synthesize a type, and the expected type X as provided by

the applicand pair alone does not tell us what the missing type an-

notation should be. However, by using the information provided

by the contextual type of the entire application we know it must

have type N → N. �e resulting partial type of the application

is Y → 〈X × Y 〉, and we propagate solution σ to the rest of the

derivation. Note that we elaborate the argument λ x . x of this ap-

plication to λ x :N. x – we never pass down meta-variables to term

arguments, keeping type-argument inference local to the spine.

In sub-derivationD2 we type (pair (λ x . x)) z (parentheses added)

where our applicand has partial type Y → 〈X × Y 〉. We find that

we have unsolved meta-variable Y as the expected type for z, so

we use rule PSyn and synthesize the type N for z. Using solution

[N/Y ], we produce 〈X × Y 〉 for the resulting type of the applica-

tion and elaborate the application to a pair[X ][N] (λ x : N. x) z,

wherein type argument Y is replaced by N in the original elabo-

rated applicand pair[X ][Y ] (λ x :N. x).

Finally, in ruleAppChk we confirm that the only meta-variables

remaining in our partial type synthesis of the application is pre-

cisely those for which we knew the solutions from the contextual

type. For this example, the only remaining meta-variable in both

the partially synthesized type and elaboration is X , which is also

the only mapping in σ , so type inference succeeds. We use σ to

replace all occurrences of X with N → N in the type and elabora-

tion and conclude that term pair (λ x . x) z can be checked against

type 〈(N→ N) × N〉.

�e next example illustrates how our eager use of synthetic type-

argument inference can type some terms not possible in other vari-

ants of local type inference. Consider checking that the expression

rapp x λy.y has typeN, where rapp has type∀X . ∀Y .X → (X →

Y ) → Y and x has type N. From the contextual type we know

that Y should be instantiated to N, and when we reach application

rapp y, we learn that X should be instantiated to N from the syn-

thesized type of y. Together, this gives us enough information to

know that argument λy.y should have type N → N. Such eager

instantiation is neither novel nor necessarily desirable when ex-

tended to richer types or more powerful systems of inference (see

Section 5), but in our se�ing it is a useful optimization that we

happily make for inferring the types of expressions like the one

above.
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Type Inference Failures. To see where type inference can fail,

we again use pair (λ x . x) z but now ask that it synthesize its type.

RuleAppSyn insists that wemake no guesses formeta-variables (as

there is no contextual type for the application that they could have

come from), so we would need to synthesize a type for argument

λ x . x – but our rules do not permit this! In this case the user can

expect an error message like the following:

expected type: ?X

error: We are not in checking mode, so bound

variable x must be annotated

where ?X indicates an unsolved meta-variable corresponding to

type variable X in the type of pair. �e situation above corre-

sponds to condition (1) of �eorem 3.3: in general, if there is not

enough information from the type of an applicand and the contex-

tual type of the application spine in which it occurs to fully know

the expected types of arguments that are λ-abstractions, then such

arguments require explicit type annotations.

We next look at an example corresponding to condition (2) of

�eorem 3.3, namely that the type variables of a polymorphic func-

tion that do not correspond to term arguments in an application

should be instantiated explicitly. Here we will assume a family of

base types S + T for every type S and T , a variable right of type

∀X . ∀Y .Y → (X + Y ), and a variable z of type N. In trying to

synthesize a type for the application right z the user can expect

an error message like:

synthesized type: (?X + N)

error: This maximal application has unsolved

meta-variables

indicating that type variable X requires an explicit type argument

be provided. Fortunately for the programmer, and unlike the lo-

cal type inference systems of [15, 18], our system supports partial

explicit type application, meaning that X can be instantiated with-

out also explicitly (and redundantly) instantiating Y . On the other

hand, local type inference systems for System F≤[15, 18] can suc-

ceed to type right z without additional type arguments, as they

can instantiate X to the minimal type (with respect to their sub-

typing relation) Bot. Partial type application, then, is more useful

for our se�ing of System F where picking some instantiation for

this situation would be somewhat arbitrary.

A more subtle point of failure for our algorithm corresponds to

conditions (3) and (4) of �eorem 3.3. Even when the head and all

arguments of an application spine can synthesize their types, the

programmer may still be require to provide some additional type

arguments. Consider the expression bot z, where bot :∀X .X and

z : N. Even with some contextual type for this expression, type

inference still fails because the rules in Figure 2c require that the

type of the applicand of a term application reveals some arrow,

which ∀X .X does not. �e programmer would be met with the

following error message:

applicand type: ?X

error: The type of an applicand in a term

application must reveal an arrow

prompting the user to provide an explicit type argument for X .

To make expression bot z typeable, the programmer could write

bot[N → N] z, or even bot[∀Y .Y → Y ] z – our inference rules

are able to solve meta-variables introduced by explicit and even

synthetic type arguments, as long as there is at least enough infor-

mation to reveal a quantifier or arrow in the type of a term or type

applicand.

For our last type error example, we consider the situationwhere

the programmer has wri�en an ill-typed program. Local type infer-

ence enjoys the property that type errors can be understood locally,

without any “spooky action” from a distant part of the program. In

particular, with local type inference we would like to avoid error

messages like the following:

synthesized type: B → B

expected type: ?X := N → N

error: type mismatch

From this error message alone the programmer has no indication

of why the expected type is N→ N! In our type inference system

we expand the distance information travels by allowing it to flow

from the contextual type of an application to its arguments. As an

example, the error message above might be generated when check-

ing that the expression pair (λ x :B. x) z has type 〈(N→ N) ×N〉,

specifically when inferring the type of the first argument. Fortu-

nately, our notion of locality is still quite small and we can easily

demystify the reason type inference expected a different type:

synthesized type: B → B

expected type: ?X := N → N

contextual match: 〈?X × ?Y〉 := 〈(N → N) × N〉

where contextual match tells the programmer to compare to the

partially synthesized and contextual return types of the application

to determine why X was instantiated to N → N. A similar field,

synthetic match, could tell the programmer that the type of an

earlier argument informs the expected type of current one.

4 ALGORITHMIC INFERENCE RULES

�e type inference system presented in Section 3 do not consti-

tute an algorithm. �ough the rules forming judgment ⊢· indicate

where and how we use contextually-inferred type arguments, they

do not specify what their instantiations are or even whether this

information is available to use, and it is not obvious how to work

backwards from the second premise in Figure 2a to develop an al-

gorithm.

Figure 4 shows the algorithmic rules implementing contextual

type-argument inference. �e full algorithm for spine-local type

inference, then, consists of the rules in Figure 1 with the shim judg-

ment ⊢I as defined in Figure 4a. At the heart of our implementation

is our prototype matching algorithm; to understand the details of

how we implement contextual type-argument inference, we must

first discuss this algorithm and the two new syntactic categories it

introduces, prototypes and decorated types.

4.1 Prototype Matching

Figure 4d lists the rules for the prototype matching algorithm. We

read the judgment X := T := P ⇒ (σ ,W ) as: “solving for meta-

variables X , we match type T to prototype P and generate solu-

tion σ and decorated typeW ,” and we maintain the invariant that

dom(σ ) ⊆ X . Meta-variables can only occur in T , thus these are

matching (not unification) rules. �e grammar for prototypes and
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(a) Shim (algorithm)

T? ::= T | ?

Γ;T? 
? t t ′ : T  (p,σ )

Γ;T? ⊢
I t t ′ : T  (p,σ )

(b) Γ; P ? t :W  (p, σ )

¬App(t) Γ ⇑ t : T  e ∅ 
:= T := ? → P ⇒ (σid ,W )

Γ; ? → P ? t :W  (e,σid )
?Head

Γ; ? → P ? t : ∀X =R.W  (p,σ ) R ∈ {X , S}

Γ; ? → P ? t[S] : [S/X ]W  (p[S],σ )
?TApp

Γ; ? → P ? t :W  (p,σ ) Γ 
· (p :W ,σ ) · t ′ :W ′

 (p ′,σ ′)

Γ; P ? t t ′ :W ′
 (p ′,σ ′)

?App

(c) Γ 
· (p :W , σ ) · t ′ :W  (p′, σ ′)

σ ′′
= if R=X then σ else [R/X ]◦σ Γ 

· (p[X ] :W ,σ ′′) · t ′ :W ′
 (p ′,σ ′)

Γ 
· (p :∀X =R.W ,σ ) · t ′ :W ′

 (p ′,σ ′)
?Forall

MV (Γ,σ S) = ∅ Γ ⇓ t ′ : S  e

Γ 
· (p :S →W ,σ ) · t ′ :W  (p e ′,σ )

?Chk

MV (Γ,σ S) = Y , ∅ Γ ⇑ t : [U /Y ] σ S  e

Γ 
· (p :S →W ) · t ′ : [U /Y ]W  (([U /Y ] p) e ′,σ )

?Syn

(d) X := T := P ⇒ (σ,W )

X := T := P ⇒ (σ ,W )

X := S → T := ?→ P ⇒ (σ , S →W )
MArr

[U /X ] T = S

X := T := S ⇒ ([U /X ],T )
MType

X := T := ? ⇒ (σid ,T )
M?

X ,X := T := ?→ P ⇒ (σ ,W )

X := ∀X .T := ?→ P ⇒ (σ − X ,∀X =σ (X ).W )
MForall

X ∈ X

X := X := ?→ P ⇒ (σid , (X , ?→ P))
MCurr

Figure 4: Algorithm for contextual type argument inference

decorated types is given below:

Prototypes P ::= ? | T | ?→ P

Decorated Types W ::= T | S →W | ∀X =X .W | ∀X =S .W

| (X , ?→ P)

Prototypes carry the contextual type of themaximal application

of a spine. In the base case they are either the uninformative ? (as

in AppSyn), indicating no contextual type, or they are informative

of type T (as in AppChk). In this way, prototypes generalize the

syntactic categoryT? we introduced earlier for optional contextual

types. We use the last prototype former ?→ as we work our way

down an application spine to track the expected arity of its head.

For example, if we wished to check that the expression id suc x

has type N, then when we reached the head id using the rules in

Figure 4b we would generate for it prototype ?→ ?→ N

Decorated types consist of types (also called plain-decorated types),

an arrow with a regular type as the domain (as prototypes only in-

form us of the result type of a maximal application, not of the types

of arguments), quantified types whose bound variable X may be

decorated with the type to which we expect to instantiate it, and

“stuck” decorations. On quantifiers, decoration X = X indicates

that P did not inform us of an instantiation for X – we sometimes

abbreviate the two cases as ∀X = R.W , where R ∈ {X , S} and

S , X .

To explain the role of stuck decorations, consider again id suc x.

Assuming id has type ∀X .X → X , matching this with prototype

?→ ?→ N generates decorated type ∀X = X .X → (X , ?→ N),

meaning that we only know that X will be instantiated to some

type that matches ?→ N. Stuck decorations occur when the ex-

pected arity of a spine head (as tracked by a given prototype) is

greater than the arity of the type of the head and are the mecha-

nism by which we propagate a contextual type to a head that is

“over-applied” – a not-uncommon occurrence in languages with

curried applications!

Turning to the prototype matching algorithm in Figure 4d, rule

MArr says that we match an arrow type and prototype when we

can match their codomains. Rule MType says that when the pro-

totype is some type S we must find an instantiation [U /X ] such

that [U /X ] T = S , and rule M? says that any type matches with

? with no solutions generated (thus we call ? the “uninformative”
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prototype). In rule MForall we match a quantified type with a

prototype by adding bound variable X to our meta-variables and

matching the bodyT to the same prototype; the substitution in the

conclusion, σ − X , is the solution generated from this match less

its mapping for X , which is placed in the decoration X = σ (X ).

For example, matching ∀X . ∀Y .X → Y → X with prototype

?→?→ N generates decorated type ∀X =N. ∀Y =Y .X → Y → X .

Finally, ruleMCurr applies when there is incomplete information

(in the form of ?→ P ) on how to instantiate a meta-variable; we

generate a stuck decoration with identity solution σid .

We conclude by showing that our prototype matching rules re-

ally do constitute an algorithm: when X , T , and P are considered

as inputs then := behaves like a function.

Theorem 4.1. (Function-ness of :=):

Given X , T , and P , if X := T := P ⇒ (σ ,W )

and X := T := P ⇒ (σ ′
,W ′), then σ = σ ′ andW =W ′

4.2 Decorated Type Inference

We now discuss the rules in Figures 4b and 4c which implement

contextual type-argument inference (as specified by Figures 2b and

2c) by using the prototypematching algorithm. We begin by giving

a reading for judgments ? – read Γ; P ? t :W  (p,σ ) as: “un-

der context Γ and with prototype P , t synthesizes decorated type

W and elaborates p with solution σ ,” where σ again represents the

contextually-inferred type arguments.

In rule AppSyn we required that the solution generated by ⊢I

in its premise is σid ; in AppChk we (implicitly) required that the

contextual type is equal to σ T ; and now with the algorithmic def-

inition for ⊢I we appear to be requiring in both that the decorated

type generated by ? is a plain-decorated type T . With the algo-

rithmic rules, these are not requirements but guarantees that the

specification makes of the algorithm:

Lemma 4.2. Let arrP (P) be the number of prototype arrows pre-

fixing P and arrW (W ) be the number of decorated arrows prefixing

W . If Γ; P ? t :W  (p,σ ) then arrW (W ) ≤ arrP (P)

Theorem 4.3. (Soundness of ? wrt :=):

If Γ; P ? t :W  (p,σ ) thenMV (Γ,p) := T := P ⇒ (σ ,W )

Assuming prototype inference succeeds, when we specialize P

in �eorem 4.3 to ? we have immediately by ruleM? that σ = σid ;

when we specialize it to some contextual typeT ′ for an application,

then by the premise ofMType we have σ T = T ′. �eorem 4.2 and

4.3 together tell us that we generate plain-decorated types in both

cases, as in particular we cannot have leading (decorated) arrows

or stuck decorations with prototypes ? or T ′.

Next we discuss the rules forming judgment ? in Figure 4b,

constituting the algorithmic version of the rules in Figure 2b. In

rule ?Head , a�er synthesizing a typeT for the application head we

match this type against expected prototype ?→ P (we are guaran-

teed the prototype has this shape since only a term application

can begin a derivation of ?). No meta-variables occur in T ini-

tially – as we perform prototype matching these will be generated

by rule MForall from quantified type variables in T and their so-

lutions will be le� as decorations in the resulting decorated type

W . We are justified in requiring that matching T to ? → P gen-

erates empty solution σid since we have in general that the meta-

variables solved by our prototype matching judgment are a subset

of the meta-variables it was asked to solve:

Lemma 4.4. If X := T := P ⇒ (σ ,W ) then dom(σ ) ⊆ X

In ?TApp, we can infer the type of a type application t[S] when

t synthesizes a decorated type ∀X =R.W and R is either an unin-

formative decoration X or is precisely S (that is, the programmer

provided explicitly the type argument the algorithm contextually

inferred). We synthesize [S/X ]W for the type application, where

we extend type substitution to decorated types by the following

recursive partial function:

σ S →W = (σ S) → (σ W )

σ ∀X =R.W = ∀X =R.σ W

σ (X , ?→ P) =W if ∅ := σ (X ) :=?→ P ⇒ (σid ,W )

�is definition is straightforward except for the last case dealing

with stuck decorations. Here, σ (representing instantiations given

by explicit or synthetically-inferred type arguments) may provide

information on how to instantiate X and this must match our cur-

rent (though incomplete) information from ?→ P about our contextually-

inferred type arguments. For example, if we have decorated type

W = X → (X , ? → N), then [N → N/X ]W would require we

match N → N with ?→ N and matching would generate (plain)

decorated type (N→ N) → N→ N

�e definition of substitution on decorated types is partial since

prototypematchingmay fail (consider if we used substitution [N/X ]

in the above example instead). When a decorated type substitution

σ W appears in the conclusion of our algorithmic rules, such as in

?TApp or ?Syn, we are implicitly assuming an additional premise

that the result is defined.

�e last rule for judgment ? is ?App, and like PApp it benefits

from a reading for judgment · occurring in its premise. We read

Γ 
· (p : W ,σ ) · t ′ : W ′

 (p ′,W ′) as: “under Γ, elaborated

applicand p of decorated typeW together with solution σ can be

applied to t ′; the application has decorated typeW ′ and elaborates

p ′with solutionσ ′.” �us, ?App says that to synthesize a decorated

type for a term application t t ′ we synthesize the decorated type of

the applicand t and ensure that the resulting elaboration p, along

with its decorated type and solution, can be applied to t ′.

We now turn to the rules for the last judgment · of our algo-

rithm. Rule ?Forall clarifies the non-deterministic guessing done

by the corresponding specificational rulePForall : the contextually-

inferred type argumentswe build during contextual type-argument

inference are just the accumulation of quantified type decorations.

�e solution σ ′′ we provide to the second premise of ?Forall con-

tains mapping [R/X ] if R is an informative decoration, and as we

did in rule PForall we provide elaborated term p[X ] to track the

contextually-inferred type arguments separately from those syn-

thetically inferred.

Rule ?Chkworks similarly to PChk : when the onlymeta-variables

in the domain S of our decorated type are solved by σ , we can

check that argument t ′ has type σ S . In rule ?Syn we have some

meta-variables Y in S not solved by σ – we synthesize a type for
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the argument, ensure that it is some instantiation [U /Y ] of σ S ,

and use this instantiation on the meta-variables in p as well as the

decorated codomain typeW , potentially unlocking some stuck dec-

oration to reveal more arrows or decorated type quantifications.

We conclude this section by noting that the specificational and

algorithmic type inference system are equivalent, in the sense that

they type precisely the same set of terms:

Theorem 4.5. (Soundness of δ wrt ⊢δ ):

If Γ δ t : T  e then Γ ⊢δ t : T  e

Theorem 4.6. (Completeness of δ wrt ⊢δ ):

If Γ ⊢δ t : T  e then Γ δ t : T  e

(where δ indicates ⊢I is defined as in Figure 4a)

Taken together, �eorems 4.5 and 4.6 justify our claim that the

rules of Figure 2 constitute a specification for contextual type-argument

inference – it is not necessary that the programmer know the no-

tably more complex details of prototype matching or type decora-

tion to understand how contextual type arguments are inferred. In-

deed, the judgment ⊢· provides more flexibility in reasoning about

type inference than does ·, as in rule PForall we may freely de-

cline to guess a contextual type argument even when this would

be justified and instead try to learn it synthetically. In contrast, al-

gorithmic rule ?Forall requires that we use any informative quan-

tifier decoration. We use this flexibility when giving guidelines for

the required annotations in Section 3.1 for typing external terms,

as the required conditions for typeability in �eorem 3.3 would be

further complicated if we could not restrict ourselves to using only

synthetic type-argument inference.

5 DISCUSSION & RELATED WORK

5.1 Local Type Inference and System F≤

Local Type Inference. Our work is most influenced by the sem-

inal paper by Pierce and Turner[18] on local type inference that

describes its broad approach, including the two techniques of bidi-

rectional typing rules and local type-argument inference and the

design-space restriction that polymorphic function applications be

fully-uncurried to maximize the benefit of these techniques. In

their system, either all term arguments to polymorphic functions

must be synthesized or else all type arguments must be given –

no compromise is available when only a few type arguments suf-

fice to type an application, be they provided explicitly or inferred

contextually. Our primary motivation in this work was addressing

these issues – restoring first-class currying, enabling partial type

application, and utilizing the contextual type of an application for

type-argument inference – while maintaining some of the desir-

able properties of local type inference and staying in the spirit of

their approach.

Colored Local Type Inference. Odersky, Zenger, and Zenger[15]

improve upon the type system of Pierce and Turner by extending

it to allow partial type information to be propagated downwards

when inferring types for term arguments. �eir insight was to

internalize the two modes of bidirectional type inference to the

structure of types themselves, allowing different parts of a type to

be synthetic or contextual. In contrast, we use an “all or nothing”

approach to type propagation: when we encountered a term argu-

ment for which we have incomplete information, we require that it

fully synthesize its type. On the other hand, their system uses only

the typing information provided by the application head, whereas

we combine this with the contextual type of an application, allow-

ing us to type some expressions their system cannot. �e upshot

of the difference in these systems is that spine-local type inference

utilizes more contextual information and colored local type infer-

ence utilizes contextual information more cleverly.

�e syntax for prototypes in our algorithmwas directly inspired

by the prototypes used in the algorithmic inference rules for [15].

Our use of prototypes complements theirs; ours propagates the

partial type information provided by contextual type of an appli-

cation spine to its head, whereas theirs propagates the partial type

information provided by an application head to its arguments. In

future work, we hope to combine these two notions of prototype

to propagate partially the type information coming from the appli-

cation’s contextual type and head to its arguments.

Subtyping. Local type inference is usually studied in the set-

ting of System F≤ which combines impredicative parametric poly-

morphism and subtyping. �e reason for this is two-fold: first,

a partial type inference technique is needed as complete type in-

ference for F≤ is undecidable[21]; second, global type inference

systems fail to infer principal types in F≤ [9, 12, 14], whereas local

type inference is able to promise that it infers the “locally best”[18]

type arguments (i.e. the type arguments minimizing the result type

of the application, relative to the subtyping relation). �e se�ing

for our algorithm is System F, so the reader may ask whether our

developments can be extended gracefully to handle subtyping. We

believe the answer is yes, though with some modification on how

synthetic type arguments are used.

In rule PSyn in Figure 2c, meta-variables Y are instantiated to

types U immediately. In the presence of subtyping this would

make our rules greedy[1, 4] and we would not be able to guaran-

tee synthetic type-argument inference produced locally best types,

possibly causing type inference to fail later in the application spine.

To illustrate this, consider the expression rapp x neg, assuming

rapp : ∀X . ∀Y .X → (X → Y ) → Y , x : N, neg : Z → Z, and

some subtyping relation ≤ where N ≤ Z. Greed causes us to in-

stantiate X with N, but in order to type the expression we would

need to instantiate it to Z instead!

To correct this, we could instead collect these constraints and

solve them onlywhen the function is fully applied to its arguments

(i.e., when we reach a stuck decoration). �is mirrors the require-

ment in [18] that constraints are solved at fully uncurried appli-

cations, maintaining currying but losing a syntactically-obvious

location for synthetic type-argument inference.

Wewould also need to justify our use of contextual type-argument

inference for checking the types of term arguments. Happily, this

does not appear to be an intractable problem like greed: unlike in

synthesis mode, checking mode for applications in [18] does not

require that the synthesized type arguments minimize the result

type of the application, so there is greater freedom in choosing the

instantiations for contextually-inferred type arguments. Hosoya

and Pierce note in [8] that the optimal instantiations for these type

arguments are ones that “maximize the expected type correspond-

ing to the [argument],” as the type that the programmer meant for

the argument (if type correct) will be a subtype of this. �ough



IFL’18, August 2019, Lowell, MA, USA Christopher Jenkins and Aaron Stump

the informal approach they proposed (and later dismissed) for in-

ferring the types of hard-to-synthesize terms differs from ours in

the use of a “slightly ad-hoc” analysis of arguments, it anticipated

contextual type-argument inference and suggests the way forward

for extending contextual type-argument inference to subtyping.

5.2 Bidirectional Type Inference and System F

Predicative Polymorphism. �epopularity of bidirectional type

inference extends well beyond local inference methods. Dunfield

and Krishnaswami[5] introduced a relatively simple and elegant

type inference system for predicative System F using a dedicated

application judgment that instantiates type arguments at term ap-

plications. �eir application judgment was the direct inspiration

of our own, though there are significant differences between the

two. First, our rules distinguish between checking the argument

of an application with a fully known expected type and synthe-

sizing its argument when incomplete information is available to

keep meta-variables spine-local, whereas in their approach meta-

variables and typing constraints are passed downwards to check

term arguments. Our system also contains the additional judg-

ment form ⊢P that theirs does not, again to contain meta-variables

within an application spine.

Approaches to type inference for System F (impredicative and

predicative alike) o�en make use of some form of subsumption

rule to decrease the required type annotations in terms. A popu-

lar basis for such rules is the “more polymorphic than” subtyping

relation of introduced by Odersky and Läufer in [13] which strat-

ifies polymorphic and monomorphic types and is able to perform

deeply nested monomorphic type instantiation. �is line of work

includes [5] above as well as an earlier work by Peyton Jones et.

al. [16], both of which are able to infer arbitrary-rank types in the

se�ing of predicative System F. In contrast our type inference al-

gorithm supports more powerful impredicative polymorphism at

the cost of significant increase in required type annotations.

Impredicative Polymorphism. �e “more-polymorphic-than”

subtyping relation for impredicative System F is undecidable[21],

so type inference systemswishing to use a subsumption rule in this

se�ing must make some compromises. With MLF [10] Le Botlan

and Rémy develop a type language with bounded type quantifi-

cation and an inference system using type instantiation (a covari-

ant restriction of subtyping). Boxy type inference[23] by Vytinio-

tis et al. uses an idea similar to [15] of propagating partial type

information (though with a very different implementation) to al-

low inference for polymorphic types only in checking mode; its

later development in FPH[22] both simplifies the specification for

type inference and extends boxy types to synthesis mode to allow

“boxy monotypes” to be inferred for polymorphic functions. �ese

inference systems add additional constructs (resp. bounded quan-

tifications and boxy types) to System F types in their specification,

whereas we reserve our new constructs (decorated types and proto-

types) for the algorithmic rules only. Our use of first-order match-

ing when typing applications of and arguments to polymorphic

functions can be viewed as a crude form of subtyping via shallow

type instantiation – it is significantly easier for programmers to

understand but at the same time significantly less powerful than

the subtyping used in the type inference systems above.
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