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What is “Local Type Inference”?

@ Introduced by Pierce and Turner in '98

@ Extended by Odersky et al. in '01
@ Uses two main techniques
» Bidirectional typing rules:

» Local type-argument inference:
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What is “Local Type Inference”?

@ Introduced by Pierce and Turner in '98

@ Extended by Odersky et al. in '01
@ Uses two main techniques
» Bidirectional typing rules:

Synthesis mode: Ax:Nat.x 1 Nat — Nat
Checking mode: AX. X U  Nat — Nat
» Local type-argument inference:

Let id:vX. X=X

Type I Nat

Infer X = Nat from 0

and Synthetic
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Why use local type inference?

@ It is a method of partial type inference

» Complete type inference: no annotations ever
(e.g. Damas-Hindley-Milner and ML)
» Undecidable for System F and beyond
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Why use local type inference?

@ It is a method of partial type inference

» Complete type inference: no annotations ever
(e.g. Damas-Hindley-Milner and ML)
Undecidable for System F and beyond

v

o It is user-friendly

Infers many type annotations
Predictable annotation requirements
Better-quality error messages

v

\4

v
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Why use local type inference?

@ It is a method of partial type inference

Complete type inference: no annotations ever
(e.g. Damas-Hindley-Milner and ML)
Undecidable for System F and beyond

v

v

s user-friendly

o It

v

Infers many type annotations
Predictable annotation requirements
Better-quality error messages

\4

v

o It is implementer-friendly

Relatively simple implementation
Extensible: new features added without threatening decidability

v

\4
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Limitations

Local type inference in its published form can sometimes still require
“silly” type annotations, i.e. those for which there should be enough
contextual information to omit

Let pair VX, Y. X =Y = XxY
Type pair (Ax.x) 0
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contextual information to omit

Let pair VX, Y. X =Y = XxY
Type pair (Ax.x) 0 [
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@ ... but we would expect to check it against a type
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Limitations

Local type inference in its published form can sometimes still require
“silly” type annotations, i.e. those for which there should be enough
contextual information to omit

Let pair VX, Y. X =Y = XxY
Type pair (Ax.x) 0 [
Type pair (Ax.x) 0 |l Nat — Nat x Nat

@ We do not expect to locally synthesize a type

@ ... but we would expect to check it against a type
» We could call this “contextual” type-argument inference.

@ Unfortunately, this is not done in the two major published systems
» Popular “unofficial” extension (used in e.g. Scala, Rust)
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Limitations (cont.)

@ Usually uses “fully-uncurried” function applications

f(tl, . t,,)

» Maximize available info at a single application
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Limitations (cont.)

@ Usually uses “fully-uncurried” function applications

f(ty, .., t,)

» Maximize available info at a single application

@ Usually without partial type application ( “all-or-nothing”)

f[Tl, ey Tm](tl, ey t,,)
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Our Contributions

@ Type inference for some expressions not typed by other variants of
local type inference, by using contextual type-argument inference

@ Precise, specificational account of this technique

@ Better support function currying and partial type applications by
being “spine-local.”
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Our Contributions

@ Type inference for some expressions not typed by other variants of
local type inference, by using contextual type-argument inference

T
f ty &, L3 U T
@ Precise, specificational account of this technique

@ Better support function currying and partial type applications by
being “spine-local.”
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Our type system(s)

Two type systems: one specificational and one algorithmic

Spec. system abstracts contextual type-argument inference
» Non-deterministic

Sanity checks for spec. system, annotation requirements

Equivalence of the two systems
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Outline

© The Specificational System
@ Terms and Terminology
@ Type Inference
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Our Setting

@ The setting for our type inference system is (impredicative) System F
@ Internal and external term languages:

» internal: all type annotations and arguments are provided
» external: some of these can be elided

@ Type inference viewed as relation between these two langauges
» Elaborate external ~ internal terms
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Language Syntax

Types S, T,U,V:=X,Y,Z|S—T|YX.T|SxT

Contexts M= - |LX|MHLx:T
Internal Terms e,pi=x|Ax:T.e|AX.e|eée |e[T]
External Terms ti=x | Ax:T.t|AX.t]tt]¢t[T]
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Terminology
@ Application head: variable or abstraction

x, ANX.t, Ax.t
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Terminology

@ Application head: variable or abstraction
x, ANX.t, Ax.t

@ Application spine: head followed by seq. of term, type arguments

vs (((x t1) 12) t3)
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Terminology

@ Application head: variable or abstraction
x, ANX.t, Ax.t

@ Application spine: head followed by seq. of term, type arguments

vs (((x t1) 12) t3)

@ Applicand: Term in the function position of an application

t1in t1 t
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Terminology
@ Application head: variable or abstraction
x, NX.t, Ax.t
@ Application spine: head followed by seq. of term, type arguments
vs (((x t1) 12) t3)
@ Applicand: Term in the function position of an application
t1int; t
o Maximal application: spine that is not an applicand

Not max x t1 t t3
Max Xt tht3
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Example — High Level Goals

Example from the intro: ' -y pair (Ax.x) 0: (Nat — Nat) x Nat

@ “Under context I', the expression checks against the given type”
(Where pair and 0 are suitably defined)
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Example — High Level Goals

Example from the intro: ' -y pair (Ax.x) 0: (Nat — Nat) x Nat

@ “Under context I', the expression checks against the given type”
(Where pair and 0 are suitably defined)

e System will elaborate to pair[Nat — Nat][Nat] (A x: Nat.x) 0
For illustration, example shows synthetic and contextual type-arg.
inference
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Example — High Level Goals

Example from the intro: ' -y pair (Ax.x) 0: (Nat — Nat) x Nat

@ “Under context I', the expression checks against the given type”
(Where pair and 0 are suitably defined)

e System will elaborate to pair[Nat — Nat|[Nat] (A x:Nat.x) 0
For illustration, example shows synthetic and contextual type-arg.
inference

@ ... however, elaboration clutters the rules, so omitted for the example
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Spine Judgment

[FPt: T~o

@ “Spine t partially synthesizes type T with contextual type-args. o"
o Big idea: enforce locality, contextuality at maximal applications
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Spine Judgment
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o Big idea: enforce locality, contextuality at maximal applications

[FPt: T~o

> | cage meta-variables ‘ to just the spine with spine judgment (locality)
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Spine Judgment

@ “Spine t partially synthesizes type T with contextual type-args. o"
o Big idea: enforce locality, contextuality at maximal applications

[FPt: T~o

> | cage meta-variables ‘ to just the spine with spine judgment (locality)

» require meta-variable “guesses’ justified contextuality

Jenkins, Stump (CS, U. lowa)
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Spine Judgment (Ex.)

I P pair (Ax.x) 0: X x Nat ~ [Nat — Nat/X]
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Spine Judgment (Ex.)

I P pair (Ax.x) 0: X x Nat ~ [Nat — Nat/X]

Base case: synthesize type for head

M4 pair :VX,Y. X =Y =3 XXxY
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Spine Judgment (Ex.)

I P pair (Ax.x) 0: X x Nat ~ [Nat — Nat/X]

Begin walking up spine

P pair :VX,Y. X =Y = X x Y ~ 0y (0i4 is identity subst.)
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Spine Judgment (Ex.)

I FP pair (Ax.x) 0: X x Nat ~ [Nat — Nat/X]

Encounter term app. with missing type arg.

P pair :VX,Y. X =Y = X x Y ~ 0y (0i4 is identity subst.)
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Spine Judgment (Ex.)

I FP pair (Ax.x) 0: X x Nat ~ [Nat — Nat/X]

Defer to last judgment form: application judgment

M= (vVX,Y. X =Y =3 XxY,04) (Ax.x): Y = X XY ~ [Nat — Nat/X]
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Application Judgment

T (T,0)-t: T~ 0o

@ “An applicand of type T with ctxt. solutions ¢ can be applied to
argument t, producing result type T’ and result ctxt. solutions "
@ Infer missing type-args in term apps., synthetically and contextually

@ Type application when arrow revealed
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Application Judgment

T (T,0)-t: T~ 0o

@ “An applicand of type T with ctxt. solutions ¢ can be applied to
argument t, producing result type T’ and result ctxt. solutions "
@ Infer missing type-args in term apps., synthetically and contextually
> the whether and what of contextual inference is non-deterministic

@ Type application when arrow revealed
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Application Judgment (Ctx.)

|F|—' (VXY X =Y =5 XxY,00) - Ax.x) 1 Y = X x Y ~ [Nat — Nat/X]|
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Application Judgment (Ctx.)

|F|—' (VXY X =Y =5 XxY,04) Ax.x) 1 Y = X x Y ~ [Nat — Nat/X]|

Make a contextual guess for X, Nat — Nat
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Application Judgment (Ctx.)

|F|—' (VY. X =Y = X x Y, [Nat — Nat/X]) - (Ax.x): Y = X x Y ~» [Nat — Nat/X]|
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Application Judgment (Ctx.)

|F|—' (VY.X =Y = X x Y, [Nat — Nat/X]) - (Ax.x): Y = X x Y ~» [Nat — Nat/X]|

Non-deterministically choose to instantiate Y synthetically
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Application Judgment (Ctx.)

|I'|—' (X =Y — X x Y, [Nat — Nat/X]) - (Ax.x): Y = X x Y ~» [Nat — Nat/X]|
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Application Judgment (Ctx.)

|I'|—' (X =Y — X x Y, [Nat — Nat/X]) - (Ax.x): Y = X x Y ~» [Nat — Nat/X]|

Reveal an arrow in applicand type
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Application Judgment (Arrow)

Two cases arise when we reveal an arrow.
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Application Judgment (Arrow)

Two cases arise when we reveal an arrow.

e Expected type of arg. is fully known (from spine head, contextual
type, previous arguments)
Use checking mode for arg.
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Application Judgment (Arrow)

Two cases arise when we reveal an arrow.

e Expected type of arg. is fully known (from spine head, contextual
type, previous arguments)
Use checking mode for arg.

@ Expected type has unsolved meta-vars
Use synthesis mode for arg. to learn instantiations
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Application Judgment (Ctx)

|I’|—' (X Y — X x Y,[Nat — Nat/X]) - (Ax.x): Y = X x Y ~ [Nat — Nat/X]|
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Application Judgment (Ctx)

|I’|—' (X =Y = X x Y, [Nat — Nat/X]) - (Ax.x): Y = X x Y ~ [Nat — Nat/X]|

Type is fully known: T =y Ax.x : Nat — Nat
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Application Judgment (Ctx)

|I’|—' (X =Y — X x Y, [Nat — Nat/X]) - (Ax.x): Y — X x Y ~ [Nat — Nat/X]|

Produced result type of the app, with ctxt. solution
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Application Judgment (Syn)

@ Last part of the spine judgment is typing pair (A x.x) to 0
@ We defer again to application judgment
@ Y will be inferred synthetically from 0
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Application Judgment (Syn)

[T (Y =X x Y, [Nat — Nat/X])-0: X x Nat - [Nat — Nat/X]|
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Application Judgment (Syn)

[T (Y X x Y, [Nat — Nat/X])-0: X x Nat - [Nat — Nat/X]|

Arrow revealed
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Application Judgment (Syn)

[T (Y =X x Y, [Nat — Nat/X])-0: X x Nat - [Nat — Nat/X]|

Incomplete info. for expected arg. type Y
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Application Judgment (Syn)

[T (Y =X x Y, [Nat — Nat/X])-0: X x Nat - [Nat — Nat/X]|

Synthesize type for arg. (note Y not passed down!)

Mhg0: Nat
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Application Judgment (Syn)

[T (Y =X x Y, [Nat — Nat/X])-0: X x Nat - [Nat — Nat/X]|

Must match expectation Y, provide instantiation [Nat/Y]

M Fp 0 [Nat/Y]Y
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Application Judgment (Syn)

[T (Y = X x Y,[Nat - Nat/X])-0: X x [Nat/Y] Y - [Nat — Nat/X]|

Use syn. type-arg in result type of app
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Enforcement at Maximal Application

I P pair (Ax.x) 0: X x Nat ~» [Nat — Nat/X]

Earlier | said “enforce locality, contextuality...” how?
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Enforcement at Maximal Application

I P pair (Ax.x) 0: X x Nat ~» [Nat — Nat/X]

dom([Nat — Nat/X])=X=MV([, X x Nat)

Earlier | said “enforce locality, contextuality...” how?

@ All remaining meta-variables are solved by o
MV(T', T): meta-vars of T wrt declared variables of I
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Enforcement at Maximal Application

I P pair (Ax.x) 0: X x Nat ~» [Nat — Nat/X]
dom([Nat — Nat/X])=X=MV([, X x Nat)

[Nat — Nat/X] (X x Nat)=(Nat — Nat) x Nat

Earlier | said “enforce locality, contextuality...” how?

@ All remaining meta-variables are solved by o
MV(T', T): meta-vars of T wrt declared variables of I

@ Contextual solutions really are contextual
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Enforcement at Maximal Application

I P pair (Ax.x) 0: X x Nat ~» [Nat — Nat/X]
dom([Nat — Nat/X])=X=MV([, X x Nat)

[Nat — Nat/X] (X x Nat)=(Nat — Nat) x Nat
Iy pair (Ax.x) 0: (Nat — Nat) x Nat

Earlier | said “enforce locality, contextuality...” how?

@ All remaining meta-variables are solved by o
MV(T', T): meta-vars of T wrt declared variables of I
@ Contextual solutions really are contextual

@ We clear these conditions and can type the expression

Jenkins, Stump (CS, U. lowa) Spine-local Type Inference IFL '18 23 /33



Outline

© Discussion
@ Specificational System Properties
@ Algorithmic System Properties
o Future Work
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Specificational System Properties

Sanity check wrt. internal language (System F; Tt : T)
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Specificational System Properties

Sanity check wrt. internal language (System F; Tt : T)

@ Soundness:

FEst: T~ eimpliesl-e: T

@ Trivial completeness:

NFe: T implieslpe: T~ e
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Specificational System Properties (cont.)

o Typeability of the external language (i.e. type annotation
requirements)

@ Assume [ e : T. Erase binder, type args to get external term t.
@ [ 4 t: T~ ewhen given
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Specificational System Properties (cont.)

o Typeability of the external language (i.e. type annotation
requirements)
@ Assume [ e : T. Erase binder, type args to get external term t.
@ [ 4 t: T~ ewhen given
» Binder annotations to As when its context or spine-context lack this
info
» Instantiations for “phantom” type-arguments
vYX,Y. X=X
» Enough info to “see” a term or type application
e.g. applicand of type X given [S] or t

Jenkins, Stump (CS, U. lowa) Spine-local Type Inference IFL '18 26 / 33



Algorithmic system

@ “Prototypes” track expected result type, num args to spine head

? —7 — Nat
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Algorithmic system

@ “Prototypes” track expected result type, num args to spine head

? —7 — Nat

@ Matched against head type, produces a “decorated” function type

VX=Nat.VY=Y.X=>Y =X
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Prototype Matching (Ex. 1)

Check pair (A x.x) 0 against (Nat — Nat) x Nat
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Prototype Matching (Ex. 1)

Check pair (A x.x) 0 against (Nat — Nat) x Nat

Prototype: ? - ?— (Nat — Nat)x Nat
Head type: VX. vY. X—= Y= X% Y
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Prototype Matching (Ex. 1)

Check pair (A x.x) 0 against (Nat — Nat) x Nat

Prototype: ? - ?— (Nat — Nat)x Nat
Head type: vV X. vY. X—= Y= X% Y
Decoration:  VX=Nat — Nat. VY=Nat. X—= Y — Xx Y
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Prototype Matching (Ex. 1)

Check pair (A x.x) 0 against (Nat — Nat) x Nat

Prototype: 7= 7=
Head type: V X. VY. X— Y=
Decoration: VX=Nat — Nat. VY=Nat. X—> Y —

No “guessing” for contextual type-args.

Jenkins, Stump (CS, U. lowa) Spine-local Type Inference
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Prototype Matching (Ex. 2)

Careful handling needed when prototype arity exceeds the spine head’s

Check id suc 0 against type Nat
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Prototype Matching (Ex. 2)

Careful handling needed when prototype arity exceeds the spine head’s

Check id suc 0 against type Nat
Prototype: ?7— ? — Nat

Head type: VX X = X
Decoration: VX=X .X— (X, ?— Nat)

@ Don't know how to instantiate X, save for later

@ From synthesis instantiate X, then compare
Match Nat — Nat with 7 — Nat once we reach first arg. suc

Jenkins, Stump (CS, U. lowa) Spine-local Type Inference IFL '18 29 /33



Algorithmic Systems Properties

Tlhst:Twe

o Algorithmic:
The system is given as a set of syntax-directed inference rules
o Equivalent to Specification:
» Soundness:

MNFst: T~ eimpliesl5t: T~ e

» Completeness:

MFst: T~eimpliesTlFst: T~ e
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Algorithmic Systems Properties

Tlhst:Twe

o Algorithmic:
The system is given as a set of syntax-directed inference rules
o Equivalent to Specification:
» Soundness:
MNFst: T~ eimpliesl5t: T~ e

» Completeness:

MFst: T~eimpliesTlFst: T~ e

@ ... even though we never mentioned prototype matching or “stuck”
decorations in the spec!
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Algorithmic System Properties

LGP t: W0
M (W,o)-t: W o
XIF=T:=P = (W,0)
Spec. system Alg. system

TP t:Two
N (T,o)-t: T ~ o
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Algorithmic System Properties

TFP t: T w0

N (T,o)-t: T ~ o

M-

Spec. system

Jenkins, Stump (CS, U. lowa)

FHt: wo
(o)t ~ O

Spine-local Type Inference

Alg. system




Future Work

Type inference algorithm is implemented in Cedille, a language with
impredicativity, dependent types, and dependent intersections. A local
type inference system will be a good foundation for considering the
following extensions:
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Future Work

Type inference algorithm is implemented in Cedille, a language with
impredicativity, dependent types, and dependent intersections. A local
type inference system will be a good foundation for considering the
following extensions:

@ partial type propagation a la “Colored Local Type Inference”
@ higher-order type inference using matching
@ inference for erased term arguments (Cedille feature)

@ subsumption based on some form of “type containment”

Jenkins, Stump (CS, U. lowa) Spine-local Type Inference IFL '18

32/ 33



Thanks!

Questions?
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