Spine-local Type Inference

Christopher Jenkins and Aaron Stump

Computer Science University of Iowa

IFL '18

Outline

- Background and Motivation
 - Local Type Inference
 - Spine-local Type Inference
- The Specificational System
 - Terms and Terminology
 - Type Inference
- Discussion
 - Specificational System Properties
 - Algorithmic System Properties
 - Future Work

Outline

- Background and Motivation
 - Local Type Inference
 - Spine-local Type Inference
- 2 The Specificational System
 - Terms and Terminology
 - Type Inference
- 3 Discussion
 - Specificational System Properties
 - Algorithmic System Properties
 - Future Work

What is "Local Type Inference"?

- Introduced by Pierce and Turner in '98
- Extended by Odersky et al. in '01
- Uses two main techniques
 - Bidirectional typing rules:

Local type-argument inference:

What is "Local Type Inference"?

- Introduced by Pierce and Turner in '98
- Extended by Odersky et al. in '01
- Uses two main techniques
 - ► Bidirectional typing rules:

```
Synthesis mode: \lambda x: Nat. x \uparrow Nat \rightarrow Nat
Checking mode: \lambda x. x \lor Nat \rightarrow Nat
```

► Local type-argument inference:

What is "Local Type Inference"?

- Introduced by Pierce and Turner in '98
- Extended by Odersky et al. in '01
- Uses two main techniques
 - ► Bidirectional typing rules:

Synthesis mode:
$$\lambda x: Nat. x \uparrow Nat \rightarrow Nat$$

Checking mode: $\lambda x. x \downarrow Nat \rightarrow Nat$

► Local type-argument inference:

Let
$$id : \forall X. X \rightarrow X$$

Type $id \ 0$ $\uparrow Nat$
Infer $X = Nat$ from 0

Local and Synthetic

Why use local type inference?

- It is a method of partial type inference
 - Complete type inference: no annotations ever (e.g. Damas-Hindley-Milner and ML)
 - Undecidable for System F and beyond

Why use local type inference?

- It is a method of partial type inference
 - Complete type inference: no annotations ever (e.g. Damas-Hindley-Milner and ML)
 - Undecidable for System F and beyond
- It is user-friendly
 - Infers many type annotations
 - Predictable annotation requirements
 - Better-quality error messages

Why use local type inference?

- It is a method of partial type inference
 - Complete type inference: no annotations ever (e.g. Damas-Hindley-Milner and ML)
 - Undecidable for System F and beyond
- It is user-friendly
 - Infers many type annotations
 - Predictable annotation requirements
 - Better-quality error messages
- It is implementer-friendly
 - Relatively simple implementation
 - Extensible: new features added without threatening decidability

Let
$$pair: \forall X, Y.X \rightarrow Y \rightarrow X \times Y$$

Type $pair(\lambda x.x) 0$

Local type inference in its published form can sometimes still require "silly" type annotations, i.e. those for which there *should be* enough contextual information to omit

Let
$$pair: \forall X, Y. X \rightarrow Y \rightarrow X \times Y$$

Type $pair (\lambda x. x) 0 \uparrow ???$

• We do not expect to locally synthesize a type

Local type inference in its published form can sometimes still require "silly" type annotations, i.e. those for which there *should be* enough contextual information to omit

Let
$$pair: \forall X, Y. X \rightarrow Y \rightarrow X \times Y$$

Type $pair(\lambda x. x) 0 \uparrow ???$

• We do not expect to locally synthesize a type

Let
$$pair: \forall X, Y.X \rightarrow Y \rightarrow X \times Y$$

Type $pair (\lambda x.x) \ 0 \qquad \uparrow \quad ???$
Type $pair (\lambda x.x) \ 0 \qquad \downarrow \quad Nat \rightarrow Nat \times Nat$

- We do not expect to locally synthesize a type
- ... but we would expect to check it against a type

Let
$$pair: \forall X, Y. X \rightarrow Y \rightarrow X \times Y$$

Type $pair (\lambda x. x) \ 0 \qquad \uparrow ???$
Type $pair (\lambda x. x) \ 0 \qquad \downarrow Nat \rightarrow Nat \times Nat$

- We do not expect to locally synthesize a type
- ... but we would expect to check it against a type
 - ▶ We could call this "contextual" type-argument inference.

Let
$$pair: \forall X, Y.X \rightarrow Y \rightarrow X \times Y$$

Type $pair (\lambda x.x) \ 0 \qquad \uparrow \quad ???$
Type $pair (\lambda x.x) \ 0 \qquad \downarrow \quad Nat \rightarrow Nat \times Nat$

- We do not expect to locally synthesize a type
- ... but we would expect to check it against a type
 - ▶ We could call this "contextual" type-argument inference.
- Unfortunately, this is not done in the two major published systems
 - ▶ Popular "unofficial" extension (used in e.g. Scala, Rust)

Limitations (cont.)

• Usually uses "fully-uncurried" function applications

$$f(t_1, ..., t_n)$$

Maximize available info at a single application

Limitations (cont.)

Usually uses "fully-uncurried" function applications

$$f(t_1, ..., t_n)$$

- Maximize available info at a single application
- Usually without partial type application ("all-or-nothing")

$$f[T_1,...,T_m](t_1,...,t_n)$$

- Precise, specificational account of this technique
- Better support function currying and partial type applications by being "spine-local."

$$f t_1^{\uparrow} t_2^{\uparrow} t_3^{\downarrow}$$

- Precise, specificational account of this technique
- Better support function currying and partial type applications by being "spine-local."

$$f t_1^{\uparrow} t_2^{\downarrow} t_3^{\downarrow} \downarrow T$$

- Precise, specificational account of this technique
- Better support function currying and partial type applications by being "spine-local."

$$f \ t_1^{\uparrow} \ t_2^{\Downarrow} \ t_3^{\Downarrow} \ \Downarrow \ T$$

- Precise, specificational account of this technique
- Better support function currying and partial type applications by being "spine-local."

$$f[S, T, V](t_1, t_2, t_3)$$

$$f \ t_1^{\uparrow} \ t_2^{\Downarrow} \ t_3^{\Downarrow} \ \Downarrow \ T$$

- Precise, specificational account of this technique
- Better support function currying and partial type applications by being "spine-local."

$$f[S][T][V] t_1 t_2 t_3$$

$$f \ t_1^{\uparrow} \ t_2^{\Downarrow} \ t_3^{\Downarrow} \ \Downarrow \ T$$

- Precise, specificational account of this technique
- Better support function currying and partial type applications by being "spine-local."

$$f[S]$$
 $t_1 t_2$

Our type system(s)

- Two type systems: one specificational and one algorithmic
- Spec. system abstracts contextual type-argument inference
 - Non-deterministic
- Sanity checks for spec. system, annotation requirements
- Equivalence of the two systems

Outline

- Background and Motivation
 - Local Type Inference
 - Spine-local Type Inference
- The Specificational System
 - Terms and Terminology
 - Type Inference
- 3 Discussion
 - Specificational System Properties
 - Algorithmic System Properties
 - Future Work

Our Setting

- The setting for our type inference system is (impredicative) System F
- Internal and external term languages:
 - internal: all type annotations and arguments are provided
 - external: some of these can be elided
- Type inference viewed as relation between these two langauges
 - ► Elaborate external internal terms

Types
$$S, T, U, V ::= X, Y, Z \mid S \rightarrow T \mid \forall X. T \mid S \times T$$
Contexts $\Gamma ::= \cdot \mid \Gamma, X \mid \Gamma, x : T$
Internal Terms $e, p ::= x \mid \lambda x : T. e \mid \Lambda X. e \mid e \mid e' \mid e[T]$
External Terms $t ::= x \mid \lambda x : T. t \mid \Lambda X. t \mid t \mid t' \mid t[T]$

Types
$$S, T, U, V ::= X, Y, Z \mid S \rightarrow T \mid \forall X. T \mid S \times T$$
Contexts $\Gamma ::= \cdot \mid \Gamma, X \mid \Gamma, x : T$
Internal Terms $e, p ::= x \mid \lambda x : T. e \mid \Lambda X. e \mid e \mid e' \mid e[T]$
External Terms $t ::= x \mid \lambda x : T. t \mid \Lambda X. t \mid t \mid t' \mid t[T]$

Pair types for illustration

Types
$$S, T, U, V ::= X, Y, Z \mid S \rightarrow T \mid \forall X. T \mid S \times T$$
Contexts $\Gamma ::= \cdot \mid \Gamma, X \mid \Gamma, x : T$
Internal Terms $e, p ::= x \mid \lambda x : T. e \mid \Lambda X. e \mid e \mid e' \mid e[T]$
External Terms $t ::= x \mid \lambda x : T. t \mid \Lambda X. t \mid t \mid t' \mid t[T]$

$$\mid \lambda x. t$$

- Pair types for illustration
- Will try to infer binder annotations and type arguments in external language

Types
$$S, T, U, V ::= X, Y, Z \mid S \rightarrow T \mid \forall X. T \mid S \times T$$
Contexts $\Gamma ::= \cdot \mid \Gamma, X \mid \Gamma, x : T$
Internal Terms $e, p ::= x \mid \lambda x : T. e \mid \Lambda X. e \mid e \mid e' \mid e[T]$
External Terms $t ::= x \mid \lambda x : T. t \mid \Lambda X. t \mid t \mid t' \mid t[T]$
 $\mid \lambda x. t$

- Pair types for illustration
- Will try to infer binder annotations and type arguments in external language

• Application head: variable or abstraction

$$x$$
, ΛX . t , λx . t

• Application head: variable or abstraction

$$x$$
, ΛX . t , λx . t

• Application spine: head followed by seq. of term, type arguments

$$x$$
 t_1 t_2 t_3 vs $(((x t_1) t_2) t_3)$

• Application head: variable or abstraction

$$x$$
, ΛX . t , λx . t

• Application spine: head followed by seq. of term, type arguments

$$x$$
 t_1 t_2 t_3 vs $(((x t_1) t_2) t_3)$

• Applicand: Term in the function position of an application

$$t_1$$
 in t_1 t_2

Application head: variable or abstraction

$$x$$
, $\Lambda X.t$, $\lambda x.t$

• Application spine: head followed by seq. of term, type arguments

$$x | t_1 t_2 t_3$$
 vs $(((x t_1) t_2) t_3)$

• Applicand: Term in the function position of an application

$$t_1$$
 in t_1 t_2

Maximal application: spine that is not an applicand

Not max
$$\frac{x \ t_1 \ t_2}{x \ t_1 \ t_2} \ t_3$$

Max $\frac{x \ t_1 \ t_2}{x \ t_1} \ t_2$

Example - High Level Goals

Example from the intro: $\Gamma \vdash_{\Downarrow} pair (\lambda x. x) \ 0 : (Nat \rightarrow Nat) \times Nat$

"Under context Γ, the expression checks against the given type"
 (Where pair and 0 are suitably defined)

Example - High Level Goals

Example from the intro: $\Gamma \vdash_{\Downarrow} pair (\lambda x. x) \ 0 : (Nat \rightarrow Nat) \times Nat$

- "Under context Γ, the expression checks against the given type"
 (Where pair and 0 are suitably defined)
- System will elaborate to $pair[Nat \rightarrow Nat][Nat]$ ($\lambda x: Nat. x$) 0 For illustration, example shows synthetic and contextual type-arg. inference

Example - High Level Goals

Example from the intro: $\Gamma \vdash_{\Downarrow} pair (\lambda x. x) \ 0 : (Nat \rightarrow Nat) \times Nat$

- "Under context Γ, the expression checks against the given type"
 (Where pair and 0 are suitably defined)
- System will elaborate to $pair[Nat \rightarrow Nat][Nat]$ ($\lambda x: Nat. x$) 0 For illustration, example shows synthetic and contextual type-arg. inference

Example - High Level Goals

Example from the intro: $\Gamma \vdash_{\Downarrow} pair (\lambda x. x) \ 0 : (Nat \rightarrow Nat) \times Nat$

- "Under context Γ, the expression checks against the given type"
 (Where pair and 0 are suitably defined)
- System will elaborate to $pair[Nat \rightarrow Nat][Nat]$ ($\lambda x : Nat. x$) 0 For illustration, example shows synthetic and contextual type-arg. inference
- ... however, elaboration clutters the rules, so omitted for the example

Spine Judgment

$$\Gamma \vdash^{\mathsf{P}} t : T \leadsto \sigma$$

- "Spine t partially synthesizes type T with contextual type-args. σ "
- Big idea: enforce locality, contextuality at maximal applications

Spine Judgment

$$\Gamma \vdash^{\mathsf{P}} t : T \leadsto \sigma$$

- "Spine t partially synthesizes type T with contextual type-args. σ "
- Big idea: enforce locality, contextuality at maximal applications
 - cage meta-variables to just the spine with spine judgment (locality)

$$f | \begin{array}{c|c} X & Y & Z \\ \hline f & t_1 ... t_n \end{array}$$

Spine Judgment

$$\Gamma \vdash^{\mathsf{P}} t : T \leadsto \sigma$$

- "Spine t partially synthesizes type T with contextual type-args. σ "
- Big idea: enforce locality, contextuality at maximal applications
 - ▶ cage meta-variables to just the spine with spine judgment (*locality*)
 - require meta-variable "guesses" justified contextuality

$$f \stackrel{X}{\mid} \stackrel{Y}{t_1...t_n}$$

$$\Gamma \vdash^{\mathsf{P}} \textit{pair} \ (\lambda \, x. \, x) \ 0 : X \times \textit{Nat} \leadsto [\textit{Nat} \rightarrow \textit{Nat}/X]$$

$$\boxed{ \Gamma \vdash^{\mathsf{P}} \textit{pair} (\lambda \, x. \, x) \; 0 : X \times \textit{Nat} \leadsto [\textit{Nat} \rightarrow \textit{Nat}/X] }$$

Base case: synthesize type for head

$$\Gamma \vdash_{\Uparrow} pair : \forall X, Y. X \rightarrow Y \rightarrow X \times Y$$

$$\boxed{ \Gamma \vdash^{\mathsf{P}} \textit{pair} (\lambda \, x. \, x) \; 0 : X \times \textit{Nat} \leadsto [\textit{Nat} \rightarrow \textit{Nat}/X] }$$

Begin walking up spine

$$\Gamma \vdash^{\mathsf{P}} \textit{pair} : \forall X, Y. X \to Y \to X \times Y \leadsto \sigma_{id} \ (\sigma_{id} \ \text{is identity subst.})$$

$$\boxed{\Gamma \vdash^{\mathsf{P}} \textit{pair} (\lambda \, x. \, x) \; 0 : X \times \textit{Nat} \leadsto [\textit{Nat} \rightarrow \textit{Nat}/X]}$$

Encounter term app. with missing type arg.

$$\Gamma \vdash^{\mathsf{P}} \textit{pair} : \forall X, Y. X \to Y \to X \times Y \leadsto \sigma_{id} \ (\sigma_{id} \ \text{is identity subst.})$$

$$\Gamma \vdash^{\mathsf{P}} \textit{pair} (\lambda x. x) \ 0 : X \times \textit{Nat} \leadsto [\textit{Nat} \rightarrow \textit{Nat}/X]$$

Defer to last judgment form: application judgment

$$\Gamma \vdash^{\cdot} (\forall X, Y. X \to Y \to X \times Y, \sigma_{id}) \cdot (\lambda x. x) : Y \to X \times Y \rightsquigarrow [\mathit{Nat} \to \mathit{Nat}/X]$$

Application Judgment

$$\Gamma \vdash (T, \sigma) \cdot t : T' \leadsto \sigma'$$

- "An applicand of type T with ctxt. solutions σ can be applied to argument t, producing result type T' and result ctxt. solutions σ' "
- Infer missing type-args in term apps., synthetically and contextually
- Type application when arrow revealed

Application Judgment

$$\Gamma \vdash (T, \sigma) \cdot t : T' \leadsto \sigma'$$

- "An applicand of type T with ctxt. solutions σ can be applied to argument t, producing result type T' and result ctxt. solutions σ' "
- Infer missing type-args in term apps., synthetically and contextually
 - ▶ the whether and what of contextual inference is non-deterministic
- Type application when arrow revealed

$$\Gamma \vdash^{\cdot} (\forall X, Y, X \to Y \to X \times Y, \sigma_{id}) \cdot (\lambda x. x) : Y \to X \times Y \leadsto [Nat \to Nat/X]$$

$$\Gamma \vdash^{\cdot} (\forall X, Y. X \to Y \to X \times Y, \sigma_{id}) \cdot (\lambda x. x) : Y \to X \times Y \rightsquigarrow [Nat \to Nat/X]$$

Make a contextual guess for X, $Nat \rightarrow Nat$

$$\Gamma \vdash^{\cdot} (\forall \ Y. \ X \rightarrow Y \rightarrow X \times Y, [\textit{Nat} \rightarrow \textit{Nat}/X]) \cdot (\lambda \ x. \ x) : Y \rightarrow X \times Y \rightsquigarrow [\textit{Nat} \rightarrow \textit{Nat}/X]$$

$$\Gamma \vdash^{\cdot} (\forall \ Y.\ X \to Y \to X \times Y, [\mathit{Nat} \to \mathit{Nat}/X]) \cdot (\lambda x.\ x) : Y \to X \times Y \leadsto [\mathit{Nat} \to \mathit{Nat}/X]$$

Non-deterministically choose to instantiate Y synthetically

$$\Gamma \vdash^{\cdot} (X \to Y \to X \times Y, [\mathsf{Nat} \to \mathsf{Nat}/X]) \cdot (\lambda x.x) : Y \to X \times Y \leadsto [\mathsf{Nat} \to \ \mathsf{Nat}/X]$$

$$\Gamma \vdash^{\cdot} (X \to Y \to X \times Y, [\mathit{Nat} \to \mathit{Nat}/X]) \cdot (\lambda \, x. \, x) : Y \to X \times Y \leadsto [\mathit{Nat} \to \ \mathit{Nat}/X]$$

Reveal an arrow in applicand type

Application Judgment (Arrow)

Two cases arise when we reveal an arrow.

Application Judgment (Arrow)

Two cases arise when we reveal an arrow.

 Expected type of arg. is fully known (from spine head, contextual type, previous arguments)
 Use checking mode for arg.

Application Judgment (Arrow)

Two cases arise when we reveal an arrow.

- Expected type of arg. is fully known (from spine head, contextual type, previous arguments)
 Use checking mode for arg.
- Expected type has unsolved meta-vars
 Use synthesis mode for arg. to learn instantiations

$$\boxed{\Gamma \vdash^{\cdot} (X \to Y \to X \times Y, [\mathit{Nat} \to \mathit{Nat}/X]) \cdot (\lambda \, x. \, x) : Y \to X \times Y \leadsto [\mathit{Nat} \to \ \mathit{Nat}/X]}$$

$$\boxed{\Gamma \vdash^{\cdot} (X \to Y \to X \times Y, [\textit{Nat} \to \textit{Nat}/X]) \cdot (\lambda x. x) : Y \to X \times Y \leadsto [\textit{Nat} \to \; \textit{Nat}/X]}$$

Type is fully known: $\Gamma \vdash_{\Downarrow} \lambda x.x : Nat \rightarrow Nat$

$$\boxed{\Gamma \vdash^{\cdot} (X \to Y \to X \times Y, [\mathsf{Nat} \to \mathsf{Nat}/X]) \cdot (\lambda \, x. \, x) : Y \to X \times Y \leadsto [\mathsf{Nat} \to \ \mathsf{Nat}/X]}$$

Produced result type of the app, with ctxt. solution

- Last part of the spine judgment is typing pair $(\lambda x. x)$ to 0
- We defer again to application judgment
- Y will be inferred synthetically from 0

$$\Gamma \vdash^{\cdot} (Y \to X \times Y, [\mathit{Nat} \to \mathit{Nat}/X]) \cdot 0 : X \times \mathit{Nat} \leadsto [\mathit{Nat} \to \mathit{Nat}/X]$$

$$\Gamma \vdash (Y \rightarrow X \times Y, [Nat \rightarrow Nat/X]) \cdot 0 : X \times Nat \rightsquigarrow [Nat \rightarrow Nat/X]$$

Arrow revealed

$$\boxed{\Gamma \vdash (Y \rightarrow X \times Y, [Nat \rightarrow Nat/X]) \cdot 0 : X \times Nat \leadsto [Nat \rightarrow Nat/X]}$$

Incomplete info. for expected arg. type Y

$$\Gamma \vdash^{\cdot} (Y \to X \times Y, [Nat \to Nat/X]) \cdot 0 : X \times Nat \leadsto [Nat \to Nat/X]$$

Synthesize type for arg. (note Y not passed down!)

 $\Gamma \vdash_{\Uparrow} 0 : \textit{Nat}$

$$\Gamma \vdash (Y \to X \times Y, [Nat \to Nat/X]) \cdot 0 : X \times Nat \leadsto [Nat \to Nat/X]$$

Must match expectation Y, provide instantiation [Nat/Y]

$$\Gamma \vdash_{\Uparrow} 0 : [Nat/Y]Y$$

$$\boxed{\Gamma \vdash^{\cdot} (Y \to X \times Y, [\mathit{Nat} \to \mathit{Nat}/X]) \cdot 0 : X \times [\mathit{Nat}/Y] \ Y \leadsto [\mathit{Nat} \to \mathit{Nat}/X]}$$

Use syn. type-arg in result type of app

$$\Gamma \vdash^{\mathsf{P}} \textit{pair} (\lambda x. x) \ 0 : X \times \textit{Nat} \leadsto [\textit{Nat} \rightarrow \textit{Nat}/X]$$

Earlier I said "enforce locality, contextuality..." how?

$$\Gamma \vdash^{\mathsf{P}} pair \ (\lambda x. x) \ 0 : X \times \mathit{Nat} \leadsto [\mathit{Nat} \to \mathit{Nat}/X]$$

$$dom([\mathit{Nat} \to \mathit{Nat}/X]) = X = \mathit{MV}(\Gamma, X \times \mathit{Nat})$$

Earlier I said "enforce locality, contextuality..." how?

• All remaining meta-variables are solved by σ $MV(\Gamma, T)$: meta-vars of T wrt declared variables of Γ

$$\Gamma \vdash^{\mathsf{P}} pair \ (\lambda \times . \times) \ 0 : X \times \mathsf{Nat} \leadsto [\mathsf{Nat} \to \mathsf{Nat}/X]$$

$$dom([\mathsf{Nat} \to \mathsf{Nat}/X]) = X = \mathsf{MV}(\Gamma, X \times \mathsf{Nat})$$

$$[\mathsf{Nat} \to \mathsf{Nat}/X] \ (X \times \mathsf{Nat}) = (\mathsf{Nat} \to \mathsf{Nat}) \times \mathsf{Nat}$$

Earlier I said "enforce locality, contextuality..." how?

- All remaining meta-variables are solved by σ
 MV(Γ, T): meta-vars of T wrt declared variables of Γ
- Contextual solutions really are contextual

$$\Gamma \vdash^{\mathsf{P}} \mathsf{pair} \ (\lambda x. x) \ 0 : X \times \mathsf{Nat} \leadsto [\mathsf{Nat} \to \mathsf{Nat}/X]$$

$$\mathsf{dom}([\mathsf{Nat} \to \mathsf{Nat}/X]) = X = \mathsf{MV}(\Gamma, X \times \mathsf{Nat})$$

$$[\mathsf{Nat} \to \mathsf{Nat}/X] \ (X \times \mathsf{Nat}) = (\mathsf{Nat} \to \mathsf{Nat}) \times \mathsf{Nat}$$

$$\Gamma \vdash_{\Downarrow} \mathsf{pair} \ (\lambda x. x) \ 0 : (\mathsf{Nat} \to \mathsf{Nat}) \times \mathsf{Nat}$$

Earlier I said "enforce locality, contextuality..." how?

- All remaining meta-variables are solved by σ
 MV(Γ, T): meta-vars of T wrt declared variables of Γ
- Contextual solutions really are contextual
- We clear these conditions and can type the expression

Outline

- Background and Motivation
 - Local Type Inference
 - Spine-local Type Inference
- 2 The Specificational System
 - Terms and Terminology
 - Type Inference
- 3 Discussion
 - Specificational System Properties
 - Algorithmic System Properties
 - Future Work

Specificational System Properties

Sanity check wrt. internal language (System F; $\Gamma \vdash t : T$)

Specificational System Properties

Sanity check wrt. internal language (System F; $\Gamma \vdash t : T$)

Soundness:

$$\Gamma \vdash_{\delta} t : T \leadsto e \text{ implies } \Gamma \vdash e : T$$

Trivial completeness:

$$\Gamma \vdash e : T \text{ implies } \Gamma \vdash_{\Uparrow} e : T \leadsto e$$

Specificational System Properties (cont.)

- Typeability of the external language (i.e. type annotation requirements)
- Assume $\Gamma \vdash e : T$. Erase binder, type args to get external term t.
- $\Gamma \vdash_{\uparrow} t : T \leadsto e$ when given

Specificational System Properties (cont.)

- Typeability of the external language (i.e. type annotation requirements)
- Assume $\Gamma \vdash e : T$. Erase binder, type args to get external term t.
- $\Gamma \vdash_{\uparrow} t : T \leadsto e$ when given
 - Binder annotations to λs when its context or spine-context lack this info
 - ▶ Instantiations for "phantom" type-arguments $\forall X, Y. X \rightarrow X$
 - ► Enough info to "see" a term or type application e.g. applicand of type X given [S] or t

Algorithmic system

• "Prototypes" track expected result type, num args to spine head

$$? \rightarrow ? \rightarrow \textit{Nat}$$

Algorithmic system

• "Prototypes" track expected result type, num args to spine head

$$? \rightarrow ? \rightarrow Nat$$

Matched against head type, produces a "decorated" function type

$$\forall X = \mathsf{Nat}. \ \forall Y = Y. \ X \rightarrow Y \rightarrow X$$

Check pair $(\lambda x. x)$ 0 against $(\mathit{Nat} \to \mathit{Nat}) \times \mathit{Nat}$

Check pair
$$(\lambda x. x)$$
 0 against $(Nat \rightarrow Nat) \times Nat$

Prototype: $? \rightarrow ? \rightarrow (Nat \rightarrow Nat) \times Nat$ Head type: $\forall X. \qquad \forall Y. \qquad X \rightarrow Y \rightarrow X \times Y$

Check pair $(\lambda x. x)$ 0 against $(Nat \rightarrow Nat) \times Nat$

Check pair $(\lambda x. x)$ 0 against $(Nat \rightarrow Nat) \times Nat$

No "guessing" for contextual type-args.

Careful handling needed when prototype arity exceeds the spine head's

Careful handling needed when prototype arity exceeds the spine head's

```
\begin{array}{lll} \text{Prototype:} & ? \rightarrow & ? \rightarrow \textit{Nat} \\ \text{Head type:} & \forall \, X & . \, X \rightarrow & X \end{array}
```

Careful handling needed when prototype arity exceeds the spine head's

Careful handling needed when prototype arity exceeds the spine head's

Check id suc 0 against type Nat

• Don't know how to instantiate X, save for later

Careful handling needed when prototype arity exceeds the spine head's

- Don't know how to instantiate X, save for later
- From synthesis instantiate X, then compare
 Match Nat → Nat with ? → Nat once we reach first arg. suc

Algorithmic Systems Properties

$$\Gamma \Vdash_{\delta} t : T \leadsto e$$

- Algorithmic:
 The system is given as a set of syntax-directed inference rules
- Equivalent to Specification:
 - Soundness:

$$\Gamma \Vdash_{\delta} t : T \leadsto e \text{ implies } \Gamma \vdash_{\delta} t : T \leadsto e$$

► Completeness:

$$\Gamma \vdash_{\delta} t : T \leadsto e \text{ implies } \Gamma \Vdash_{\delta} t : T \leadsto e$$

Algorithmic Systems Properties

$$\Gamma \Vdash_{\delta} t : T \leadsto e$$

- Algorithmic:
 - The system is given as a set of syntax-directed inference rules
- Equivalent to Specification:
 - Soundness:

$$\Gamma \Vdash_{\delta} t : T \leadsto e \text{ implies } \Gamma \vdash_{\delta} t : T \leadsto e$$

► Completeness:

$$\Gamma \vdash_{\delta} t : T \leadsto e \text{ implies } \Gamma \Vdash_{\delta} t : T \leadsto e$$

• ... even though we never mentioned prototype matching or "stuck" decorations in the spec!

Algorithmic System Properties

$$\Gamma \vdash^{\mathsf{P}} t : T \leadsto \sigma$$

$$\Gamma \vdash^{\cdot} (T, \sigma) \cdot t : T' \leadsto \sigma'$$

Spec. system

$$\begin{array}{c}
\Gamma \vdash^{\mathsf{P}} t : T \leadsto \sigma \\
\Gamma \vdash (T, \sigma) \cdot t : T' \leadsto \sigma'
\end{array} \equiv
\begin{bmatrix}
\Gamma; P \Vdash^{?} t : W \leadsto \sigma \\
\Gamma \Vdash (W, \sigma) \cdot t : W' \leadsto \sigma' \\
\overline{X} \Vdash^{:=} T := P \Rightarrow (W, \sigma)
\end{array}$$

Alg. system

Algorithmic System Properties

$$\Gamma \vdash^{\mathsf{P}} t : T \leadsto \sigma$$

$$\Gamma \vdash^{\cdot} (T, \sigma) \cdot t : T' \leadsto \sigma'$$

Spec. system

$$\begin{array}{c}
\Gamma \vdash^{\mathsf{P}} t : T \leadsto \sigma \\
\Gamma \vdash^{\cdot} (T, \sigma) \cdot t : T' \leadsto \sigma'
\end{array}
\equiv
\begin{array}{c}
\Gamma; P \Vdash^{?} t : W \leadsto \sigma \\
\Gamma \Vdash^{\cdot} (W, \sigma) \cdot t : W' \leadsto \sigma' \\
\overline{X} \Vdash^{:=} T := P \Longrightarrow (W, \sigma)
\end{array}$$

Alg. system

Future Work

Type inference algorithm is implemented in Cedille, a language with impredicativity, dependent types, and dependent intersections. A local type inference system will be a good foundation for considering the following extensions:

Future Work

Type inference algorithm is implemented in Cedille, a language with impredicativity, dependent types, and dependent intersections. A local type inference system will be a good foundation for considering the following extensions:

- partial type propagation a la "Colored Local Type Inference"
- higher-order type inference using matching
- inference for erased term arguments (Cedille feature)
- subsumption based on some form of "type containment"

Thanks!

Questions?