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1 Type Inference Rules

1.1 Syntax

Types S, T, U, V ::= X,Y, Z | S → T | ∀X.T
Contexts Γ ::= · | Γ, X | Γ, x :T

Terms (Internal) e, p ::= x | λx :T. e | ΛX. e | e e′ | e[T ]

Terms (External) t ::= x | λx :T. t | λx. t | ΛX. t | t t′ | t[T ]

Prototypes P ::= ? | T | ?→ P

Decorated Types W ::= T | S →W | ∀X=X.W | ∀X=S.W | (X, ?→ P )

1.2 Terminology

In both the internal and external languages, we say that the applicand of a term or type application is the term in the function
position. A head is either a variable or λ-abstraction (bare or annotated), and an application spine (or just spine) is a view of an
application as consisting of some head (called the spine head) followed by a sequence of (term and type) arguments. The maximal
application of a sub-expression is the spine in which it occurs as an applicand, or just the sub-expression itself if it does not. For
example, spine x[S] y z is the maximal application of itself and its applicand sub-expressions x, x[S], and x[S] y, with x as head
of the spine. Predicate App(t) indicates term t is some term or type application (in either language) and we define it formally as
(∃ t1, t2. t = t1 t2) ∨ (∃ t′, S. t = t′[S]). Finally, for any application e1 e2 we shall call a term applicand* any applicand occuring
in the spine of e1.

Turning to definitions for types and contexts, function DTV (Γ) calculates the set of declared type variables of context Γ and is
defined recursively by the following set of equations:

DTV (·) = ∅
DTV (Γ, X) = DTV (Γ) ∪ {X}

DTV (Γ, x :T ) = DTV (Γ)

Predicate WF (Γ, T ) indicates that type T is well-formed under Γ – that is, all free type variables of T occur as declared type
variables in Γ (formally FV (T ) ⊆ DTV (Γ)).
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1.3 Meta-language Definitions

TmApp(t) = (∃t1, t2. t = t1 t2)

TpApp(t) = (∃t′, S. t = t′[S])

App(t) = TmApp(t) ∨ TpApp(t)

WF (Γ, T ) = (FV (T )−DTV (Γ) = ∅)

WF (Γ, ?) = True

WF (Γ, ?→ P ) = WF (Γ, P )

DTV (·) = ∅
DTV (Γ, X) = DTV (Γ) ∪ {X}

DTV (Γ, x :T ) = DTV (Γ)

MV (Γ, p) = ∅ when ¬App(p)
MV (Γ, p[X]) = MV (Γ, p) ∪ {X} when X /∈ DTV (Γ)

MV (Γ, p[S]) = MV (Γ, p) when WF (Γ, S)

MV (Γ, p e) = MV (Γ, p)

bλx :T. ec = {λx :T. t | t ∈ bec} ∪ {λx. t | t ∈ bec}
bΛX. ec = {ΛX. t | t ∈ bec}
be e′c = {t t′ | t ∈ beca ∧ t′ ∈ be′c}
be[S]c = {t[S] | t ∈ bec}

be[S]ca = {t | t ∈ beca} ∪ {t[S] | t ∈ bec}
beca = bec otherwise

bS →W c = S → bW c
b∀X=R.W c = ∀X. bW c
b(X, ?→ P )c = X

arrP (?) = arrP (T ) = 0

arrP (?→ P ) = 1 + arrP (P )

arrW ((X, ?→ P )) = arrW (T ) = 0

arrW (∀X=R.W ) = arrW (W )

arrW (S →W ) = 1 + arrW (W )
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1.4 Bidirectional Rules

Γ `δ t : T  e Γ `δ x : Γ(x) x
V ar

Γ, x :T `⇓ t : S  e

Γ `⇓ λx. t : T → S  λx :T. e
Abs

Γ, x :T `δ t : S  e

Γ `δ λx :T. t : T → S  λx :T. e
AAbs

Γ, X `δ t : T  e

Γ `δ ΛX. t : ∀X.T  ΛX. e
TAbs

Γ `⇑ t : ∀X.T  e

Γ `δ t[S] : [S/X]T  e[S]
TApp

Γ; ? `I t t′ : T  (e, σid) MV (Γ, e) = ∅
Γ `⇑ t t′ : T  e

AppSyn
Γ;σ T `I t t′ : T  (p, σ) MV (Γ, p) = dom(σ)

Γ `⇓ t t′ : σ T  σ p
AppChk

Figure 1: Bidirectional inference rules with elaboration
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1.5 Specificational Rules

(a) Shim (specification)

T? ::= T | ?

Γ `P t t′ : T  (p, σ) MV (Γ, T ) = dom(σ)

Γ;T? `I t t′ : T  (p, σ)

(b) Γ `P t : T  (p, σ)

¬App(t) Γ `⇑ t : T  e

Γ `P t : T  (e, σid)
PHead

Γ `P t : ∀X.T  (p, σ)

Γ `P t[S] : [S/X]T  (p[S], σ)
PTApp

Γ `P t : T  (p, σ) Γ `· (p :T, σ) · t′ : T ′  (p′, σ′)

Γ `P t t′ : T ′  (p′, σ′)
PApp

(c) Γ `· (p :T, σ) · t′ : T ′  (p′, σ′)

σ′′ ∈ {σ, [S/X] ◦ σ} WF (Γ, S) Γ `· (p[X] :T, σ′′) · t′ : T ′  (p′, σ′)

Γ `· (p :∀X.T, σ) · t′ : T ′  (p′, σ′)
PForall

MV (Γ, σ S) = ∅ Γ `⇓ t′ : σ S  e′

Γ `· (p :S → T, σ) · t′ : T  (p e′, σ)
PChk

MV (Γ, σ S) = Y 6= ∅ Γ `⇑ t′ : [U/Y ] σ S  e′

Γ `· (p :S → T, σ) · t′ : [U/Y ] T  (([U/Y ] p) e′, σ)
PSyn

Figure 2: Specification for contextual type-argument inference
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1.6 Algorithmic Rules

(a) Shim (algorithm)

T? ::= T | ?

Γ;T? ? t t′ : T  (p, σ)

Γ;T? `I t t′ : T  (p, σ)

(b) Γ;P ? t : W  (p, σ)

¬App(t) Γ ⇑ t : T  e ∅ := T := ?→ P ⇒ (σid,W )

Γ; ?→ P ? t : W  (e, σid)
?Head

Γ; ?→ P ? t : ∀X=R.W  (p, σ) R ∈ {X,S}
Γ; ?→ P ? t[S] : [S/X]W  (p[S], σ)

?TApp

Γ; ?→ P ? t : W  (p, σ) Γ · (p :W,σ) · t′ : W ′  (p′, σ′)

Γ;P ? t t′ : W ′  (p′, σ′)
?App

(c) Γ · (p :W,σ) · t′ : W ′  (p′, σ′)

σ′′ = if R=X then σ else [R/X]◦σ Γ · (p[X] :W,σ′′) · t′ : W ′  (p′, σ′)

Γ · (p :∀X=R.W, σ) · t′ : W ′  (p′, σ′)
?Forall

MV (Γ, σ S) = ∅ Γ ⇓ t′ : S  e

Γ · (p :S →W,σ) · t′ : W  (p e′, σ)
?Chk

MV (Γ, σ S) = Y 6= ∅ Γ ⇑ t : [U/Y ] σ S  e

Γ · (p :S →W ) · t′ : [U/Y ] W  (([U/Y ] p) e′, σ)
?Syn

(d) X := T := P ⇒ (σ,W )

X := T := P ⇒ (σ,W )

X := S → T := ?→ P ⇒ (σ, S →W )
MArr

X,X := T := ?→ P ⇒ (σ,W )

X := ∀X.T := ?→ P ⇒ (σ −X,∀X=σ(X).W )
MForall

Y = FV (T ) ∩X FV (U) ∩ (BTV (S) ∪X) = ∅ [U/Y ] T = S

X := T := S ⇒ ([U/Y ], T )
MType

X := T := ?⇒ (σid, T )
M?

X ∈ X
X := X := ?→ P ⇒ (σid, (X, ?→ P ))

MCurr

Figure 3: Algorithm for contextual type argument inference
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2 Termination of Algorithmic Rules

The inference rules presented in 1.6 are terminating and deriving these judgments is decidable

Theorem 1. (Decidability of Typing):

1. For any context Γ and term t, it is decidable whether Γ ⇑ t : T  e for some T and e

2. For any context Γ, term t, and type T , it is decidable whether Γ ⇓ t : T  e for some e

3. For any context Γ, prototype P , and term t, it is decidable whether Γ;P ? t : W  (p, σ) for some W , p, and σ

4. For any context Γ, terms p and t′, decorated type W , and substitution σ, it is decidable whether Γ · (p :W,σ)·t′ : W ′  (p′, σ′)
for some W ′, p′, and σ′

5. For any set of meta-variables X, type T , and prototype P , it is decidable whether X := T := P ⇒ (σ,W ) for some σ and W

Proof . The proof is a straightforward mutual induction resp. on the size of

1. the subject of typing t

2. the subject of typing t

3. the subject of typing t

4. the decorated type W (that annotates p)

5. the prototype P

3 Soundness of `δ wrt `
Our soundness statement for the external language is that every well-typed term of the external language elaborates to a well-typed
term of the internal language, and it is proven using mutual induction on the following three theorems.

1. If Γ `δ t : T  e then Γ ` e : T

2. If Γ `P t : T  (p, σ) then Γ,MV (Γ, σ p) ` σ p : σ T

3. If Γ `· (p :T, σ) · t′ : T ′  (p′, σ′) and Γ,MV (Γ, σ p) ` σ p : σ T where

• dom(σ) ⊆MV (Γ, p)

• For all X ∈ dom(σ),WF (Γ, σ(X))

• dom(σ) ∩BTV (cod(σ)) = ∅

then Γ,MV (Γ, σ′ p′) ` σ′ p′ : σ′ T ′

3.1 Bidirectional Rules

Theorem 2. (Soundness of `δ):
If Γ `δ t : T  e then Γ ` e : T

Proof. By mutual induction of the assumed derivation.

Case V ar: Directly from assumption

Γ ` x : Γ(x)
V ar

Case AAbs: Our assumed derivation is

Γ, x :T `δ t : S  e

Γ `δ λx :T. t : T → S  λx :T. e
AAbs

Invoking the IH on the premise we get Γ, x :T ` e : S so we can conclude with

Γ, x :T ` e : S

Γ ` λx :T. e : T → S
FAbs
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Case Abs: Similar to AAbs, invokding the IH on the premise (specialized to `⇓) and using FAbs.

Case TAbs: Similar to AAbs, invoking the IH on the premise and using FTAbs

Case TApp: Similar to AAbs and TAbs, invoking the IH on the premise (specialied to `⇑) and using FTApp.

Case AppSyn: Our assumed derivation (after in-lining judgment `I) is

Γ `P t t : T  (e, σid) MV (Γ, e) = MV (Γ, T ) = ∅
Γ `⇑ t t′ : T  e

AppSyn

By mutual induction on Theorem 3 (soundness of `P) on the first premise, we have

Γ,MV (Γ, e) ` σid e : σid T

which after a little re-writing gives us

Γ ` e : T

which is what we need.

Caase AppChk: Our assumed derivation is

Γ `P t t′ : T  (p, σ) MV (Γ, p) = MV (Γ, T ) = dom(σ)

Γ `⇓ t t′ : σ T  σ p
AppChk

By mutual induction on Theorem 3 (soundness of `P) on the first premise, we have

Γ,MV (Γ, σ p) ` σ p : σ T

Since we know (from the second premise of our assumed derivation) that MV (Γ, p) = dom(σ), we know that MV (Γ, σ p) = ∅,
so we can rewrite to

Γ ` σ p : σ T

which is what we need.

3.2 Partial Synthesis Rules

Theorem 3. (Soundness of `P):
If Γ `P t : T  (p, σ) then ‘Γ,MV (Γ, σ p) ` σ p : σ T

Proof. By mutual induction on the assumed derivation.

Case PHead: Our assumed derivation is

¬App(t) Γ `⇑ t : T  e

Γ `P t : T  (e, σid)
PHead

By mutual induction on the soundness of `⇑ on the second premise we get

Γ ` e : T

Since e is well-typed under Γ using the internal typing rules it has no metavariables. Therefore, MV (Γ, e) = ∅, and we conclude

Γ,∅ ` σid e : σid T

Case PTApp: Our assumed derivation is

Γ `P t : ∀X.T  (p, σ)

Γ `P t[S] : [S/X]T  (p[S], σ)
ITApp
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By the IH on our premise we get

Γ,MV (Γ, σ p) ` σ p : σ ∀X.T

Implicit here is that WF (Γ, S), so MV (Γ, p[S]) = MV (Γ, p), and bound X is fresh w.r.t. Γ, p, and σ, so σ ∀X.T = ∀X.σ T .
We conclude

Γ,MV (Γ, σ p[S]) ` σ p : ∀X.σ T
Γ,MV (Γ, σ p[S]) ` σ p[S] : [S/X] σ T

FTApp

Case PApp: Our assumed derivation is

Γ `P t : T  (p, σ) Γ `· (p :T, σ) · t′ : T ′  (p′, σ′)

Γ `P t t′ : T ′  (p′, σ′)
IApp

By the IH on the premise we have

Γ,MV (Γ, σ p) ` σ p : σ T

With this and with the second premise of our assumed derivation, we need to invoke mutual induction on Theorem 4 (soundness
of `·) to get

Γ,MV (Γ, σ′ p′) ` σ′ p′ : σ′ T ′.

To do so, we must meet the pre-requisite of Theorem 4: dom(σ) ⊆ MV (Γ, p) for all X, WF (Γ, σ(X)), and that dom(σ) ∩
BV T (cod(σ)) = ∅. The first two of these we have from Lemma 1, and the last of these we have from Lemma 2.

3.3 Partial Application Rules

Theorem 4. (Soundness of `· wrt `): If Γ `· (p :T, σ) · t′ : T ′  (p′, σ′) and Γ,MV (Γ, σ p) ` σ p : σ T where

• dom(σ) ⊆MV (Γ, p)

Our solution set σ really solves meta-variables.

• For all X ∈ dom(σ),WF (Γ, σ(X))

Our solution set σ really solves meta-variables.

• dom(σ) ∩BTV (cod(σ)) = ∅
No meta-variables are ever generated by solutions in σ

then Γ,MV (Γ, σ′ p′) ` σ′ p′ : σ′ T ′

Proof. By mutual induction on the assumed derivation of `·.

Case PForall: Our assumed derivations are

σ′′ ∈ {σ, [S/X] ◦ σ},WF (Γ, S) Γ `· (p[X] :T, σ′′) · t′ : T ′  (p′, σ′)

Γ `· (p :∀X.T, σ) · t′ : T ′  (p′, σ′)
PForall

and Γ,MV (Γ, σ p) ` σ p : σ ∀X.T

We perform case analysis on σ′′: either σ′′ = σ or σ′′ = σ ◦ [S/X]. If it is the former, then since X is fresh wrt σ we have
MV (Γ, σ′′ p[X]) = MV (Γ, σ p) ∪ {X} and σ′′ p[X] = σ p[X]. We have by weakening

Γ,MV (Γ, σ p) ` σ p : σ ∀X.T
Γ,MV (Γ, σ′′ p[X]) ` σ′′ p : σ ∀X.T Weaken

If σ′′ = [S/X] ◦ σ them we have MV (Γ, σ′′ p[X]) = MV (Γ, σ p[S]) = MV (Γ, σ p) and we need only rewrite our second assumed
derivation to Γ,MV (Γ, σ′′ p[X]) ` σ′′ p : σ ∀X.T

In both cases, we can derive

Γ,MV (Γ, σ′′ p) ` σ′′ p : σ ∀X.T
Γ,MV (Γ, σ′′ p[X]) ` σ′′ p[X] : σ′′ T

TAppF

We are now ready to invoke the IH with this and with the second premise of our assumed derivation of `· to derive
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Γ,MV (Γ, σ′ p′ ` σ′ p′ : σ′ T ′)

which is what we need to conclude. (Note that our third condition is satisfied for σ′′ since bound variable X occurs before
applying substitution σ.)

Case PChk: Our assumed derivations are

MV (Γ, σ S) = ∅ Γ `⇓ t′ : σ S  e′

Γ `· (p :S → T, σ) · t′ : T  (p e′, σ)
PChk

and Γ,MV (Γ, σ p) ` σ p : σ S → T

By mutual induction on Theorem 2 (soundness of `δ wrt `) and by weakening we have

Γ `⇓ t′ : σ S  e′

Γ ` e′ : σ S
Sound `⇓

Γ,MV (Γ, σ p) ` e′ : σ S
Weaken

With this and our second assumption, the derivation of `, we can conclude

Γ,MV (Γ, σ p) ` σ p : σ S → T Γ,MV (Γ, σ p) ` e′ : σ S

Γ,MV (Γ, σ p) ` σ (p e′) : σ T
App

noting that since e′ is well-typed under Γ, σ e′ = e′.

Case PSyn: Our assumed derivations are

MV (Γ, σ S) = Y 6= ∅ Γ `⇑ t′ : [U/Y ] σ S  e′

Γ `· (p :S → T, σ) · t′ : [U/Y ] T  ([U/Y ] (p e′), σ)
PSyn

and Γ,MV (Γ, σ p) ` σ p : σ S → T

By mutual induction on Theorem 2 (soundness of `⇑) and weakening on the second premise of our assumed derivation of `·
we have

Γ `⇑ t′ : [U/Y ] σ S  e′

Γ ` e′ : [U/Y ] σ S
Sound `⇑

Γ,MV (Γ, [U/Y ] σ p) ` e′ : [U/Y ] σ S
Weaken

Let σ′′ = [U/Y ] ◦ σ. By appeal to Lemma 3 on the typeability of substituting solutions in for meta-variables (whose pre-conditions
that dom(σ) ⊆MV (Γ, p) and that for all X, WF (Γ, σ(X)) we are able to satisfy by assumption) we have

Γ,MV (Γ, σ p) ` σ p : σ S → T

Γ,MV (Γ, σ′′ p) ` σ′′ p : σ′′ S → T
Lemma3

From this and rule App from ` we can derive

Γ,MV (Γ, σ′′ p) ` σ′′ p : σ′′ S → T Γ,MV (Γ, σ′′ p) ` e′ : σ′′ S

Γ,MV (Γ, σ [U/Y ] (p e′)) ` σ [U/Y ] (p e′) : σ [U/Y ]T
App

Which is what we need to conclude. Note that the re-arrangment of [U/Y ] σ T to σ [U/Y ] T is justified by the assumption
that dom(σ)∩BTV (cod(σ)) = ∅, as no meta-variables (including any in Y ) can be introduced by the bound type variables of some
solution in σ.

3.4 Lemma: Well-formed and well-scoped solutions

Lemma 1.

• If Γ `P t : T  (p, σ) then dom(σ) ⊆MV (Γ, p) and for all X ∈ dom(σ),WF (Γ, σ(X)).

• If dom(σ) ⊆MV (Γ, p) and for all X ∈ dom(σ),WF (Γ, σ(X)), and if Γ `· (p :T, σ) · t′ : T ′  (p′, σ′),

then dom(σ′) ⊆MV (Γ, p′) and for all X ∈ dom(σ′),WF (Γ, σ′(X))

Proof. Straightfoward induction on the assumed derivation where the first invokes the second.
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3.5 Lemma: σ introduces no meta-variables

Lemma 2.

• If Γ `P t : T  (p, σ) then dom(σ) ∩BTV (cod(σ)) = ∅

• If Γ `· (p :T, σ) · t′ : T ′  (p′, σ′) and dom(σ) ∩BTV (cod(σ)) = ∅ then dom(σ′) ∩BTV (cod(σ′)) = ∅

Proof. By induction on the assumed derivations where the first invokes the second. Note that only rule PForall adds any meta-
variable solutions and that these are generated from a type that does not have access to solutions in the input substitution σ.

3.6 Lemma: Sound use of σ on `
Lemma 3. If Γ,MV (Γ, p) ` p : T and dom(σ) ⊆MV (Γ, p) and for all X ∈ dom(σ),WF (Γ, σ(X)), then Γ, (X−dom(σ)) ` σ p : σ T

Proof. By induction on the assumed derivation.

3.7 Lemma: Well-formed Partial Types

Lemma 4.

• If Γ `P t : T  (p, σ) then WF (Γ′, T ) where Γ′ = Γ,MV (Γ, p).

• If Γ `· (p :T, σ) · t′ : T ′  (p′, σ′) and WF (Γ′, T ) (where Γ′ = Γ,MV (Γ, p)),

then WF (Γ′, T ′).

Proof. By a similar argument to Theorem 3 and Theorem 4, we can strengthen the two theorems above to yield:

• If Γ `P t : T  (p, σ) then Γ,MV (Γ, p) ` p : T

• If Γ `· (p :T, σ) · t′ : T ′  (p′, σ′) and Γ,MV (Γ, p) ` p : T then Γ,MV (Γ, p′) ` p′ : T ′

and from there, reason that any term well-typed by the internal typing rules was typed with a well-formed type.

4 Soundness of δ wrt `δ
Soundness of the algorithmic rules means that any external term typeable with the algorithmic rules is also typeable with the
specificational rules, and is shown by mutual induction on the following three theorems:

1. If Γ δ t : T  e then Γ `δ t : T  e

2. If Γ;P ? t : W  (p, σ) then Γ `P t : bW c (p, σ)

3. If Γ · (p :W,σ) · t′ : W ′  (p′, σ′)

and MV (Γ, p) := bW c :=?→ P ⇒ (σ,W ) with WF (Γ, ?→ P )

then Γ `· (p :bW c, σ) · t′ : bW ′c (p′, σ′)

Where δ indicates the bidirectional rules using the shim judgment defined in Figure 3a.

4.1 Bidirectional Rules

Theorem 5. If Γ δ t : T  e then Γ `δ t : T  e

Proof. By straightforward induction on the assumed derivation. The rules of the two systems are identical except for AppSyn and
AppChk, so only these are shown.

Case AppSyn: Our assumed derivation is

Γ; ? ? t t′ : T  (e, σid) MV (Γ, e) = ∅
Γ ⇑ t t′ : T  e

AppSyn

By mutual induction of sound ? on the first premise, we have

Γ `P t t′ : T  (e′, σid) (since bT c = T ).

We now need to satisfy the specificational condition that MV (Γ, T ) = dom(σid) = ∅. We have via Lemma 4 (well-formedness
of synthesized partial types) that WF (Γ, T ) which guarantees this. We can now conclude

Γ `P t t′ : T  (e, σid) MV (Γ, T ) = MV (Γ, e) = ∅
Γ `⇑ t t′ : T  e

AppSyn
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Case AppChk: Our assumed derivation is

Γ;T ? t t′ : T  (p, σ) MV (Γ, p) = dom(σ)

Γ ⇓ t t′ : σ T  σ p
AppChk

By mutual induction on Theorem 6 (Soundness of prototype synthesis) on the first premise, we have

Γ `P t t′ : T  (p, σ)

The last condition we need to meet for the specificational version of AppChk is that MV (Γ, T ) = dom(σ). We first note that
by Lemma 4 that WF (Γ′, T ) (where Γ′ = Γ,MV (Γ, p)). Next, we invoke Lemma 6 (prototype synthesis preserves matching) to get

MV (Γ, p) := T := σ T ⇒ (σ, T )

By inversion, the only rule that could form this match is MType, which after a little rewriting in terms of meta-variables and
σ gives us:

dom(σ) = FV (T ) ∩MV (Γ, p)

MV (Γ, p) := T := σ T ⇒ (σ, T )
MType

and this premise is equivalent to saying dom(σ) = MV (Γ, T ) (since by Lemma 1 we have that WF (Γ′, T ) where Γ′ =
Γ,MV (Γ, p)). We can conclude

Γ `P t t′ : T  (p, σ) MV (Γ, p) = MV (Γ, T ) = dom(σ)

Γ `⇓ t t′ : σ T  σ p
AppChk

4.2 Prototype Rules

Theorem 6. If Γ;P ? t : W  (p, σ) then Γ `P t : bW c (p, σ)

Proof. By induction on the assumed derivation.

Case ?Head: Our assumed derivation is

¬App(t) Γ ⇑ t : T  e ∅ := T := ?⇒ P ⇒ (σid,W )

Γ; ?⇒ P ? t : W  (e, σid)
?Head

By mutual induction on the soundness of ⇑ we have

Γ ⇑ t : T  e

Γ `⇑ t : T  e
Theorem2

We now to construct

¬App(t) Γ `⇑ t : T  e

Γ `P t : T  (e, σid)
IHead

Case ?TApp: Our assumed derivation is

Γ; ?→ P ? t : ∀X=R.W  (p, σ) R ∈ {X,S}
Γ; ?→ P ? t[S] : [S/X]W  (p[S], σ)

?TApp

By the IH on the first premise we have

Γ `P t : ∀X.bW c (p, σ)

We can conclude with

Γ `P t : ∀X.bW c (p, σ)

Γ `P t[S] : b[S/X]W c (p[S], σ)
ITApp

where its clear that [S/X] bW c = b[S/X] W c
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Case ?App Our assumed derivation is

Γ; ?→ P ? t : W  (p, σ) Γ · (p :W,σ) · t′ : W ′  (p′, σ)′

Γ;P ? t t′ : W ′  (p′, σ)′
?App

By the IH on the first premise we have

Γ `P t : bW c (p, σ)

by Lemma 6 we can derive

MV (Γ, p) := bW c :=?→ P ⇒ (σ,W )

This match lets us invoke mutual induction on Theorem 7 (soundness of ·) on the second premise, and we have

Γ `· (p :bW c, σ) · t′ : bW ′c (p′, σ)′

We can conclude with

Γ `P t : bW c (p, σ) Γ `· (p :bW c, σ) · t′ : bW ′c (p′, σ)′

Γ `P t t′ : bW ′c (p′, σ)′
IApp

4.3 Prototype Application Rules

Theorem 7. If Γ · (p :W,σ) · t′ : W ′  (p′, σ′) and MV (Γ, p) := bW c :=?→ P ⇒ (σ,W ) with WF (Γ, ?→ P )
then Γ `· (p :bW c, σ) · t′ : bW ′c (p′, σ′)

Proof. By induction on the assumed derivation of ·

Case ?Forall: Our assumed derivation for · is

σ′′ = if R=X then σ else [R/X] ◦ σ Γ · (p[X] :W,σ′′) · t′ : W ′  (p′, σ′)

Γ · (p :∀X=R.W, σ) · t′ : W ′  (p′, σ′)
?Forall

and our assumed match is

MV (Γ, p) := ∀X. bW c :=?→ P ⇒ (σ, ∀X=R.W )

The only rule that could result in this conclusion is MForall, whose premise is

MV (Γ, p), X := bW c := ?→ P ⇒ ([R/X] ◦ σ,W )

We appeal to Lemma 7 on the well-formedness of solutions in [R/X] ◦ σ to get R = X or WF (Γ, R). This makes R a legal
guess for our specificational system. Now we invoke the IH (using the match directly above and the second premise of our assumed
derivation of `·) to get

Γ `· (p[X] :bW c, [R/X] ◦ σ) · t′ : bW ′c (p′, σ)′

allowing us to conclude Γ `· (p :∀X. bW c, σ) · t′ : bW ′c (p′, σ′)

Case ?Chk Our assumed derivation is

MV (Γ, σ S) = ∅ Γ ⇓ t′ : σ S  e

Γ · (p :S →W,σ) · t′ : W  (p e′, σ)
?Chk

and our assumed match is

MV (Γ, p) := S → bW c :=?→ P ⇒ (σ, S →W )
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By mutual induction on Theorem 5 (soundness of δ) on the second premise we have Γ `⇓ t′ : σ S  e. We can conclude

MV (Γ, σ S) = ∅ Γ `⇓ t′ : σ S  p′

Γ `· (p, S → bW c) · t′ : bW c (p e′, σ)
PChk

Case ?Syn Our assumed derivation is

MV (Γ, σ S) = Y 6= ∅ Γ ⇑ t : [U/Y ] σ S  e

Γ · (p :S →W,σ) · t′ : [U/Y ] W  (([U/Y ] p) e′, σ)
?Syn

and our assumed match is

MV (Γ, p) := S → bW c :=?→ P ⇒ (σ, S →W )

By mutual induction on the soundness of ⇑ we have

Γ `⇑ t : [U/Y ] σ S  e

which allows us to conclude

MV (Γ, σ S) = Y 6= ∅ Γ `⇑ t′ : [U/Y ] ◦ σ S  e

Γ `· (p :S → bW c) · t′ : b[U/Y ] W c ([U/Y ] (p e′), σ)
PSyn

4.4 Lemma: Sound decoration erasure

Lemma 5. If X := T := P ⇒ (σ,W ) then bW c = T

Proof. Straightforward induction on the assumed derivation.

4.5 Lemma: Sound ? wrt :=

Lemma 6. If Γ;P ? t : W  (p, σ) then MV (Γ, p) := bW c := P ⇒ (σ,W )

Proof. By induction on the assumed derivation

Case ?Head Our assumed derivation is

¬App(t) Γ ⇑ t : T  e ∅ := T := ?→ P ⇒ (σid,W )

Γ; ?→ P ? t : W  (e, σid)
?Head

We apply Lemma 5 on the third hypothesis to get

MV (Γ, e) = ∅ := bW c :=?→ P ⇒ (σid,W )

which is what we need.

Case ?TApp Our assumed derivation is

Γ; ?→ P ? t : ∀X=R.W  (p, σ) R ∈ {X,S}
Γ; ?→ P ? t[S] : [S/X] W  (p[S], σ)

?TApp

We invoke the IH on the first premise, yielding

MV (Γ, p) := ∀X.bW c :=?→ P ⇒ (σ,W )

The only rule which allows us to form this conclusion is MForall, with premise

MV (Γ, p), X := bW c := ?→ P ⇒ (σ ◦ [R/X],W )

The derivation of · implies (implicitly) that [S/X] W is defined, and it is clear that σ ◦ [R/X](X) ∈ {X,S}, so by Lemma 8
(validity of using substitutions on matches) we have
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MV (Γ, p[S]) := b[S/X]W c :=?→ P ⇒ (σ, [S/X]W )

allowing us to complete the proof.

Case ?App Our assumed derivation is

Γ; ?→ P ? t : W  (p, σ) Γ · (p :W,σ) · t′ : W ′  (p′, σ′)

Γ;P ? t t′ : W ′  (p′, σ′)
?App

By the IH on the first premise, we have

MV (Γ, p) := bW c :=?→ P ⇒ (σ,W )

With this and with the second premise, we appeal to Lemma 9 (algorithmic application preserves matching) to conclude

MV (Γ, p′) := bW ′c := P ⇒ (σ,W ′)

4.6 Lemma: Matches generate well-formed Decorations

Lemma 7. If X := T := P ⇒ (σ,W ) with WF (Γ, P ) and WF ((Γ, X), T )
then for all X ∈ X, σ(X) = X or WF (Γ, σ(X))

Proof. By a simple inductive argument on the assumed derivation. First, note that after a base-case is formed using rules MType,
M?, or MCurr, the generated solution decreases in its domain with each inductive use of MForall, so we need only consider the
base cases. Next, base cases M? and MCurr produce σid, and the property we are trying to prove holds trivially for the empty
solution. The only case of interest, then, is MType.

MType tells us that our assumed prototype P is some type S, so by assumption WF (Γ, S). This means that in the substitution
we produce, [U/Y ], the free type variables in the codomain (FV (U)) do not overlap with any meta-variables. Furthermore, free
type variables in U cannot be confused with bound type variables in S thanks to the second condition, so the only free type variables
in U must be those declared in Γ – giving us WF (Γ, U).

4.7 Lemma: Substitutions on Matches

Lemma 8. If X,X := T := P ⇒ (σ,W ), [S/X] W is defined, and σ(X) ∈ {X,S}, and there is some Γ such that WF (Γ, S) and
WF (Γ, P ), then X := [S/X] T := P ⇒ (σ −X, [S/X] W )

Proof. By a simple inductive arugment on the assumed derivation. The only interesting cases are the two base cases of the match
MCurr (which works because by assumption [S/X] W is defined) and MType. For MType we have

Y = FT (T ) ∩ (X ∪ {X}) FV (U) ∩ (BTV (T ′) ∪X ∪ {X}) = ∅ [U/Y ] T = T ′

X,X := T := S ⇒ ([U/Y ],W )
MType

We have two subcases to consider, corresponding the assumption that [U/Y ](X) ∈ {X,S}. If [U/Y ](X) = X then clearly X /∈ Y
and [S/X] T = T , and we can easily modify the above derivation to

Y = FT ([S/X] T ) ∩ (X) FV (U) ∩ (BTV (T ′) ∪X) = ∅ [U/Y ] [S/X] T = T ′

X := [S/X] T := T ′ ⇒ ([U/Y ], [S/X] W )
MType

If [U/Y ](X) = S then we can easily factor out the mapping [S/X] and similarly get the same derivation.

4.8 Lemma: · is sound wrt Matching

Lemma 9. If MV (Γ, p) := bW c :=?→ P ⇒ (σ,W ) and Γ · (p :W,σ) · t′ : W ′  (p′, σ′)
then MV (Γ, p′) := bW ′c := P ⇒ (σ,W ′)

Proof. By induction on the assumed derivation of ·.

Case ?Forall: Our assumed derivation is

σ′′ = if R=X then σ else [R/X]◦σ Γ · (p[X] :W,σ′′) · t′ : W ′  (p′, σ′)

Γ · (p :∀X=R.W, σ) · t′ : W ′  (p′, σ′)
?Forall
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And our assumed match is

MV (Γ, p) := ∀X. bW c :=?→ P ⇒ (σ, ∀X=R.W )

Now, the only rule that could have formed this match (by inversion) is rule MForall, whose premise is

MV (Γ, p[X]) := bW c :=?→ P ⇒ (σ′′,W )

This is the match we need to invoke the IH on the derivation of · in the premise of our assumption – the IH gives us

MV (Γ, p) := bW ′c := P ⇒ (σ′,W ′)

which is what we need to conclude.

Case ?Chk: Our assumed derivation is

MV (Γ, σ S) = ∅ Γ ⇓ t′ : S  e

Γ · (p :S →W,σ) · t′ : W  (p e′, σ)
?Chk

and our assumed match is

MV (Γ, p) := S → bW c :=?→ P ⇒ (σ, S →W )

By inversion, the only rule introducing this match is MArr whose premise is

MV (Γ, p) := bW c := P ⇒ (σ,W )

which is what we need to conclude!

Case ?Syn: Our assumed derivation is

MV (Γ, σ S) = Y 6= ∅ Γ ⇑ t : [U/Y ] σ S  e

Γ · (p :S →W,σ) · t′ : [U/Y ] W  (([U/Y ] p) e′, σ)
?Syn

and our assumed match is

MV (Γ, p) := S → bW c :=?→ P ⇒ (σ, S →W )

By inversion, the only rule introducing this match is MArr whose premise is

MV (Γ, p) := bW c := P ⇒ (σ,W )

By Lemma 8 (substitutions on matches) we can rewrite this match to

MV (Γ, [U/Y ] p) := b[U/Y ] W c :=⇒ (σ, [U/Y ] W ) since

• [U/Y ] W is defined

• For all Y ∈ Y , σ(Y ) = Y

• WF (Γ, S) and WF (Γ, P ) by (implicit) assumption

• σ − Y = σ, by the definition of Y

This is precisely the match we need to conclude.

5 Completeness of δ wrt `δ
1. If Γ `δ t : T  e then Γ δ t : T  e

2. If Γ `P t : T+  (p+, σ)

and MV (Γ, p+) := T+ := P ⇒ (σA,W+), where1

1The superscript + denotes only that the terms and types of the declarative system have some additional substitutions σ+ in them that the algorithmic
rules would not have made.
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• σ ⊆ σA

• arrP (P ) ≥ 1 when ¬App(t)

then there exists (p, T,W, σ+) where

• MV (Γ, p) := T := P ⇒ (σA ◦ σ+,W )

• σ+(p, T,W ) = (p+, T+,W+) and dom(σ+) = MV (Γ, p)−MV (Γ, p+)

• Γ;P ? t : W  (p, σA ◦ σ+)

3. If Γ `· (p+ :T+, σ) · t′ : T ′+  (p′+, σ′) where

• MV (Γ, p′+) := T ′+ := P ⇒ (σ′A,W ′+) with σ′ ⊆ σ′A

• and MV (Γ, p) := T :=?→ P ⇒ (σA ◦ σ+,W ) with σ ⊆ σA

• and σ+(p, T ) = (p+, T+)

then exists (p′, T ′,W ′, σ′+) where

• MV (Γ, p′) := T ′ := P ⇒ (σ′A ◦ σ′+,W ′) with σ′ ⊆ σ′A

• σ′+(p′, T ′,W ′) = (p′+, T ′+,W ′+), dom(σ′+) = MV (Γ, p′)−MV (Γ, p′+)

• and Γ · (p :W,σA ◦ σ+) · t′ : W ′  (p′, σ′A ◦ σ′+)

5.1 Complete δ wrt `δ
Theorem 8. If Γ `δ t : T  e then Γ δ t : T  e.

Proof. By induction on the assumed derivation. The rules for the two systems are identical except for AppSyn and AppChk, so
only these are shown.

Case AppSyn Our assumed derivation is

Γ `P t t′ : T  (e, σid) MV (Γ, T ) = MV (Γ, e) = ∅
Γ `⇑ t t′ : T  e

AppSyn

To invoke mutual induction on the completeness of ? we must provide a match. This would be

∅ := T := ?⇒ (σid, T )
M?

It is immediate that the two precondition hold for the substitution – σid ⊆ σid. We now invoke complete ? (instantiating σid
for σA) to get (p, T,W, σ+) where

• MV (Γ, p) := T :=?⇒ (σ+,W )

The only rule which forms a match like this (by inversion) is M?. From this we know that σ+ = σid.

• σ+(p, T,W ) = (e, T ′, T ′)

This gives us (p, T,W ) = (e, T ′, T ′)

• Γ; ? ? t : W  (p, σA ◦ σ+)

which we rewrite to Γ; ? ? t : T ′  (e, σid)

We conclude

Γ ? t t′ : T  (p, σid) MV (Γ, p) = ∅
Γ ⇑ t t′ : T  e

AppSyn

Case AppChk: Our assumed derivation is

Γ `P t t′ : T+  (p+, σ) MV (Γ, p+) = MV (Γ, T+) = dom(σ)

Γ `⇓ t t′ : σ T+  σ p+
AppChk

To invoke mutual induction on the completeness of ? we must provide a match. This would be
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dom(σ) = MV (Γ, T+) = FV (T ) ∩MV (Γ, p+) FV (cod(σ)) ∩ (BTV (σ T+) ∪MV (Γ, p+)) = ∅
MV (Γ, p+) := T+ := σ T+ ⇒ (σ, T+)

MType

(The second condition we get from the stronger result of Lemma 1, that solutions in σ are well-formed wrt Γ). It is clear that this
match satisfies the precondition for Theorem 9 (the completeness of ?), so we invoke it (mutually-inductively) to get (p, T,W, σ+)
where

• MV (Γ, p) := T := σ σ+ T ⇒ (σ ◦ σ+,W )

The only matching rule that could give us this conclusion is MType, which tells us W = T

• σ+(p, T,W ) = (p+, T+, T+) and dom(σ+) = MV (Γ, p)−MV (Γ, p+)

This allows us to derive MV (Γ, p) = MV (Γ, T ) = dom(σ ◦ σ+)

• Γ;T ? t : T  (p, σ ◦ σ+)

We can therefore conclude

Γ;T ? t t′ : T ′  (p, σ ◦ σ+) MV (Γ, p) = dom(σ ◦ σ+)

Γ ⇓ t t′ : T  σ σ+ p
AppChk

5.2 Complete ? wrt `P

Theorem 9.
If Γ `P t : T+  (p+, σ) and MV (Γ, p+) := T+ := P ⇒ (σA,W+), where

• σ ⊆ σA

• arrP (P ) ≥ 1 when ¬App(t)

then there exists (p, T,W, σ+) where

• MV (Γ, p) := T := P ⇒ (σA ◦ σ+,W )

• σ+(p, T,W ) = (p+, T+,W+), dom(σ+) = MV (Γ, p)−MV (Γ, p+)

• Γ;P ? t : W  (p, σA ◦ σ+)

Proof. By induction on the assumed derivation.

Case ?Head: Our assumed derivation is

¬App(t) Γ `⇑ t : T  e

Γ `P t : T  (e, σid)
?Head

and our assumed match is MV (Γ, e) := T :=?→ P ⇒ (σA,W )

Since we know e is well-typed under Γ, MV (Γ, e) = ∅. Appealing to Lemma 10 we get dom(σA) ⊆ ∅, so σA = σid. We rewrite
our match to

∅ := T :=?→ P ⇒ (σid,W )

Now, invoke mutual induction on the completeness of ⇑ (Theorem 8) to get

Γ ⇑ t : T  e

and choose (e, T,W, σid) to meet the desired derivation and conditions

• MV (Γ, e) := T :=?→ P ⇒ (σid,W )

• σid(e, T,W ) = (e, T,W ),

• Γ; ?→ P ? t : W  (e, σid)
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Case ?TApp: Our assumed derivation is

Γ `P t : ∀X.T+  (p+, σ)

Γ `P t[S] : [S/X]T+  (p+[S], σ)
ITApp

and our assumed match is

MV (Γ, p+[S]) := [S/X]T+ := ?→ P ⇒ (σA, [S/X]W+)

We appeal to Lemma 11 (invertible substitutions in matching) to get

MV (Γ, p+[S]), X := T+ := ?→ P ⇒ (σA ◦ σX ,W+
X ) where

• σX ⊆ [S/X]

That is, σX(X) ∈ {X,S}

• [S/X]W+
X = W+

With that match, we now can apply matching rule MForall to get

MV (Γ, p[S]) := ∀X.T+ := ?→ P ⇒ (σA,∀X=σX(X).W+)

Lastly, we note that MV (Γ, p[S]) = MV (Γ, p), so we are able to invoke the IH to get (p, T,W, σ+) where

• MV (Γ, p) := T := ?→ P ⇒ (σA ◦ σ+,W )

• σ+(p, T,W ) = (p+,∀X.T+,∀X=σX(X).W+)

and dom(σ+) = MV (Γ, p)−MV (Γ, p+)

• Γ; ?→ P ? t : W  (p, σA ◦ σ+)

Before we can finish the derivation of ?TApp we must deal with a subtle issue – what if T = Y and W = (Y, ?→ P ), with
σ+(Y ) = ∀X=σX(X).W+? This would prevent the algorithmic rules from inferring a type application, and we’d be stuck!

Fortunately, we need only look at the match and equality produced by the the result of calling the IH to sort this out. If T = Y
then it could only be formed by MCurr, yielding

MV (Γ, p) := Y := ?→ P ⇒ (σA ◦ σ+ = σid, (Y, ?→ P ))

But now it’s impossible that σ+(Y ) = Y = ∀X=σX(X).W+. Therefore, we know that T has the form ∀X.T (we shadow the
original T from here on out) and revisit our conclusions

• MV (Γ, p) := ∀X.T := ?→ P ⇒ (σA ◦ σ+,∀X=R.W )

• σ+(p,∀X.T,∀X=R.W ) = (p+,∀X.T+,∀X=σX(X).W+)

and dom(σ+) = MV (Γ, p)−MV (Γ, p+)

We therefore know that R = σX(X)

• Γ; ?→ P ? t : ∀X=R.W  (p, σA ◦ σ+)

This allows us to conclude

Γ; ?→ P ? t[S] : [S/X]W  (p[S], σA ◦ σ+)

Case ?App: Our assumed derivation is

Γ `P t : T+  (p+, σ) Γ `· (p+ :T+, σ) · t′ : T ′+  (p′+, σ′)

Γ `P t t′ : T ′+  (p′+, σ′)
?App

Our assumed match is

MV (Γ, p′+) := T ′+ := P ⇒ (σ′A,W ′+)

By Lemma 13 (application of partially synthesized applicands preserves matching backwards) we get from this and the second
premise of the derivation
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MV (Γ, p+) := T+ :=?→ P ⇒ (σA,W+), with σ ⊆ σA.

This allows us to invoke the IH on the first premise of the derivation to get (p, T, σ+) where

• MV (Γ, p) := T :=?→ P ⇒ (σA ◦ σ+,W )

• σ+(p, T,W ) = (p+, T+,W+) and dom(σ+) = MV (Γ, p)−MV (Γ, p+)

• Γ; ?→ P ? t : W  (p, σA ◦ σ+)

The first two of these conditions, and the match we assumed, satisfy the preconditions Theorem 10, allowing us to use mutual
induction to get (p′, T ′,W ′, σ′+) where

• MV (Γ, p′) := T ′ := P ⇒ (σ′A ◦ σ′+,W ′) with σ′ ⊆ σ′A

• σ′+(p′, T ′,W ′) = (p′+, T ′+,W ′+), dom(σ′+) = MV (Γ, p′)−MV (Γ, p′+)

• and Γ · (p :W,σA ◦ σ+) · t′ : W ′  (p′, σ′A ◦ σ′+)

This allows us to conclude Γ;P ? t t′ : W ′  (p′, σ′A ◦ σ′+)

5.3 Complete · wrt `·

Theorem 10. Completeness of the algorithm wrt the specification (applications):
If Γ `· (p+ :T+, σ) · t′ : T ′+  (p′+, σ′) where

• MV (Γ, p′+) := T ′+ := P ⇒ (σ′A,W ′+) with σ′ ⊆ σ′A

• and MV (Γ, p) := T :=?→ P ⇒ (σA ◦ σ+,W ) with σ ⊆ σA

• and σ+(p, T ) = (p+, T+), dom(σ+) = MV (Γ, p)−MV (Γ, p+)

then exists (p′, T ′,W ′, σ′+) where

• MV (Γ, p′) := T ′ := P ⇒ (σA ◦ σ+,W ′) with σ′ ⊆ σ′A

• σ′+(p′, T ′,W ′) = (p′+, T ′+,W ′+), dom(σ′+) = MV (Γ, p′)−MV (Γ, p′+)

• and Γ · (p :W,σA ◦ σ+) · t′ : W ′  (p′, σ′A ◦ σ′+)

Proof. By a (not-so-easy) induction on the assumed derivation.

Case PForall Our assumed derivation is

σ′′ ∈ {σ, [S/X] ◦ σ},WF (Γ, S) Γ `· (p+[X] :T+, σ′′) · t′ : T ′+  (p′, σ′)

Γ `· (p :∀X.T+, σ) · t′ : T ′+  (p′+, σ′)
PForall

Our assumed conditions are

• MV (Γ, p′+) := T ′+ := P ⇒ (σ′A,W ′+) with σ′ ⊆ σ′A

• and MV (Γ, p) := T :=?→ P ⇒ (σA ◦ σ+,W ) with σ ⊆ σA

• and σ+(p, T ) = (p+,∀X.T+), dom(σ+) = MV (Γ, p)−MV (Γ, p+)

To make progress we need some way to reveal that T 6= Y for some Y ∈ MV (Γ, p) – because if it were, then we would not be
able to apply the algorithmic rule ?Forall. First, we note that it is easy to show (Lemma 18) that ∀X.T+ being in the application
position of a judgment of `·, it must really have the following form

∀X,X. S+ → T ′+
Y

.

(The reason for subscript Y will become apparent a little later). By a similar observation (a kind of “peek-ahead” assumed
derivation of `·, Lemma 19) tells us that the base-case for our assumed derivation of `· generates some substitution σY , where

dom(σY ) = Y ⊆MV (Γ, σ p[X][X]), such that σY T ′+
Y

= T ′+

Returning to our troubles, if T = Y then the second of our assumed matches must have been formed by ruleMCurr, which tells us

MV (Γ, p) := Y := ?→ P ⇒ (σA ◦ σ+ = σid, (Y, ?→ P ) = W )

However, our third condition tells us that σ+(Y ) = σid(Y ) = ∀X,X. S+ → T ′+
Y

– which is impossible! We can iterate this

argument over each bound variable in X to get, finally, that T looks like ∀X,X. S → T ′
Y

for some S and T ′
Y

. Knowing this, we
revisit the second and third assumed conditions on our derivation:
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• MV (Γ, p) := ∀X,X. S → T ′
Y

:=?→ P ⇒ (σA ◦ σ+,∀X,X=R,R.W ′
Y

)

with σ ⊆ σA, and for some W ′
Y

, R, and R

• and σ+(p, ∀X,X. S → T ′
Y

) = (p+,∀X,X. S+ → T ′+
Y

),

dom(σ′+) = MV (Γ, p′)−MV (Γ, p′+)

We next need some way to relate the specificational system’s “guess” σ′′(X) with the match-generated decoration R. Our
algorithmic rules will first want to define σ′′A = if R=X then σA else [R/X] ◦σA. To satisfy the precondition on the IH, we need
to show that σ′′ ⊆ σ′′A. As σ ⊆ σA, this reduces to showing that if σ′′(X) = S then σ′′A(X) = S.

σ′′ and σ′′A: By an easy inductive argument we know that `· grows its generated solutions monotonically, so the derivation
in the premise of our assumption,

Γ `· (p+[X] :T+, σ′′) · t′ : T ′+  (p′, σ′)

tells us that σ′′ ⊆ σ′, and furthermore by assumption σ′ ⊆ σ′A If the specificational rules guessed S, then it is clear that σ′A(X) = S.
Next, since we have that T ′+ = σ+ σY T ′

Y
, the match in our first condition is

MV (Γ, p′+) := σ+ σY T ′
Y

:= P ⇒ (σ′A,W ′+)

We invoke Lemma 11 (invertible substitutions in matches) to get

MV (Γ, p′), Y := T ′
Y

:= P ⇒ (σ′A ◦ σ′′′,W ′
Y

) (for some σ′′′ ⊆ σ+ ◦ σY ).

which we can repack into (successively using rule MForall)

MV (Γ, p) := ∀X,X. S → T ′
Y

:=?→ P ⇒ (σA ◦ σ+,∀X,X=R,R. S →W ′
Y

)

(re-use of meta-variables σA, σ+ is justified by Lemma 15 and the match from our second assumed condition). Well, if σ′′(X) = S,
then σ′A(X) = R = S. And since R = S, the algorithmic rules must choose σ′′A = [S/X] ◦ σA, meaning that σ′′A(X) = S as well,
giving us that σ′′ ⊆ σ′′A.

IH: To recap, we now meet the desired preconditions to invoke the IH

• MV (Γ, p′+) := T ′+ := P ⇒ (σ′A,W ′+) with σ′ ⊆ σ′A

This remains unmodified from our assumption

• and MV (Γ, p[X]) := ∀X,X. S → T ′
Y

:=?→ P ⇒ (σ′′A ◦ σ+,∀X=R.S →W ′
Y

) with σ′′ ⊆ σ′′A

• and σ+(p[R], T ) = (p+[R], T+)

We invoke the IH to get (p′, T ′,W ′, σ′+) where

• MV (Γ, p′) := T ′ := P ⇒ (σ′A ◦ σ′+,W ′) with σ′ ⊆ σ′A

• σ′+(p′, T ′,W ′) = (p′+, T ′+,W ′+), dom(σ′+) = MV (Γ, p′)−MV (Γ, p′+)

• and Γ · (p[X] :W,σ′′A ◦ σ+) · t′ : W ′  (p′, σ′A ◦ σ′+)

which is what we need to derive

Γ · (p :∀X,X=σ′′A(X), R. S →W ′
Y

) · t′ : W ′  (p′, σ′A ◦ σ′+)

Case PChk Our assumed derivation is

MV (Γ, σ S+) = ∅ Γ `⇓ t′ : σ S+  e′

Γ `· (p+ :S+ → T+, σ) · t′ : T+  (p+ e′, σ)
PChk

Our assumed conditions are

• MV (Γ, p+e) := T+ := P ⇒ (σ′A,W ′+) with σ ⊆ σ′A

• and MV (Γ, p) := S → T :=?→ P ⇒ (σA ◦ σ+, S →W ) with σ ⊆ σA

Again, reasoning (using the equality directly below) that the subject of this match could not be some Y ∈MV (Γ, p), it must
be of the form S → T
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• and σ+(p, S → T ) = (p+, S+ → T+)

We must now pick out a suitable (σ′+, p′, T ′,W ′) to provide as the result of this case. Pick (σ+, p e, T,W ). Now we show the
post-conditions of the theorem hold.

• MV (Γ, p e′) := T := P ⇒ (σ′A ◦ σ+,W ) with σ ⊆ σ′A

From the match given in our second assumed condition it is clear that

MV (Γ, p e′) := T := P ⇒ (σA ◦ σ+,W )

(because the only rule that could form it, MArr, would have this as its premise). Aligning this with our requirement reduces
to showing that σ′A = σA. By Lemma 14 on the soundness of solutions by the matching, for the matching, we have

MV (Γ, p+ e′) := T+ := P ⇒ (σA, σ+ W ),

and comparing to our first condition, uniquess of matching solutions (Lemma 15) gives us

σA = σ′A and σ+ W = W ′+

• σ+(p e′, T,W ) = (p+ e′, T+,W ′+), dom(σ+) = MV (Γ, p e′)−MV (Γ, p+ e′),

Directly from assumptions and the equation in the point above, and from the fact that MV (Γ, e′) = ∅

• and Γ · (p :S →W,σA ◦ σ+) · t′ : W  (p e′, σ′A ◦ σ+)

For this we invoke mutual induction on the completeness of ⇓ (Theorem 8) to get

Γ ⇓ t′ : σA σ+ S  e′, noting that σ+ S = S+ and MV (Γ, σA S+) = ∅

which is what we need to conclude

Case PSyn Our assumed derivation is

MV (Γ, σ S+) = Y + 6= ∅ Γ `⇑ t′ : [U/Y +] σ S+  e′

Γ `· (p+ :S+ → T+, σ) · t′ : [U/Y +] T+  (([U/Y +] p+) e′, σ)
PSyn

Our assumed conditions are

• MV (Γ, [U/Y +]p+ e) := [U/Y +]T+ := P ⇒ (σ′A,W ′+) with σ ⊆ σ′A

• and MV (Γ, p) := S → T :=?→ P ⇒ (σA ◦ σ+, S →W ) with σ ⊆ σA

Again, reasoning that the subject of this match must be S → T and not some Y ∈MV (Γ, p)

• and σ+(p, S → T ) = (p+, S+ → T+)

We must pick a suitable (p′, T ′,W ′, σ′+) for which we can derive a judgment formed by · with the needed properties. To do this,
we must first ask what we know about any unsolved meta-variables Y that the algorithm will encounter – MV (Γ, σA σ+ S) = Y –
given that MV (Γ, σ S+) = MV (Γ, σ σ+S) = Y + .

First, it is clear that Y ⊆ Y + because σ ⊆ σA. So, consider the match from our first assumed condition. By Lemma 11 on
inverting substitutions in the subject of a match, we get

MV (Γ, p+ e) := T+ := P ⇒ (σ′A ◦ σY ,W
′+
Y

), where σY (W ′+
Y

) = W ′+

Now, consider the match from our second assumed condition. By inversion we know it can only have been formed by MArr,
whose premise we further transform by Lemma 14 (re-substituting solutions in matches – in this case σ+) to get

MV (Γ, p+ e) := T+ := P ⇒ (σA, σ+ W )

And now, by uniqueness of solutions of matching (Lemma 15) we get (σA, σ+ W ) = (σ′A ◦ σY ,W
′+
Y

). Let us call, for the sake

of simplicity, the second component of both pairs W+, and let σY ′ = [U/Y ]− σY
We return to the task of selecting (p′, T ′,W ′, σ′+). We pick

((σY ′ p) e′, σY ′ T, σY ′ W,σ+ ◦ σY )2,

and now witness the following post-conditions:

2If you were wondering what the purpose was of σ+ in these proofs, now you know – the specificational rules may opt to discover from synthetic
type-argument inference what the algorithm would know from contextual type-argument inference
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• MV (Γ, p′) := σY ′ T := P ⇒ (σ′A ◦ σ+ ◦ σY , σY ′ W ) with σ ⊆ σ′A

This comes from the equational reasoning above, taking the match

MV (Γ, p′) := T := P ⇒ (σA ◦ σ+,W )

noting that σA = σ′A◦σY and deploying solution σY ′ to T (Lemma 8), while then reasoning that dom(σY ′)∩dom(σA◦σY ) = ∅
(solution σY ′ doesn’t interfere with the solutions the match generates) from the definition of σY ′ .

• σ′+(p′, T ′,W ′) = (p′+, T ′+,W ′+), dom(σ′+) = MV (Γ, p′)−MV (Γ, p′+)

Again with some equational reasoning. For example, σ′+ T ′ = σ+ σY σY ′ T = [U/Y ] T+ = T ′+

• and Γ · (p :W,σA ◦ σ+) · t′ : W ′  (p′, σ′A ◦ σ′+)

This last piece requires some care – the algorithm might use more contextual information than the specificational derivation, mean-
ing that we might need to derive ?Chk even though our assumed case is PSyn. If Y 6= ∅, we know that the algorithm will try to derive

Γ ⇑ t : σY ′ σA σ+ S  e′.

By an invocation of mutual induction on the completeness of ⇑ (Theorem 8) on the second premise of our assumed derivation of
`·, we know that the algorithm can derive

Γ ⇑ t′ : [U/Y +] σ S+  e′

which (by some equational reasoning) is what we need.
However, if Y = ∅, the algorithm will actually try to check the term t′ against a fully known type. We need

Γ ⇓ t′ : σA σ+ S  e′

By Lemma 16 (checking mode extends synthesizing mode) on the second premise of our assumed derivation we have

Γ `⇓ t′ : [U/Y +] σ S+  e′

By mutual induction on the completeness of ⇓ (Theorem 8) we get

Γ ⇓ t′ : [U/Y +] σ S+  e′

which, after a bit of equational reasoning on the substitutions, is what we need. So in either case, we are able to conclude

Γ · (p :S →W,σA ◦ σ+) · t′ : W ′  (p′, σ′A ◦ σ′+)

5.4 Lemma: Match solutions solve match meta-variables

Lemma 10.
If X := T := P ⇒ (σ,W ) then dom(σ) ⊆ X

Proof. Straightforward induction on the assumed derivation.

5.5 Lemma: Invertible substitutions in matches

Lemma 11.
If X := [U/Y ]T := P ⇒ (σ,W ) and X ∩ FV (U) = ∅
then X,Y := T := P ⇒ (σ ◦ σY ,WY ) where

• σY ⊆ [U/Y ]

• [U/Y ]WY = W

Proof. By a straightforward inductive argument on the assumed derivation.

5.6 Lemma: · preserves := (forwards)

Lemma 12.
If Γ · (p :W,σ) · t′ : W ′  (p′, σ′) and MV (Γ, p) := bW c :=?→ P ⇒ (σ,W )
then MV (Γ, p′) := bW ′c :=?→ P ⇒ (σ′,W ′)

Proof. By induction on the assumed derivation.
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Case PForall Our assumed derivation is

σ′′ = if R=X then σ else [R/X] ◦ σ Γ · (p[X] :W,σ′′) · t′ : W ′  (p′, σ′)

Γ · (p :∀X=R.W, σ) · t′ : W ′  (p′, σ′)
PForall

and our assumed match is

MV (Γ, p) := ∀X. bW c :=?→ P ⇒ (σ, ∀X=R.W )

The only rule giving us this match (by inversion) is MForall, with premise

MV (Γ, p[X]) := bW c :=?→ P ⇒ (σ′′,W )

We can now invoke the IH on the second premise of our assumed derivation to get

MV (Γ, p′) := bW ′c := P ⇒ (σ′,W ′)

which is what we need to conclude.

Case PChk: Our assumed derivation is

MV (Γ, σ S) = ∅ Γ ⇓ t′ : S  e

Γ · (p :S →W,σ) · t′ : W  (p e′, σ)
PChk

and our assumed match is

MV (Γ, p) := S → bW c :=?→ P ⇒ (σ,W )

By inversion the only rule we can use to form this match is MArr with premise

MV (Γ, p e′) := bW c := P ⇒ (σ,W ).
Since MV (Γ, e′) = ∅ this is what we need to conclude.

Case PSyn: Our assumed derivation is

MV (Γ, σ S) = Y 6= ∅ Γ ⇑ t : [U/Y ] σ S  e

Γ · (p :S →W ) · t′ : [U/Y ] W  (([U/Y ] p) e′, σ)
PSyn

and our assumed match is

MV (Γ, p) := S → bW c :=?→ P ⇒ (σ,W )

The only rule allowing us to form this match is MArr, with premise

MV (Γ, p e′) := bW c := P ⇒ (σ,W )

By Lemma 8, and by noting that Y ∩ dom(σ) = ∅ from our first premise, we have

MV (Γ, [U/Y ]p e′) := b[U/Y ]W c := P ⇒ (σ, [U/Y ]W ) which allows us to conclude.

5.7 Lemma: `· preserves := (backwards)

Lemma 13.
If Γ `· (p :T, σ) · t′ : T ′  (p′, σ) and MV (Γ, p′) := T ′ := P ⇒ (σ′,W ′)
then there exists (σA,W ) where MV (Γ, p) := T :=?→ P ⇒ (σA,W ) and σ ⊆ σA

Proof. By induction on the assumed derivation of `·.

Case PForall Our assumed derivation is

σ′′ ∈ {σ, σ ◦ [S/X]},WF (Γ, S) Γ `· (p[X] :T, σ′′) · t′ : T ′  (p′, σ′)

Γ `· (p :∀X.T, σ) · t′ : T ′  (p′, σ′)
PForall
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Our assumed match is

MV (Γ, p′) := T ′ := P ⇒ (σ′A,W ′) where σ′ ⊆ σ′A

We invoke the IH on this match and the second premise to get

MV (Γ, p[X]) := T := ?→ P ⇒ (σA,W ) where σ′′ ⊆ σA

Applying matching rule MForall gives us the desired result.

MV (Γ, p) := ∀X.T := ?→ P ⇒ (σ′A −X,∀X=σ′′(X).W )

Case PChk: Our assumed derivation is

MV (Γ, σ S) = ∅ Γ `⇓ t′ : σ S  e′

Γ `· (p :S → T, σ) · t′ : T  (p e′, σ)
PChk

Our assumed match is

MV (Γ, p e′) := T := P ⇒ (σ′A,W ), σ ⊆ σ′A.

We invoke matching rule MArr to conlcude (noting MV (Γ, e′) = ∅)

MV (Γ, p) := S → T :=?→ P ⇒ (σ′A, S →W ), σ ⊆ σ′A

Case PSyn Our assumed derivation is

MV (Γ, σ S) = Y 6= ∅ Γ `⇑ t′ : [U/Y ] σ S  e

Γ `· (p :S → T, σ) · t′ : [U/Y ] T  (([U/Y ] p) e′, σ)
PSyn

Our assumed match is

MV (Γ, [U/Y ]p e′) := [U/Y ]T := P ⇒ (σ′A,W ′)

By Lemma 11 (invertibility of substitutions in a match), we have

MV (Γ, p e′) := T := P ⇒ (σ′A ◦ σY ,W ′Y ), σY ⊆ [U/Y ]

Noting that σ ⊆ σ′A ⊆ σ′A ◦ σY , we apply rule MArr to conclude

MV (Γ, p e′) := S → T :=?→ P ⇒ (σ′A ◦ σY , S →W ′
Y

)

5.8 Lemma: Match Solutions are Match Sound

Lemma 14.
If X := T := P ⇒ (σ ◦ σ′,W ) then X − dom(σ′) := σ′ T := P (σ, σ′ W )

Proof. By an easy inductive argument on the assumed derivation.

5.9 Lemma: Function-ness of Matching

Lemma 15.
If X := T := P ⇒ (σ,W ) and X := T := P ⇒ (σ′,W ′),
then (σ,W ) = (σ′,W ′)

Proof. By an easy inductive argument on the assumed derivation.

5.10 Lemma: Checking extends Synthesizing

Lemma 16.
If Γ `⇑ t : T  e then Γ `⇓ t : T  e

Proof. A mostly easy induction, given that many rules are “direction-polymorphic.” The only interesting case is AppSyn, which
we look more closely at now
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Case AppSyn: Our assumed derivation is

Γ `P t t′ : T ′  (e′, σid) MV (Γ, e′) = MV (Γ, T ′) = ∅
Γ `⇑ t t′ : T ′  e′

AppSyn

But dom(σid) = ∅ so we already have what we need:

Γ `P t t′ : T ′  (e, σid) MV (Γ, e′) = MV (Γ, T ′) = dom(σid)

Γ `⇓ t t′ : σid T
′  σid e

′ AppChk

5.11 Lemma: Matching Arrows of P and W :

Lemma 17.
Let arrP (P ) be the number of prototype arrows prefixing P , and arrW (W ) the number of decorated-type arrows preceding W .

• If Γ;P ? t : W  (p, σ) then arrW (W ) ≤ arrP (P )

• If X := T := P ⇒ (σ,W ) then arrP (P ) ≤ arrW (W )

Proof. Straightforward:

• The first point is a special case of the third, by invoking Lemma 6.

• By an easy inductive argument on the assumed derivation of :=, noting that the number of prototype and decorated arrows
encountered during the inductive cases are equal up until the base case, in which they are either equal (MType and M?) or
the former is strictly greater than the latter (MCurr).

5.12 Lemma: Subject type reveals an arrow in `·

Lemma 18.
If Γ `· p :T · t′ : T ′  (p′, σ′) then T = ∀X.T ′′ for some T ′′

Proof. By a straightforward inductive argument on the assumed derivation.

5.13 Lemma: Peek-ahead for `·

Lemma 19.
If Γ `· (p :∀X.S → TY , σ) · t′ : T ′  (p′, σ′) then there exists some σY with Y ∈MV (Γ, p) ∪X such that σY (TY ) = T ′

Proof. By a straightforward induction on the assumed derivation: in case PChk Y = ∅, and in case PSyn σY comes from
synthesizing the type of t′ and matching it against some expected type based on TY (and some guessing done in PForall).

6 Qualified Completeness of `δ wrt `
Definition 1. (Annotation Requirements for Typing the External Language): Let eP be a term of the internal language such
that Γ ` eP : TP

3 Furthermore, let tP be a term in the external language such that tP ∈ beP c. We say that tP meets our
annotation requirements when the following conditions hold for each sub-expression e of eP , corresponding sub-expression t of tP ,
and corresponding sub-derivation Γ′ ` e : T of a derivation of Γ ` eP : TP :

1. If e=λx :S. e′ for some S and e′, then t=λx :S. t′ for some t

2. If e occurs as a maximal term application in eP and if
Γ′ `P t : T ′  (p, σid) for some T ′ and p, then MV (Γ, p)=∅.

3. If e is a term application and t = t1 t2 for some t1 and t2, and if Γ′ `P t1 : T ′  (p, σid) for some T ′ and p, then
T ′=∀X.S1 → S2 for some S1 and S2.

4. If e is a type application and t = t′[S] for some t′ and S, and Γ′ `P t′ : T ′  (p, σid) for some T ′ and p, then T ′=∀X.S′ for
some S′.

If Definition 1 holds for some pair of internal and external terms (eP , tP ) then we can show the following theorems.

3The subscript P indicates nothing more than an expression which we consider to be the whole program we are typing.
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• If e occurs somewhere in eP as not a term applicand*, or if ¬App(e), then Γ′ `⇑ t : T  e

Γ′ `⇑ tP : TP  eP is a special case of this.

• If e occurs as an applicand in eP and e = e′ [S] for some e′ and S, t = t′ [S] for some t′, with ¬TpApp(e′), then Γ `P t : T ′  
(p, σid) with some σ such that dom(σ) = MV (Γ, p) and σ (p, T ′) = (e, T )

• If TmApp(e) and Γ ` e : T ′ then Γ `P t : T  (p′, σid)

with some σ such that dom(σ) = MV (Γ, p′) and σ (p′, T ) = (e, T ′)

• If

– Γ ` e [U1] [U2] : S′ → T ′ and Γ `⇑ t′ : S′  e′

– and some σ with dom(σ) = MV (Γ, p [X1] [X2])

where σ (p [X1] [X2], S → T ) = (e [U1] [U2], S′ → T ′)

(and (|X1|, |X2|) = (|U1|, |U2|))

then

– Γ `· (p[X1] :∀X2. S → T, σid) · t′ : T ′′  (p′, σid)

– with some σ′ with dom(σ′) = MV (Γ, p′) and where σ (p′, T ′′) = (e [U1] [U2] e′, T ′)

6.1 Qualified Completeness `⇑ wrt `
Theorem 11.

Under the qualifications of Definition 1, if e occurs as a non-applicand in eP or if ¬App(e) then Γ `⇑ t : T  e

Proof. By induction on the assumed derivation

Case V ar Our assumed derivation is

Γ ` x : Γ(x)
V ar

There is only one partial erasure of x – x. We apply rule V ar of `⇑ to conclude

Γ `⇑ x : Γ(x) x
V ar

Case Abs Our assumed derivation is

Γ, x :T ` e : S

Γ ` λx :T. e : T → S
AAbs

By our first assumed qualification, we have that our partial erasure t′ of λx :T. e has the form λx :T. t for some partial erasure
t of e. We invoke the IH (the body of our λ-abstraction, e, is not itself an applicand) and conclude

Γ, x :T ` e : S

Γ, x :T `⇑ t : S  e
IH

Γ `⇑ λx :T. t : T → S  λx :T. e
AAbs

Case TAbs Our assumed derivation is

Γ, X ` e : T

Γ ` ΛX. e : ∀X.T TAbs

We have a partial erasure ΛX. t of ΛX. e, meaning that t is a partial erasure of e. We invoke the IH to conclude

Γ, X ` e : T

Γ, X `⇑ t : T  e
IH

Γ `⇑ ΛX.t : ∀X.T  ΛX.e
TAbs
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Case TApp Our assumed derivation is

Γ ` e : ∀X.T
Γ ` e[S] : [S/X]T

TApp

By assumption, e[S] occurs somewhere not as a term-applicand* in eP . This means that its erasure t corresponding to the same
position in tP has form t = t′[S] by the definition of erasure (we only erase type arguments between term to term applications).

Because e[S] is not a term applicand*, neither is e4. Therefore, we can invoke the IH to conclude

Γ ` e : ∀X.T
Γ `⇑ t : ∀X.T  e

IH

Γ `⇑ t[S] : [S/X]T  e[S]
TApp

Case App Our assumed derivation is

Γ ` e : S′ → T ′ Γ ` e′ : S′

Γ ` e e′ : T ′
App

Since the elaborated expression in question is e e′ we know that its erasure must be of the form t t′. We invoke mutual induction
for the qualified completeness of `P for applications to get

Γ `P t t′ : T  (p, σid) with σ such that

• dom(σ) = MV (Γ, p)

• σ (p, T ) = (e e′, T ′)

Now, by assumption e e′ occurs as not a term applicand* in eP . By qualification #2 we have MV (Γ, p) = ∅. We use this to
rewrite the post-conditions of our invocation of mutual induction above:

• dom(σ) = MV (Γ, p) = ∅ =⇒ σ = σid

• σ (p, T ) = σid(p, T ) = (p, T ) = (e e′, T ′)

We can now conclude

Γ `P t t′ : T ′  (e e′, σid) MV (Γ, e e′) = MV (Γ, T ′) = ∅
Γ `⇑ t t′ : T ′  e e′

AppSyn

6.2 Qualified Completeness of `P wrt ` (TApp)

Theorem 12. Under the qualifications of Definition 1, if e occurs as a term applicand* in eP and e = e′[S] for some e′ and S, and
t = t′[S] for some t′, with ¬TpApp(e′), then Γ `P t : T ′  (p, σid) with some σ such that dom(σ) = MV (Γ, p) and σ (p, T ) = (e, T ′)

Proof. By induction on the length of S

Case [S] = ∅ Our assumed derivation is

Γ′ ` e : T ′

By assumption, ¬TpApp(e). We therefore have that either TmApp(e) or else ¬App(e) In either case we can appeal to mutual
induction on qualified completeness to conclude:

Subcase TmApp(e): We appeal to qualified completeness of `P for applications (Theorem 13) to get

Γ′ `P t : T  (p, σid) with σ s.t. dom(σ) = MV (Γ′, p) and σ (p, T ) = (e, T ′), which is what we need to conclude.

4Recall the definitions of term applicand* earlier in the document
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Subcase ¬App(e): We appeal to qualified completeness of `⇑ (Theorem 11) to get

Γ′ `⇑ t : T ′  e

and using rule PHead we derive

Γ′ `P t : T ′  (e, σid)

noting that MV (Γ′, e) = ∅ and σid (e, T ′) = (e, T ′), which is what we need to conclude.

Case [S] = [S′] [S] Our assumed derivation is

Γ ` e[S′] : ∀X.T ′

Γ ` e[S′] [S] : [S/X]T ′
TApp

By the IH we have

Γ ` e [S′] : ∀X.T ′

Γ `P t [S′] : T  (p, σid)
IH

with σ such that

• dom(σ) = MV (Γ, p)

• σ (p, T ) = (e [S′],∀X.T ′)

By qualification #4 we have T = ∀X.T ′′. By combining this with the second post-conditions from the IH we get σ T ′′ = T ′.
We derive

Γ `P t [S′] : ∀X.T ′′  (p, σid)

Γ `P t [S′] [S] : [S/X]T ′′  (p[S], σid)
PTApp

and note we can produce σ as the output substitutions, since

• dom(σ) = MV (Γ, p[S]) = MV (Γ, p)

• σ (p[S], [S/X]T ′′) = (e [S′] [S], [S/X]T ′)

(dom(σ) ∩X = ∅ and cod(σ) is only those types well-formed under Γ)

6.3 Qualified Completeness of `P wrt ` (App)

Theorem 13. Under the qualifications of Definition 1, if TmApp(e) and Γ′ ` e : T ′ then Γ `P t : T  (p, σid) with some σ such
that dom(σ) = MV (Γ, p) and σ (p, T ) = (e, T ′)

Proof. Directly. Our internal term is e e′ and external term is t t′, and our assumed derivation is

Γ ` e : S′ → T ′ Γ ` e′ : S′

Γ ` e e′ : T ′
App

We can rewrite e = e′′ [U ], making visiable all of the outermost type applications in e (if any). Since e is an applicand, we know
that its erasure t may have had some number of the right-most type applications erased – so t = t′′ [U1] where [U ] = [U1] [U2]

We examine the first premise of our assumed derivation. We now know it must have the following form:

Γ ` e′′ [U1] : ∀X.T ′
X

Γ ` e′′ [U1] [U2] : S′ → T ′
TApp...

Γ ` e′ : S′

Γ ` e′′ [U1] [U2] e′ : T ′
App

where the (left-to-right ordered) substitution [U2/X]T ′
X

= S′ → T ′

We appeal to mutual induction on the completeness of `P wrt ` (Theorem 12) to get:

Γ `P t′′ [U1] : TX  (p, σid) with σ such that

• dom(σ) = MV (Γ, p)
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• σ (p, TX) = (e [U1],∀X.T ′
X

)

Now, by qualification #3, from our `P derivation of applicand t we have that TX = ∀X.S → T for some S and T . The use of
the same bound type variables X as used in ∀X.T ′

X
is justified by rewriting the equality concerning σ TX above with this new

information:

σ (p,∀X.S → T = (e′′[U1],∀X.T ′
X

)

We now appeal to completeness of `· wrt `. We satisfy its preconditions:

• Γ ` e′′ [U1] [U2] : S′ → T ′ and Γ `⇑ t′ : S′  e′

The second of these we get by mutual induction on the completeness of `⇑ wrt `, noting that e′ occurs in a non-applicand
position.

• some σ′′ with dom(σ′′) = MV (Γ, p [X])

where σ′′(p [X], S → T ) = ((e′′ [U1]) [U2], S′ → T ′)

(and (|∅|, |X|) = (|∅|, |U2|))

Note that we parenthesize (e′′ [U1]) for clarification 5 We are not providing vectorized type arguments U1 and U2 to the
theorem – we are providing type arguments ∅ and U2, and corresponding ∅ and X for the vectorized type meta-variables.

The σ′′ we provide is [U2/X] ◦ σ

Having set this up, we get the following from mutual induction:

• Γ `· (p :∀X.S → T, σid) · t′ : T ′′  (p′, σid)

• some σ′ with dom(σ′) = MV (Γ, p′)

where σ′ (p′, T ′′) = ((e′′ [U1]) [U2] e′, T ′)

which is what we need to conclude.

6.4 Qualified Completeness of `· wrt `
Theorem 14. Under the qualifications of Definition 1, if

• Γ ` e [U1] [U2] : S′ → T ′ and Γ `⇑ t′ : S′  e′

• and some σ with dom(σ) = MV (Γ, p [X1] [X2])

where σ (p [X1] [X2], S → T ) = (e [U1] [U2], S′ → T ′)

(and (|X1|, |X2|) = (|U1|, |U2|))

then

• Γ `· (p[X1] :∀X2. S → T, σid) · t′ : T ′′  (p′, σid)

• with some σ′ with dom(σ′) = MV (Γ, p′) and where σ (p′, T ′′) = (e [U1] [U2] e′, T ′)

Proof. By induction on X2

Case [X2] = X,X ′2 We have

• Γ ` e [U1] [U ] [U ′2] : S′ → T ′

• σ (p[X1][X][X ′2], S → T ) = (e [U1] [U ] [U ′2], S′ → T ′)

We appeal to the IH using variable groups X ′1 = X1, X and X ′2, noting that this regrouping does not keep us from providing
the conditions we received on our assumed derivation to the inductive invocation. We get

• Γ `· (p[X1][X] :∀X ′2. S → T, σid) · t′ : T ′′  (p′, σid)

• with some σ′ with dom(σ′) = MV (Γ, p′) and where σ (p′, T ′′) = (e [U1] [U2] e′, T ′)

5or at least some attempt at it
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From this we derive

Γ `· (p[X1][X] :∀X ′2. S → T, σid) · t′ : T ′  (p′, σid)

Γ `· (p[X1] :∀X,X ′2. S → T, σid) · t′ : T ′  (p′, σid)
PForall

And provide the σ′ prime we received from our IH, noting that the conditions on it are precisely what we need to conclude.

Case [X2] = ∅ We have

• Γ ` e [U1] : S′ → T ′

• Γ `⇑ t′ : S′  e′

• and σ (p [X1], S → T ) = (e [U1], S′ → T ′).

To proceed, we must do case analysis on whether MV (Γ, S) = ∅ or not.

Subcase MV (Γ, S) = ∅: Because MV (Γ, S) ⊆MV (Γ, p) = dom(σ), we have σ S = (σ ∩MV (Γ, S))(S) = σid(S) = S′.
So we have by rewriting our second assumption that

Γ `⇑ t′ : S  e′

By using the fact that checking mode extends synthesizing for the specificational rules (Lemma 20) we can derive Γ `⇓ t′ : S  e′

to get

MV (Γ, S) = ∅ Γ `⇓ t′ : S  e′

Γ `· (p[X1] :S → T, σid) · t′ : T  (p[X1] e′, σid)
PChk

We must now provide a suitable σ′ completing our partial type synthesis. Pick our assumed σ. Then we have

• dom(σ) = MV (Γ, p [X1] e′)

• σ (p[X1] e′, T ) = (e [U1] e′, T ′)

allowing us to conclude this sub-case.

Subcase MV (Γ, S) = Y 6= ∅: We know that MV (Γ, S) = Y ⊆ MV (Γ, p) = dom(σ). Let σY = σ ∩ Y . Then we know
σ S = σY (S) = S′. We have

Γ `⇑ t′ : σY S  e′

We can derive

MV (Γ, S) = Y 6= ∅ Γ `⇑ t′ : σY S  e

Γ `· (p[X1] :S → T, σid) · t′ : σY T  ((σY p[X1]) e′, σid)
PSyn

We must now pick a suitable σ′. Pick σ − σY . We have

• dom(σ − σY ) = MV (Γ, p[X1] e′)− Y = MV (Γ, (σY p[X1]) e′)

• σ′ σY (p[X1] e′, σY T )

= σ (p [X1] e′, T )

= (e [U1] e′, T ′)

which is what we need to conclude.

6.5 Lemma: Checking extends Synthesizing (Specification)

Lemma 20. If Γ `⇑ t : T  e then Γ `⇓ t : T  e

Proof. Directly. Take the assumed derivation of `⇑, invoke completeness of ⇑ wrt `⇑ (refthmcomplete-alg), use the fact that
checking extends synthesizing for the algorithmic rules (Lemma 16), and then finish by invoking soundness of the ⇓ wrt `⇓
(Theorem 2).
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