Spine-local Type Inference: Proof Appendix

Christopher Jenkins
February 12, 2019

Contents
[L Type Inference Rules|
DEAX] . . . o e e e e e e e e e

1.2 ermINOlOZY| e e e e e e e e e e e e
1.3 eta-language Definitions| L oL e
L4 Bidirectional Rules| o e
[L1.5 Specificational Rules| 0 o e
1.6 Algorithmic Rules| 0 0 e

|2 Termination of Algorithmic Rules|

13 Soundness of 5 wrt H
BI Bidirectional Rulesl o o
8.2 Partial Synthesis Rules|. o o e
8.3 Partial Application Rules| 0 0 o e
[3.4 Lemma: Well-formed and well-scoped solutions|
B5 _TLemma: ¢ mtroduces no meta-variables] v v ot e e e e
B6 Temma: Sounduse of g o Fl o oo
B.7 Lemma: Well-formed Partial Types|. o 0 o

4 Soundness of |F5 wrt ;|
AT Bidirectional Rulesl o o o
4.2 Prototype Rules| o o e
4.3 Prototype Application Rules| o e
4.4 Lemma: Sound decoration erasure] e e e e e e e e e e e e e e
4.5 Lemma: Sound IF wrt F=] . . o o o
4.6 Lemma: Matches generate well-formed Decorations|
4.7 Lemma: Substitutions on Matchesl
4.8 Lemma: I-"is sound wrt Matching] oo o

[F Completeness of IF; wrt
5.1 Complete F5 wrt 5| . . . 0 o o e
5.2 Complete [F"wrt 5| . o
b.3 Complete [F wrt =], . . . 00
B4 Temma: Mafch solufions solve mafch mefa-variables]
b.5 Lemma: Invertible substitutions in matchesl oo
5.6 Lemma: |- preserves IF= (forwards)| L
5.7 Lemma: " preserves IF= (backwards)|
B8 Temma: Match Solufions are Match Soundl o it
5.9 Lemma: Function-ness of Matching|.
5.10 Lemma: ecking extends Synthesizing| Lo
[F.IT Temma: Matching Atrows of P and Wil o o v v v o o o e e
9.12 Lemma: Subject type reveals an arrow in F7[.
B.13 Lemma: Peek-ahead for E7. e

[6 Qualified Completeness of -5 wrt H
6.1 Qualified Completeness ¢ wrt =o
6.2 Qualified Completeness of F- wrt = (TADPD)| o o v
6.3 Qualified Completeness of F- wrt = (App)|
6.4 Qualified Completeness of F wrt H| L L e
6.5 Lemma: Checking extends Synthesizing (Specification)|.

= w NN N

(=201

J

1 Type Inference Rules

1.1 Syntax
Types ST.UV:=XY Z|S—>T|vVX.T
Contexts Fe=. |0,X|T,z:T
Terms (Internal) e,pu=x | Az:T.e | AX.e|ee |e[T)
Terms (External) to=x | ATt | Aot | AX.t|tt | ¢t[T]
Prototypes P:=?|T|?7>P
Decorated Types Woe=T|S—->W|VX=XW |VX=SW|(X,7— P)

1.2 Terminology

In both the internal and external languages, we say that the applicand of a term or type application is the term in the function
position. A head is either a variable or A-abstraction (bare or annotated), and an application spine (or just spine) is a view of an
application as consisting of some head (called the spine head) followed by a sequence of (term and type) arguments. The mazimal
application of a sub-expression is the spine in which it occurs as an applicand, or just the sub-expression itself if it does not. For
example, spine x[S] y z is the maximal application of itself and its applicand sub-expressions x, z[S], and z[S] y, with = as head
of the spine. Predicate App(t) indicates term ¢ is some term or type application (in either language) and we define it formally as
(Fty,ta. t=t1 ta) V (3 t,S. t =1'[S]). Finally, for any application e; es we shall call a term applicand® any applicand occuring
in the spine of e;.

Turning to definitions for types and contexts, function DTV (I') calculates the set of declared type variables of context I' and is
defined recursively by the following set of equations:

DTV() = @
DTV(I,X) = DTV(I)U{X}
DTV(T,z:T) = DTV(L)

Predicate W F(T',T) indicates that type T is well-formed under T' — that is, all free type variables of T occur as declared type
variables in T' (formally FV(T) C DTV (T)).

1.3

Meta-language Definitions

TmApp(t)
TpApp(t)
App(t)

WF(T,T)
WF(T,?)
WF(T,?— P)

DTV (")
DTV(T, X)
DTV(T,z:T)

Le[ST]a
le]a

S — W]
IVX=R.W|
[(X,?7— P)]

(Ft1,to. t =1, t)
(F',S. t=1'[9])
TmApp(t) vV TpApp(t)

(FV(T)—- DTV () = 2)
True
WF(T, P)

%]
DTV (I) U {X}
DTV (T)

& when —App(p)

MV (T,p) U{X} when X ¢ DTV (T)
MV (T, p) when WF(T,S)

MV (L, p)

{QAz:T.t|tele]}u{rz.t]|te|e]}
{AX.t|te le]}
{tt'|telel. Nt €]}

{t[S] |t € le]}

{tltelelaU{t[S]|tE [e]}

le] otherwise

S — |[W]|
VX. | W]
X

0

1+ arrp(P)
0

arry (W)
1+ arrw (W)

1.4 Bidirectional Rules

v Dz:Thyt:S~e
Tz l(@)—a " Tryaat:T =8 = rail.e 4

Ia:Thst:S~e IXbst:T~e FEpt:VXT ~e

TA
Ths he:Tt:T =S wreTe A TE AX t:vXT = AX.e LAY TE 4] [S/X|T = e5] = PP
T2k g T) MV(T,e)=o Tio TH ¢ :T MV(T,p) = d
, (0w MV =2 o Tio (p.0) MV(p)=domie) ,
Fhyptt :T~we byttt :oT~op

Figure 1: Bidirectional inference rules with elaboration

1.5 Specificational Rules
(a) Shim (specification)

Lt T ~ (p,o) MV (T,T) = dom(o)
T, w=T17 0T Hot T~ (p,o)
(b) [T F ¢ T~ (p,0)]

—App(t) T'hHot:T ~e IF'FP t:VX.T ~ (p,o
ppi) Ty PHead L o) pp App
PH t:T ~ (e,04q) TE" ¢S] : [S/X]T ~ (p[S], 0)

FEPt:T ~ (pyo) TF (p:T,0)-t':T ~ (p',0')
LHEP T~ (p', o)

PApp

(©|TF @:T0) ¢ T ~ (,0")

o" €{0,[S/X])oc} WFI,S) Tk (p[X]:T,0")-¢ :T" ~ (p',0") MV({I,0S8) =2 Thkyt':cS~¢

= (p:VX.T7U)'t/IT/W(p/7JI) PForall = (p:S—)T,O’)~t/:Tv->(p 6/,(7) PChk

MV{IT,08)=Y #2 Tkyt' :[U/Y] o S~¢

't (p:S—>T,0)-t':[UY]T~ ([U/Y]p)e,o)

PSyn

Figure 2: Specification for contextual type-argument inference

1.6 Algorithmic Rules
(a) Shim (algorithm)

O tt T~ (p, o)
Ty w=T|? Ty F T ~ (p,o)
(b)]r;Plr?t:Ww(p,a)\

-App(t) Tlgpt:T~e @IF=T:=7—P= (04, W) 7= PIF t:YX=R. W ~ (p,o) Re{X,S}
- ?Head > T App
;7= Pl t: W~ (e,0:4) ;7 — PIF ¢S] [S/X]W ~ (p[S],0)

;7= PIF W (po) TIE (p:Wo) -t W~ (pf,0")
TPt W~ (9, 0)

?App

(c) ’1" I (p:W,0)-t' : W ~ (p',0")

0" = if R=X then o else [R/X]oo T I+ (p|X]:W,0”) -t : W'~ (p/,0")) Forall MV(I,oS)=2@ Ll t':5~e Chk
T (pVX=RW,0) t :W ~ (p/,0) T P (S S W,o) W (peo)

MV({T,08) =Y #@ Tlqyt:[U/Y]ocS~e

TIF (p:S— W)t :[T/Y] W ~ ([U/Y] p) ¢,0)

XIF=T:=P= (o,W) VA X, XIF=T:=?>P= (0, W)
XF=53T:=12P=(@5->W) XIF-VXT:=1>P=(0-XVX=0(X).W)

M Forall

Y=FV(T)nX FVO)NBIV(S)UX)=2 [U/Y]T=S

— — MType
XIF=T:=5= (U/Y],T)
= M? —/——— XeX MCurr
XIF=T:=7= (0i4,T) XIF=X:=7— P = (04,(X,?7— P))

Figure 3: Algorithm for contextual type argument inference

2 Termination of Algorithmic Rules
The inference rules presented in are terminating and deriving these judgments is decidable
Theorem 1. (Decidability of Typing):

1. For any context I' and term t, it is decidable whether I' - t : T ~» e for some T and e
For any context I, term t, and type T, it is decidable whether I' - t : T ~+ e for some e

For any context T', prototype P, and term t, it is decidable whether T'; P I-%t: W ~ (p,) for some W, p, and o

For any context T, terms p and t', decorated type W, and substitution o, it is decidable whether T I+ (p: W, o)-t' : W' ~~ (p/,0”)
for some W', p', and o’

5. For any set of meta-variables X, type T, and prototype P, it is decidable whether X IF= T := P = (o, W) for some o and W

Proof . The proof is a straightforward mutual induction resp. on the size of
1. the subject of typing ¢
2. the subject of typing ¢
3. the subject of typing ¢
4. the decorated type W (that annotates p)

5. the prototype P

3 Soundness of -5 wrt

Our soundness statement for the external language is that every well-typed term of the external language elaborates to a well-typed
term of the internal language, and it is proven using mutual induction on the following three theorems.

1. T kst : T~ ethen'Fe: T
2. UTH ¢ : T ~ (p,o) then T,MV(I',o p)Fop:o T
3UTH (p:T,o) t':T ~ (p,o') and T, MV(T',o p) -0 p: o T where

e dom(o) C MV (T,p)
e For all X € dom(o), WF(T',o(X))
o dom(o) N BTV (cod(0)) =@

then I, MV(T', o' p') o' p' : 0/ T'

3.1 Bidirectional Rules

Theorem 2. (Soundness of 5):
IfTkst:T~ethenTFe:T

Proof. By mutual induction of the assumed derivation.

Case Var: Directly from assumption

TFe: T "

Case AAbs: Our assumed derivation is

Ix:Thkst:S~e
ThsAae:T.t:T — S~ Ax:T.e

AAbs

Invoking the TH on the premise we get I', x:T F e : S so we can conclude with

Nz:Tke:S
F'EXe:T.e:T— S

F Abs

Case Abs: Similar to AAbs, invokding the IH on the premise (specialized to by) and using F Abs.
Case T Abs: Similar to AAbs, invoking the IH on the premise and using F'T Abs
Case T'App: Similar to AAbs and T Abs, invoking the ITH on the premise (specialied to 4) and using FT App.

Case AppSyn: Our assumed derivation (after in-lining judgment ') is

TP tt: T~ (e,0i0) MV (T,e)=MV(I,T)=2
Phytt :T~e

AppSyn

By mutual induction on Theorem [3| (soundness of) on the first premise, we have
D,MV(D,e)oiqe:00q T

which after a little re-writing gives us
I'ke:T

which is what we need.

Caase AppChk: Our assumed derivation is

TPt T~ (p,o) MV(T,p) = MV(I',T) = dom(c)
Phytt' :oT~op

AppChk

By mutual induction on Theorem [3| (soundness of) on the first premise, we have
D,MV(D,op)kop:oT

Since we know (from the second premise of our assumed derivation) that MV (I, p) = dom(o), we know that MV (I',o p) = &,
so we can rewrite to

IT'Fop:oT

which is what we need. O

3.2 Partial Synthesis Rules

Theorem 3. (Soundness of -F):
IfTFPt: T~ (p,o) then T,MV(T,o p)Fop:o T

Proof. By mutual induction on the assumed derivation.

Case PHead: Our assumed derivation is

—App(t) F'kyt:T e
LEPt:T ~ (e,044)

PHead

By mutual induction on the soundness of -4 on the second premise we get
F'ke:T

Since e is well-typed under I' using the internal typing rules it has no metavariables. Therefore, MV (T, e) = &, and we conclude
IokFoge:o,qT

Case PT App: Our assumed derivation is

PPt VX.T ~ (p,0)

T -2 4[S] : [S/X]T — (p[S],) Tdpp

By the TH on our premise we get
D,MV(D,op)kop:oVX.T

Implicit here is that WF (T, S), so MV (T, p[S]) = MV (T, p), and bound X is fresh w.r.t. I', p, and 0,80 c VX. T =V X.0 T.
We conclude
L,MV(I,oplS)kFop:VX.0oT
LMV (T,o plS]) o p[S]:[S/X] e T

FTApp

Case PApp: Our assumed derivation is

TP t:T ~ (p,o) TF (p:T,0)-t':T ~ (p/,0)
TPt T~ (p, o)

IApp

By the IH on the premise we have
D,MV(D,op)bop:oT

With this and with the second premise of our assumed derivation, we need to invoke mutual induction on Theorem {4| (soundness
of) to get
D,MV(D,o' p)Fo' p' 0’ T.

To do so, we must meet the pre-requisite of Theorem {4t dom(c) C MV (T, p) for all X, WF(T',0(X)), and that dom(o) N
BVT(cod(c)) = @. The first two of these we have from Lemmal [and the last of these we have from Lemma [2] O

3.3 Partial Application Rules
Theorem 4. (Soundness of b wrtt): IfTF (p:T,0)-t' : T ~ (p/,0') and T, MV (T',o p) o p:0o T where
e dom(c) C MV (T,p)
Our solution set o really solves meta-variables.
e For all X € dom(o), WF(T',0(X))
Our solution set o really solves meta-variables.
e dom(o) N BTV (cod(o)) = &
No meta-variables are ever generated by solutions in o
then T, MV (T,o' p'Y o' p' : 0’ T’

Proof. By mutual induction on the assumed derivation of .

Case PForall: Our assumed derivations are

0" €{0,[5/X]oc}, WP, 5) Tk pX]:T,0") t': T = (o)
T (pVX.T,0)t T ~ (p,0) U and T,MV(T,op)Fop: o VX.T

We perform case analysis on o”: either ¢’ = o or ¢/ = 00 [S/X]. If it is the former, then since X is fresh wrt o we have
MV (T, 0" p[X]) = MV([,0 p) U{X} and ¢” p[X] = o p[X]. We have by weakening

I'MV(IT,ocp)Fop:oVX.T
MV(I, 0" plX))Fo" p:oVX.T

Weaken

If o = [S/X] oo them we have MV (', 0" p[X]) = MV (T, 0 p[S]) = MV (T',0 p) and we need only rewrite our second assumed
derivation to T, MV (T',¢” p[X])Fo”" p: o VX.T
In both cases, we can derive

LLMV(T,6" p)ko”" p:oVX.T
LMV (T,0"” plX])Fo” p[X]:0" T

TAppF

We are now ready to invoke the IH with this and with the second premise of our assumed derivation of - to derive

MV(T, o' pko' p o’ T

which is what we need to conclude. (Note that our third condition is satisfied for ¢’ since bound variable X occurs before
applying substitution o.)
Case PChk: Our assumed derivations are

MV({I,0c8)=0 Pkyt :08~¢
't (p:S—=T,o) t': T~ (pe,o) PChk and T, MV(T,op)Fop:0c S—T

By mutual induction on Theorem [2| (soundness of -5 wrt) and by weakening we have

Phyt :08~¢
I'Fe':08
D,MV(T,op)ke:08

Sound -y
Weaken

With this and our second assumption, the derivation of F, we can conclude

ILMVIT,op)kop:cS—T T,MV(I,op)ke:08
LMV(T,op)bo(pe):aT

App

noting that since €’ is well-typed under T', o ¢’ = ¢’.

Case PSyn: Our assumed derivations are
MV(,0S)=Y #@ Thkat':[U/Y] o S~¢

Syn
' (p:S—T,0)-t':[UY]T~(UY] (pe),o) Y and L, MV(T,op)Fop:oS—T

By mutual induction on Theorem [2| (soundness of) and weakening on the second premise of our assumed derivation of H
we have

Tyt [U/Y] o S~ ¢€
2 ?: U/Y] Sound 4
ke :[U/Y]o S

— Weaken

DMV, [U/Y]op) ke :[U/Y]o S

Let 0" = [U/Y]oo. By appeal to Lemma [3| on the typeability of substituting solutions in for meta-variables (whose pre-conditions
that dom(o) € MV (T, p) and that for all X, WEF(T',0(X)) we are able to satisfy by assumption) we have

L,MV(D,oep)kop:oS—T
D,MV(D,e" p)bo" p:o” S—T

Lemmd3

From this and rule App from F we can derive

MV, e" p)ko”" p:o” S—T T,MV(I',o"p)ke :0" S

App

L, MV(T,0 [U/Y] (p &) o [U/Y] (p) : o [U/Y]T

Which is what we need to conclude. Note that the re-arrangment of [U/Y] o T to ¢ [U/Y] T is justified by the assumption

that dom (o) N BTV (cod(c)) = @, as no meta-variables (including any in Y') can be introduced by the bound type variables of some
solution in o. O

3.4 Lemma: Well-formed and well-scoped solutions

Lemma 1.
o IfTFPt:T ~ (p,o) then dom(a) C MV (T, p) and for all X € dom(o), WF(T,o(X)).

o Ifdom(c) C MV(T,p) and for all X € dom(c), WF(I',0(X)), and if T'F (p:T,0) -t : T ~ (p',0'),
then dom(c") C MV (T, p’) and for all X € dom(c’),WF (T, 0’ (X))

Proof. Straightfoward induction on the assumed derivation where the first invokes the second. O

3.5 Lemma: o introduces no meta-variables
Lemma 2.
o If T t:T ~ (p,0) then dom(c) N BTV (cod(0)) = @
o If TH (p:T,0) -t : T ~ (p/,0') and dom(c) N BTV (cod(c)) = & then dom(c’) N BTV (cod(c’)) = @

Proof. By induction on the assumed derivations where the first invokes the second. Note that only rule PForall adds any meta-
variable solutions and that these are generated from a type that does not have access to solutions in the input substitution o. [

3.6 Lemma: Sound use of ¢ on
Lemma 3. IfT, MV(T',p) b p: T and dom(c) C MV (T, p) and for all X € dom (o), WF(T,0(X)), thenT,(X—dom(c))Fop:oT

Proof. By induction on the assumed derivation. O

3.7 Lemma: Well-formed Partial Types
Lemma 4.
o IfTFPt:T ~ (p,o) then WF(I',T) where I =T, MV (T, p).
o IfTH (p:T,0)-t': T ~ (p',0') and WF(I',T) (where T' =T, MV (T, p)),
then WE (T, T").
Proof. By a similar argument to Theorem [3] and Theorem [we can strengthen the two theorems above to yield:
e IfT'F’ t:T ~ (p,o) then I, MV(T,p) Fp: T
e UTH (p:T,0) - t': T ~ (p,0') and T, MV(T,p) b p: T then I, MV(L,p') Fp' : T’
and from there, reason that any term well-typed by the internal typing rules was typed with a well-formed type. O

4 Soundness of |F; wrt 5

Soundness of the algorithmic rules means that any external term typeable with the algorithmic rules is also typeable with the
specificational rules, and is shown by mutual induction on the following three theorems:

1. T Ikst:T~ethenT'ks5t: T ~ e
2. IfT; PIF t: W ~ (p,o) then T FF ¢t : |[W] ~ (p, o)
3UTIH (p:W,o) -t/ : W~ (p/,0")
and MV (T,p) I+= |W|:=? - P = (o,W) with WF(T',?— P)
then T'F (p:|W],0) -t/ : [W']| ~ (p',0")
Where |F;s indicates the bidirectional rules using the shim judgment defined in Figure

4.1 Bidirectional Rules
Theorem 5. IfTIst:T ~ethenlkst:T ~e

Proof. By straightforward induction on the assumed derivation. The rules of the two systems are identical except for AppSyn and
AppChk, so only these are shown.

Case AppSyn: Our assumed derivation is

D;21-7 ¢t . T ~ (e,0i0) MV (T,e) =
Dlkptt :T~e

(%)
AppSyn

By mutual induction of sound IF? on the first premise, we have
TPt T ~ (¢/,04q) (since |T| =T).

We now need to satisfy the specificational condition that MV (T, T) = dom(c;q) = @. We have via Lemma 4] (well-formedness
of synthesized partial types) that WF(I',T) which guarantees this. We can now conclude

TPt T ~ (e,000) MV(D,T)=MV(T,e)=

%)
AppS
Pyttt :T~e Lt

Case AppChk: Our assumed derivation is

;T tt T~ (p,o) MV (T, p) = dom(o)
Plkytt :0T~op

AppChk

By mutual induction on Theorem |§| (Soundness of prototype synthesis) on the first premise, we have
TFPtt T ~ (p,0)

The last condition we need to meet for the specificational version of AppChk is that MV (T',T) = dom(o). We first note that
by Lemma that WE (I, T) (where I" =T, MV (T, p)). Next, we invoke Lemma@ (prototype synthesis preserves matching) to get

MVI,p)IF=T:=0T = (0,T)

By inversion, the only rule that could form this match is MType, which after a little rewriting in terms of meta-variables and
o gives us:
dom(c) = FV(T) N MV(T,p)
MVT,p)F=T:=0T = (0,T)

MType

and this premise is equivalent to saying dom(c) = MV(I,T) (since by Lemma [I| we have that WF(IV,T) where I" =
', MV (T',p)). We can conclude

PPt T~ (po) MV(T,p)=MV(D,T) = dom(o)
7 AppChk
Tyttt :oT ~o0p O

4.2 Prototype Rules
Theorem 6. IfT;PIF"t: W ~ (p,0) then T FFt: |[W| ~ (p,0)

Proof. By induction on the assumed derivation.

Case 7Head: Our assumed derivation is

—App(t) Dby t:T ~e GIH=T:=7= P = (0,4, W)
[;7= PIF t: W ~ (e,04q)

THead

By mutual induction on the soundness of -4 we have

Dikpt:T~e

m Theorem2l

‘We now to construct

—App(t) Thpt:T~e
TFPt:T ~ (e,0i4)

IHead

Case 7T App: Our assumed derivation is

I;?7 5 PIFt:VX=R.W ~ (p,0) Re{X,5}
;7 = PIF ¢S] : [S/X]W ~ (p[S], o)

T App

By the IH on the first premise we have
TP VX W] ~ (p, o)
We can conclude with

L Pt VX W] ~ (p,o) TA
TP 4[S]: L[S/ XIW] = 0[S]o) T where its clear that [S/X] [W] = [[S/X] W|

Case 7App Our assumed derivation is

0?7 = PIF t: W~ (p,o) Tl (p:W,o)-t': W ~ (p,0)
L;PIF ¢t W o~ (p, o)

?App

By the IH on the first premise we have
TPt W]~ (p,o)

by Lemma [6] we can derive
MV(,p) = |W]:=7— P = (o,W)

This match lets us invoke mutual induction on Theorem [7| (soundness of IF') on the second premise, and we have
DE (p:[W],0)-t": [W]~ (0, 0)

We can conclude with

DHP | W]~ (p, o) T (p:|[W],0) -t : |[W |~ (p,o)
CEPtt W'~ (p, o)

ITApp

4.3 Prototype Application Rules

Theorem 7. IfTIF (p:W,0) -t/ : W' ~ (p/,0’) and MV (T,p) = |W] :=?— P = (0,W) with WF(T,?— P)
then T'F (p:|W],0) -t/ : [W'| ~ (p/,0")

Proof. By induction on the assumed derivation of I

Case ?Forall: Our assumed derivation for |- is

o =if R=X then o else [R/X]oo TIF (p[X]:W,o")-t': W' ~ (p/,0")
F'F (p:VX=R.W,o)-t' : W'~ (p/,0')

?Forall

and our assumed match is
MV(T,p)IF=VX.|W|:=?— P= (6, X=R. W)

The only rule that could result in this conclusion is M Forall, whose premise is
MV(T,p), X IF= |[W]:=7—= P=([R/X]oo,W)

We appeal to Lemma [7] on the well-formedness of solutions in [R/X] o o to get R =X or WF(I',R). This makes R a legal
guess for our specificational system. Now we invoke the IH (using the match directly above and the second premise of our assumed
derivation of ') to get
T F (G[X]: W, [R/X) o 0) -t/ [W'] ~ (o, o)

allowing us to conclude I' F (p:VX. |[W],0) -t/ : |[W'] ~ (p,0’)

Case 7Chk Our assumed derivation is

MV{I,0S)=2 Tyt :0S5~e
LI (p:S—=W,o) -t/ : W~ (pe,o)

?Chk

and our assumed match is

MV(,p) =S = |[W|:=?— P= (0,85 > W)

By mutual induction on Theorem [5| (soundness of I-5) on the second premise we have I' - ¢/ : 0 S ~» e. We can conclude

MV({I,oS)=0 Thyt':0cS5~p
L (p,S—= [W])-t": [W]~(pe,o)

PChk

Case 7Syn Our assumed derivation is

MV({I,0S)=Y#@ Tlq4t:[U/Y]ocS~e

LI (p:S—=W,o)-t': [UY] W~ ([U/Y] p) €,0)

?7Syn

and our assumed match is
MVT,p)IF=S = |[W]|:=?—=P= (0,5 > W)

By mutual induction on the soundness of -4 we have

Py t:[U/Y]o S~e

which allows us to conclude

MV({I,0S)=Y #@ Thryt' :[U/Y]ooS~e

PSyn
LE(p:S—= [W]) -t [[U/Y] W]~ ([U/Y] (p€),0) O

4.4 Lemma: Sound decoration erasure

Lemma 5. If X IF=T:=P = (o,W) then |[W|=T

Proof. Straightforward induction on the assumed derivation. O

4.5 Lemma: Sound I wrt IF=
Lemma 6. IfI;PIF t: W ~ (p,0) then MV (T,p) = |[W] := P = (o, W)

Proof. By induction on the assumed derivation

Case "Head Our assumed derivation is

-App(t) Ty t:T~e GIHF=T:=7— P = (04, W)
02— PIF t: W ~ (e,04q)

?Head

We apply Lemma [5| on the third hypothesis to get
MVT,e)=2IF= |W] == P = (04, W)
which is what we need.

Case 7T'App Our assumed derivation is

;7= PIF t:YX=RW ~ (p,o) Rec{X,S}
;7= PIF ¢S] : [S/X] W ~ (p[S], o)

7T App

We invoke the IH on the first premise, yielding
MV(,p) F=VX.|W] :=?— P = (o,W)

The only rule which allows us to form this conclusion is M Forall, with premise
MV(T,p), X IH= |W]:=7= P = (co[R/X],IV)

The derivation of |- implies (implicitly) that [S/X] W is defined, and it is clear that o o [R/X](X) € {X, S}, so by Lemma
(validity of using substitutions on matches) we have

MV (T, p[S]) H= |[S/X|W] :=?—= P = (0,[S/X]|W)
allowing us to complete the proof.

Case 7App Our assumed derivation is

D7 PIF t: W~ (p,o) DIE (p:Woo) -t/ : W~ (pf,0)
TP tt - W~ (p,0)

?App

By the IH on the first premise, we have
MV (T,p) IH= |W]|:=?—= P = (o,W)
With this and with the second premise, we appeal to Lemma |§| (algorithmic application preserves matching) to conclude

MV (T, p) F= |[W'] := P = (o, W) O

4.6 Lemma: Matches generate well-formed Decorations

Lemma 7. If X IH= T := P = (o, W) with WF(T, P) and WF((T,X),T)
then for all X € X, o(X) =X or WF(T,0(X))

Proof. By a simple inductive argument on the assumed derivation. First, note that after a base-case is formed using rules MType,
M?, or MCurr, the generated solution decreases in its domain with each inductive use of M Forall, so we need only consider the
base cases. Next, base cases M? and M Curr produce g;4, and the property we are trying to prove holds trivially for the empty
solution. The only case of interest, then, is MType.

MType tells us that our assumed prototype P is some type S, so by assumption W F(T',S). This means that in the substitution

we produce, [U/Y], the free type variables in the codomain (F'V(U)) do not overlap with any meta-variables. Furthermore, free

type variables in U cannot be confused with bound type variables in S thanks to the second condition, so the only free type variables
in U must be those declared in T" — giving us WF(T', U). O

4.7 Lemma: Substitutions on Matches

Lemma 8. If X, X =T :=P = (o,W), [S/X]| W is defined, and o(X) € {X,S}, and there is some I such that WF(T', S) and
WE(T,P), then X = [S/X] T :=P = (¢ — X,[S/X] W)

Proof. By a simple inductive arugment on the assumed derivation. The only interesting cases are the two base cases of the match
MCurr (which works because by assumption [S/X]| W is defined) and MType. For MType we have

Y =FI(T)n(XU{X}) FVO)NnBIV(INUXU{X}) =2 [U/Y]T=T
X, X IF=T:=8 = ([U/Y],W)

MType

We have two subcases to consider, corresponding the assumption that [U/Y](X) € {X,S}. If [U/Y](X) = X then clearly X ¢ Y
and [S/X]| T =T, and we can easily modify the above derivation to

V= FT(5/X] T)n (X) FV@)n @IV)= T I/XT=T" .
X = [$/X] T = T' = ([U)Y],[S/X] W) w

If [U/Y](X) = S then we can easily factor out the mapping [S/X] and similarly get the same derivation. O

4.8 Lemma: | is sound wrt Matching

Lemma 9. If MV(T,p)IF= |[W]|: == P = (o,W) andT'It" (p:W,o) -t/ : W' ~~ (p/,0")
then MV (T, p") IH= |[W'| .= P = (o, W')

Proof. By induction on the assumed derivation of I+".

Case ?Forall: Our assumed derivation is

o = if R=X then o else [R/X]oo T I (p[X]:W,c")-t' : W'~ (p/,0")
FlF (p:VX=R.W,o)-t' : W' ~ (p/,0)

?Forall

And our assumed match is
MVT,p)IF=VX.|W|:=?—= P= (6, X=R. W)

Now, the only rule that could have formed this match (by inversion) is rule M Forall, whose premise is
MV (T, p[X]) IH= |W] :=7—= P = (o", W)

This is the match we need to invoke the TH on the derivation of I in the premise of our assumption — the IH gives us
MV (T,p) IH= |W'] .= P = (¢/, W)

which is what we need to conclude.

Case ?7Chk: Our assumed derivation is

MV({I,oS)=2 Tyt :S~e
T (p:S—=W,o)-t' W~ (pe,o)

?Chk

and our assumed match is
MV(,p) =S8 — |[W|: == P = (06,5 - W)

By inversion, the only rule introducing this match is M Arr whose premise is
MV (L,p) IH= W] =P = (o,W)

which is what we need to conclude!

Case 7Syn: Our assumed derivation is

MV({T,0S)=Y#@ Tlqyt:[U/Y]oS~e

T (p:S—=>W,o)-t' . [UY|W~ (U/Y] D) €,0)

and our assumed match is
MV(,p) =8 — |[W|:=?—= P = (0,5 - W)

By inversion, the only rule introducing this match is M Arr whose premise is
MV (T,p) = |[W]|:=P = (o,W)

By Lemma [8] (substitutions on matches) we can rewrite this match to

MV(L,[U/Y] p) F= |[U/Y] W] :== (0,[U/Y] W) since
e [U/Y] W is defined
e ForallY €Y, o0(Y)=Y

e WF(T,S) and WF(T, P) by (implicit) assumption

e 0 —Y = 0, by the definition of Y’

This is precisely the match we need to conclude. O

5 Completeness of |5 wrt 5

1. T kst:T~ethenl'lFst: T~ e
2. T FY t: T+ ~ (pT,0)
and MV(D,pt) IF= T+ := P = (o, W), wherd|

1The superscript T denotes only that the terms and types of the declarative system have some additional substitutions ¢+ in them that the algorithmic
rules would not have made.

e o Co4
e arrp(P) > 1 when —App(t)

then there exists (p, T, W, o) where
e MV(,p)IF=T:=P = (¢4 o0t W)
e o (p, T,W) = (p*, TT,WT) and dom(c™) = MV (T',p) — MV (T, p™)
e I;PIF t: W ~ (p,ocdoo™)

J.UTH (ph:TH,0) -t/ : T ~ (p'*,0’) where

e MV(I,p") IF=T'F := P = (¢4, W'T) with o/ C ¢'4
e and MV (T,p) IF= T :=?— P = (¢4 oo™, W) with 0 C 04
e and 0% (p.T) = (p*,T)

then exists (p', T", W', o'T) where
e MV (T,p) IF=T":=P = (' 00'", W) with o/ C 0'4
eand 'l (p:W,0%00t) -t/ : W'~ (p/,0'4 0 0'F)

5.1 Complete IFs5 wrt
Theorem 8. [fTFst:T ~ethenTlkst:T ~e.
Proof. By induction on the assumed derivation. The rules for the two systems are identical except for AppSyn and AppChk, so

only these are shown.

Case AppSyn Our assumed derivation is

TPt T~ (e,00) MV(L,T) = MV(T,e) =
Pyttt :T~e

%)
AppSyn

To invoke mutual induction on the completeness of IF* we must provide a match. This would be

o
GIH=T:=7= (044,T) M

It is immediate that the two precondition hold for the substitution — ;4 C 0;3. We now invoke complete 7 (instantiating o;q
for o4) to get (p, T, W, ot) where
e MV(L,p)IHF=T:=?= (¢, W)
The only rule which forms a match like this (by inversion) is M?. From this we know that ot = ;4.
i 0-+(p’ T’ W) = (67 TI7 Tl)
This gives us (p, T, W) = (e, T",T")
e ;71 ¢t W~ (p,o? oo™)
which we rewrite to ;2 IF ¢ : T' ~ (e, 04q)
We conclude

CIF tt T~ (p,oig) MV(L,p) =@
Plytt :T~e

AppSyn

Case AppChk: Our assumed derivation is

TPt TH ~ (pt,0) MV(D,pt) = MV (T, T") = dom(o)
byttt :o0TT ~0oph

AppChk

To invoke mutual induction on the completeness of -’ we must provide a match. This would be

dom(c) = MV([,TY) = FV(T)NMV(T,p*) FV(cod(c))N(BTV(c TTYUMV (T, pT)) =

%)
MT
MVT,p)IF=Tt =0 T" = (0,T7) vpe

(The second condition we get from the stronger result of Lemma that solutions in o are well-formed wrt T'). It is clear that this
match satisfies the precondition for Theorem |§| (the completeness of I-?), so we invoke it (mutually-inductively) to get (p, T, W, o)
where

e MV(I,p)F=T:=0 0" T= (coot,W)
The only matching rule that could give us this conclusion is MType, which tells us W =T

o o (p, T,W) = (p*, TT,T") and dom(c*) = MV (T,p) — MV (T,p™")
This allows us to derive MV (T,p) = MV (L', T) = dom(coo™)

e I'TIF t:T ~ (p,ooo™)
We can therefore conclude

;T tt T ~ (pooot) MV(DL,p) =dom(coot)
Llkytt':T~ootp

AppChk

5.2 Complete IF* wrt FF

Theorem 9.
IfT Pt :TF ~ (pt,0) and MV(D,pT) IH=TF := P = (o4, W), where

e 0 C o4
e arrp(P) > 1 when —~App(t)
then there exists (p, T, W,om) where
e MV([,p)IH=T:=P = (600t W)
e o (p, T, W)= (pt, TT, W), dom(c*) =MV (T,p) — MV (L,p")
e ;P I t: W ~ (p,otoo™t)

Proof. By induction on the assumed derivation.

Case ?"Head: Our assumed derivation is

—App(t) Thpt:T~e P Head
TFPt:T ~ (e,00) “" and our assumed match is MV (T, e) IF=T:=?— P = (o4, W)

Since we know e is well-typed under I'y MV (T, e) = @. Appealing to Lemma we get dom(c?) C @, so 04 = 7;9. We rewrite
our match to

GIF=T:=7— P = (044, W)

Now, invoke mutual induction on the completeness of Iy (Theorem [8) to get
Dikpt:T~e

and choose (e, T, W, 0,;4) to meet the desired derivation and conditions

e MV(Iye)IF=T :="— P = (044, W)

o gigle, T, W)= (e, T, W),

e 7= PIF t: W ~» (e,0i4)

Case 7T'App: Our assumed derivation is

PFPt:VX. T ~ (pt,o)
L EP 48]« [S/X]T ~ (p*[S], 0)

IT App

and our assumed match is
MV (L, p*[S]) F= [S/X|T* := 7= P = (¢4, [S/X|]WT)
We appeal to Lemma [11] (invertible substitutions in matching) to get

MV(D,pt[S]), X H=T% :=?— P = (04 ooy, Wy) where

e ox C[S/X]
That is, ox(X) € {X, S}

o [S/XIWE =W+

With that match, we now can apply matching rule M Forall to get
MV@,p[S) F=VX.Tt:=?—= P = (cA,VX=0x(X).WT)

Lastly, we note that MV (T, p[S]) = MV (T, p), so we are able to invoke the TH to get (p,T, W, o™) where
e MV(L,p)IF=T:=?— P = (6400, W)

o ot(p, T, W)= (" VX.TTVX=0x(X).WT)
and dom(c™) = MV (T,p) — MV (T,p™)

e I;?7 =PI t: W ~ (p,ocdoo™)

Before we can finish the derivation of ?T App we must deal with a subtle issue — what if T =Y and W = (Y,? — P), with
ot (Y) = VX =0x(X).W*? This would prevent the algorithmic rules from inferring a type application, and we’d be stuck!

Fortunately, we need only look at the match and equality produced by the the result of calling the IH to sort this out. If T =Y
then it could only be formed by M Curr, yielding

MVT,p)IF=Y :=?—= P= (6% 00" =044, (Y,?— P))

But now it’s impossible that ¢ (Y) =Y =V X =0x(X). WT. Therefore, we know that T has the form ¥ X.T (we shadow the
original T from here on out) and revisit our conclusions

e MV(I,p)IF=VX.T:=?7=P= (c400ct VX=R W)

o st VX.TYX=R. W)= (p*,VX.T*,YX=0x(X). W+)
and dom(ct) = MV (T',p) — MV (T, p™)
We therefore know that R = ox(X)

e ;7= Pl t:YX=R W ~ (p,ctoc™)
This allows us to conclude

;27— PIF ¢S] : [S/X]W ~~ (p[S], 0% 0 at)

Case 7App: Our assumed derivation is

TFPt: Tt~ (pt,o) T (ph:TH, o)t/ T'F ~ (p't, o)

7A
TEP ¢t ¢ T+ ®*,0') pp

Our assumed match is
MV, pt) =T =P = (O'/A, w'T)

By Lemma (application of partially synthesized applicands preserves matching backwards) we get from this and the second
premise of the derivation

MV (T, pt) IH= T =7 P = (¢4, W), with 0 C 0.

This allows us to invoke the TH on the first premise of the derivation to get (p, T, ™) where
e MV ([,p)IF=T:=?— P = (6400, W)

o o (p,T,W) = (p*, TT,WT) and dom(c*) = MV (T',p) — MV (T, p*)

e [? 5 PIF t: W ~ (p,otoo™)

The first two of these conditions, and the match we assumed, satisfy the preconditions Theorem allowing us to use mutual
induction to get (p/, 7', W', ') where

o MV(I,p)IF=T":= P = (¢4 00", W) with ¢/ C /4

o o, T W) = (pF, T+, W), dom(c"+) = MV(T,p') — MV(T,p'+)
e and T'IF (p:W, 0% 00h) -t/ : W'~ (p/, 0" 0 0'F)

This allows us to conclude T; P IF* ¢ ¢/ : W' ~ (p', 0’4 0 0'T)

5.3 Complete I- wrt =

Theorem 10. Completeness of the algorithm wrt the specification (applications):
IfTE (pt:TF,0) -t : T ~ (p't,0’) where

o MV (T,p*) IH=T"F := P = (¢/4 W) with o’ C 0’4

e and MV (T,p) IF=T :=?— P = (6% oo™, W) with 0 C o

e and ot (p,T) = (p*,T"), dom(c™) = MV (T',p) — MV (T, p™)

then exists (p', T', W', o'%) where

e MV(I,p)) =T :=P = (6" oot W') with o’ C o'4

o T (p, T\ W) = (p'*, T"",W'"), dom(c't) = MV (T,p') — MV (T, p'")
e andTIF (p:W, 04 00b) -t/ : W'~ (p/, 04 0 0'F)

Proof. By a (not-so-easy) induction on the assumed derivation.

Case PForall Our assumed derivation is

" €{0,[S/X]oc}, WF(,S) Tt (pF[X]:TT,d")-t :T'F ~ (p/,0')
' (p:VX.TH o)t :TF ~ (p'F, o)

PForall

Our assumed conditions are

e MV(L,p't) IF=T'" := P = (¢/4 W'T) with o/ C ¢'4

e and MV (T',p) F=T:=?— P = (¢4 oo™, W) with ¢ C 04

e and ot (p,T) = (p*,VX.TT), dom(c) = MV (T,p) — MV (T, p+)

To make progress we need some way to reveal that T # Y for some Y € MV (T, p) — because if it were, then we would not be
able to apply the algorithmic rule ?Forall. First, we note that it is easy to show (Lemma that V X.T7 being in the application
position of a judgment of -, it must really have the following form

VX, X.5T— T’g.

(The reason for subscript Y will become apparent a little later). By a similar observation (a kind of “peek-ahead” assumed
derivation of ', Lemma tells us that the base-case for our assumed derivation of =" generates some substitution oy, where

dom(oy) =Y C MV (T, 0 p[X][X]), such that oy T’YJr =T+
Returning to our troubles, if ' = Y then the second of our assumed matches must have been formed by rule M Curr, which tells us
MV(,p) IF=Y =75 P = (6400t =04, (Y,?7— P) = W)

However, our third condition tells us that o*(Y) = 0;4(Y) = VX, X. ST — T — which is impossible! We can iterate this

argument over each bound variable in X to get, finally, that T looks like ¥ X, X. S — T’? for some S and T’7. Knowing this, we
revisit the second and third assumed conditions on our derivation:

o MV(,p) F=VYX,X.8 = TL == P = (04 o0t ¥Y X, X=R,R. W)

with o C o4, and for some Wl?’ R, and R

e and o7 (p, VX, X. S —) = (pt, VX, X.8t — T’YJF)7
dom(a"*) = MV (',p') — MV/(T,p'*)
We next need some way to relate the specificational system’s “guess” o”(X) with the match-generated decoration R. Our

algorithmic rules will first want to define 0”4 = if R=X then o4 else [R/X]oo®. To satisfy the precondition on the IH, we need
to show that ¢ C 0”4, As 0 C o4, this reduces to showing that if 0"/ (X) = S then ¢”4(X) = S.

o' and ¢”4: By an easy inductive argument we know that - grows its generated solutions monotonically, so the derivation

in the premise of our assumption,

/

e (pH[X]:TH,o") -t/ : T ~ (p/,0')

tells us that ¢ C o', and furthermore by assumption o’ C 0’4 If the specificational rules guessed S, then it is clear that ¢/4(X) = S.
Next, since we have that 7" = o oy Ty, the match in our first condition is

MV(,p") IF= ot oy T := P = (o', W'T)
We invoke Lemma [11] (invertible substitutions in matches) to get
MV(L,p),Y F= T, =P = (0" 0o, W) (for some 0™ C o o oy).
which we can repack into (successively using rule M Forall)
MV([,p) IF=VX,X.S — 15 == P = (6400t VX, X=R R.S — W)

(re-use of meta-variables o, o is justified by Lemma [15{and the match from our second assumed condition). Well, if ¢ (X) = S,
then 0’4(X) = R =S. And since R = S, the algorithmic rules must choose ¢4 = [S/X] o 04, meaning that ¢”4(X) = S as well,
giving us that ¢” C ¢”4.

IH: To recap, we now meet the desired preconditions to invoke the TH

o MV(L,pt) IH=T'F := P = (¢4 W'T) with o/ C ¢'4

This remains unmodified from our assumption
o and MV(I,p[X]) F=VX,X.5 = T4 :=?— P = (6" o0t ,VX=R.S = W.) with 0" C 0”4
o and 0" (p[R],T) = (p*[R], T")
We invoke the TH to get (p/, T", W', o'T) where
e MV(I,p)IF=T":= P = (¢4 00", W) with ¢/ C o/4
o o/ (p/, T\ W) = (p', T'", W), dom(c’'T) = MV (T,p') — MV (T, p'")
e and I'IF (p[X]: W, 0" 0aT) -t/ : W' ~ (p,0"4 0 0'T)
which is what we need to derive

LI (p:V X, X =0"4(X), RS = WL) -t/ : W~ (pf, 04 0 5'+)

Case PChk Our assumed derivation is

MV(IT,0 ST)=@ Thkyt :08t ~¢
LE (pt:ST T o)t/ : Tt~ (pt €,0)

PChk

Our assumed conditions are
e MV(T,pte) IH=T+ := P = (/4 W'") with ¢ C 0'4

e and MV(I',p) IF= S = T:=?—= P = (6% 00",S — W) with 0 C 04

Again, reasoning (using the equality directly below) that the subject of this match could not be some Y € MV (T, p), it must
be of the form S — T

e and ot (p, S —T)=(p", ST - TT)

We must now pick out a suitable (o/*,p’, T/, W’) to provide as the result of this case. Pick (¢7,p e, T,W). Now we show the
post-conditions of the theorem hold.

e MV(T,pe)IF=T:=P= (' oot W) with 0 C ¢'4
From the match given in our second assumed condition it is clear that

MVT,pe)IF=T:=P = (6400t W)

(because the only rule that could form it, M Arr, would have this as its premise). Aligning this with our requirement reduces
to showing that 0’4 = 0. By Lemma [14] on the soundness of solutions by the matching, for the matching, we have

MV (T,pt) IF=T% := P = (¢4,0F W),
and comparing to our first condition, uniquess of matching solutions (Lemma gives us

oA =04 and ot W =W'*
e o (pe, T,W)=(pt &, Tt,W'T), dom(c™) =MV ([,p e)— MV(,p" ¢),
Directly from assumptions and the equation in the point above, and from the fact that MV (T',e’') = @

e andT'IF (p:S — W,0400%) -t/ : W ~ (pe, 0’ o0™)
For this we invoke mutual induction on the completeness of Iy (Theorem |8) to get
Ly t': 0% 0% S~ €, noting that o+ S = ST and MV (T,04 ST) =2

which is what we need to conclude

Case PSyn Our assumed derivation is

MV([,o St)=YT#@ Thit' :[U/YF] g St ~e

PSyn

TE (pt:8T =TT, o)t/ [U/ YT T~ (U/Y*] pt) €,0)

Our assumed conditions are

o MV (D, [U/Y*]pt e)IF=[U/YH]TH := P = (¢/4, W'*) with o C 0’4
e and MV(I',p) IF= S = T:=?—= P = (6% 00",S — W) with 0 C 04

Again, reasoning that the subject of this match must be S — T and not some Y € MV (T, p)
e and ot (p,S—T)=(p",S" - T)

We must pick a suitable (p’, 7', W', ¢'T) for which we can derive a judgment formed by I with the needed properties. To do this,
we must first ask what we know about any unsolved meta-variables Y that the algorithm will encounter - MV (I',04 ot S) =Y —
given that MV (I',o St) = MV(T,0 0t8) =Y+ .

First, it is clear that Y C Y+ because 0 C 0. So, consider the match from our first assumed condition. By Lemma on
inverting substitutions in the subject of a match, we get

MV(T,pt e) IF=T" := P = (o' 0 o3, W), where o (W) = W't

Now, consider the match from our second assumed condition. By inversion we know it can only have been formed by M Arr,
whose premise we further transform by Lemma [14] (re-substituting solutions in matches — in this case ™) to get

MV (T,pte)IHF=T+ =P = (64,0t W)

And now, by uniqueness of solutions of matching (Lemma we get (04,0t W) = (0’4 0 0y, W’;). Let us call, for the sake

of simplicity, the second component of both pairs W, and let o7 = [U/Y] — oy
We return to the task of selecting (p', T, W', o'T). We pick

((oy7 p) € ,057 Tyo57 W,o" o UV)EI,

and now witness the following post-conditions:

2If you were wondering what the purpose was of o1 in these proofs, now you know — the specificational rules may opt to discover from synthetic
type-argument inference what the algorithm would know from contextual type-argument inference

o MV(L,p') IF= 037 T := P = (¢’ o0t 0 oy, 097 W) with 0 C 0’4

This comes from the equational reasoning above, taking the match
MV, p) IF=T:=P = (c2 oot W)

A A

noting that o = 0’400y and deploying solution oy to T (Lemma, while then reasoning that dom(oy7)Ndom(o
(solution oy doesn’t interfere with the solutions the match generates) from the definition of oy

Again with some equational reasoning. For example, o't T" =0t oy 037 T = [U/Y]| TT =T'"*

e and I'IF (p:W, 0% 00b) -t/ : W'~ (p/, 04 0 0'F)

00'7) =9

This last piece requires some care — the algorithm might use more contextual information than the specificational derivation, mean-
ing that we might need to derive 7C'hk even though our assumed case is PSyn. If Y # &, we know that the algorithm will try to derive

I‘Il-ﬂt:UWJAJ"‘Swe’.

By an invocation of mutual induction on the completeness of Ik (Theorem [8) on the second premise of our assumed derivation of
F, we know that the algorithm can derive

Dlgt': [U/Y+] o0 ST~ €

which (by some equational reasoning) is what we need.
However, if Y = &, the algorithm will actually try to check the term ¢’ against a fully known type. We need

P”‘ut/ZJAO'JrSWe/

By Lemma [16] (checking mode extends synthesizing mode) on the second premise of our assumed derivation we have

Pyt [U/Y*+] o ST~ ¢

By mutual induction on the completeness of I, (Theorem [8) we get

Clky ' : [U/YF] 0 ST~ ¢
which, after a bit of equational reasoning on the substitutions, is what we need. So in either case, we are able to conclude
F”_ (p:S%WUAOO’-’—).tI:W/W(pI7U/AOU/+) D

5.4 Lemma: Match solutions solve match meta-variables

Lemma 10. o
If X IH=T:=P = (o,W) then dom(c) C X

Proof. Straightforward induction on the assumed derivation. O

5.5 Lemma: Invertible substitutions in matches

Lemma 11.

X IH=[U/Y]T :=P = (0,W) and X NFV(U) = @

then X,Y I-= T := P = (0 0 oy, Wy) where
e oy C[U/Y]

o [U/YWy =W

Proof. By a straightforward inductive argument on the assumed derivation. O

5.6 Lemma: |- preserves [H= (forwards)

Lemma 12.
IfT I (p:W,o) -t : W'~ (p',0') and MV (T, p) IF= |W] :=?— P = (o, W)
then MV (L, p) IF= |W'] :=?—= P = (o/, W)

Proof. By induction on the assumed derivation.

Case PForall Our assumed derivation is

0" =if R=X then o else [R/X]oo T I (p[X]:W,c")-t' : W'~ (p/,0")
' (p:VX=R W,o) -t : W ~ (p/,0')

PForall

and our assumed match is
MV{I,p)IF=VX. |[W|:=?—- P = (6, X=R.W)

The only rule giving us this match (by inversion) is M Forall, with premise
MV (T, p[X)) IH= |[W] :=?— P = (¢, W)

We can now invoke the IH on the second premise of our assumed derivation to get
MV @, p)IF= |[W']:=P = (¢/,W)

which is what we need to conclude.

Case PChk: Our assumed derivation is

MV({,oS)=2 Tyt :S~e
L (p:S—>W,o)-t' W~ (pe,o)

PChk

and our assumed match is
MV(T,p)IH=S = |[W]|:=?— P = (o,W)
By inversion the only rule we can use to form this match is M Arr with premise

MVT,pe)I-= |W]:=P = (o,W).
Since MV (T, ¢’) = & this is what we need to conclude.

Case PSyn: Our assumed derivation is

MV(@,08) =Y #@ Tlhyt:[U/Y]oS~e

T (p:S—=W) -t . [UY]|W~ ([U/Y] p) €,0)

and our assumed match is
MV(I,p)IF=S — |[W]|:=7—= P = (o,W)

The only rule allowing us to form this match is M Arr, with premise
MVT,pe)IH= W] :=P=(c,W)

By Lemma and by noting that Y N dom(c) = @ from our first premise, we have

MV, [U/Y]pe)IF= |[U/YIW] :=P = (0,[U/Y]W) which allows us to conclude.

5.7 Lemma: + preserves [FH= (backwards)

Lemma 13.
IfTF (p:Tyo)-t': T ~ (p,0) and MV (T, p) =T := P = (¢/, W)
then there exists (6, W) where MV (T, p) F'=T :=?— P = (¢4, W) and 0 C 0*

Proof. By induction on the assumed derivation of .

Case PForall Our assumed derivation is

" €{o,00[S/X]},WF(,S) T+ (pX]:T,0")-t': T ~ (p',0)
' (p:VX.T,0)-t': T ~ (p/,0)

PForall

Our assumed match is
MV (T,p) IH=T" .= P = (¢/4,W’) where ¢/ C o/4

We invoke the IH on this match and the second premise to get
MV (T, p[X]) =T :=?— P = (¢4, W) where ¢’ C ¢4

Applying matching rule M Forall gives us the desired result.
MV@,p)IF=VX.T:=?7= P= (64 -~ X,YX=0"(X).W)

Case PChk: Our assumed derivation is

MV({IT,0S8) =0 ThHyt:05~¢
't (p:S—>T,0)-t': T~ (pe,o)

PChk

Our assumed match is

MV(T,pe)IF=T:=P= (/" W),0 C o’

We invoke matching rule M Arr to conlcude (noting MV (T, ¢') = @)
MV(T,p)IF=8 =T :=7—= P = (¢S - W),0 Co'4

Case PSyn Our assumed derivation is

MV{IT,08)=Y #2 Tryt' :[U/Y]oS~e

't (p:S—>T,0)-t':[UY]|T~ (([UY]p)e, o)

PSyn

Our assumed match is

MV (@, [U/Y]p €) W= [U/Y]T := P = (/4 W)

By Lemma [11{ (invertibility of substitutions in a match), we have

MV(L,pe)IF=T:=P = (¢'4 ooy, W), oy CU/Y]

Noting that ¢ C 0’4 C o'4 o oy, we apply rule M Arr to conclude

MV(I,pe) =8 —T:=7— P = (c4 00y S — W5)

O

5.8 Lemma: Match Solutions are Match Sound
Lemma 14. o

IfX W=T:=P=(cod',W) then X —dom(c’) IF=¢' T := P(0,0’ W)
Proof. By an easy inductive argument on the assumed derivation. O
5.9 Lemma: Function-ness of Matching
Lemma 15. o

IfFXHF=T:=P= (o,W) and X =T :=P = (¢/, W),

then (o, W) = (¢/, W)
Proof. By an easy inductive argument on the assumed derivation. O

5.10 Lemma: Checking extends Synthesizing

Lemma 16.
IfT' gt T~ ethen'kyt:T~e

Proof. A mostly easy induction, given that many rules are “direction-polymorphic.” The only interesting case is AppSyn, which
we look more closely at now

Case AppSyn: Our assumed derivation is

THEPtt T~ (e/,00q) MV([,e) =MV, T) =2
Dhytt T ~ ¢

AppSyn

But dom(o;q) = @ so we already have what we need:

TPt T ~ (e,000) MV (T,e') = MV([,T') = dom(ciq)
Thytt ioq T ~ 044 €

AppChk

5.11 Lemma: Matching Arrows of P and WW:

Lemma 17.
Let arrp(P) be the number of prototype arrows prefizing P, and arry (W) the number of decorated-type arrows preceding W .

o If T;PIF t: W ~ (p,0) then arrw (W) < arrp(P)
o f X IFH=T:=P = (0,W) then arrp(P) < arrw (W)
Proof. Straightforward:
e The first point is a special case of the third, by invoking Lemma [6]

e By an easy inductive argument on the assumed derivation of =, noting that the number of prototype and decorated arrows
encountered during the inductive cases are equal up until the base case, in which they are either equal (MType and M?) or
the former is strictly greater than the latter (MCurr).

O
5.12 Lemma: Subject type reveals an arrow in
Lemma 18. o
IfTE p:T-t':T ~ (p,o') then T = YX.T" for some T"
Proof. By a straightforward inductive argument on the assumed derivation. O

5.13 Lemma: Peek-ahead for

Lemma 19. o o
IfT'H (p:VX.S = Ty,0) -t : T ~ (p',0’) then there exists some oy with Y € MV (T',p) UX such that oy (Ty) =T'

Proof. By a straightforward induction on the assumed derivation: in case PChk Y = @, and in case PSyn oy comes from
synthesizing the type of ¢ and matching it against some expected type based on Ty (and some guessing done in PForall). O

6 Qualified Completeness of 5 wrt

Definition 1. (Annotation Requirements for Typing the External Language): Let ep be a term of the internal language such
that ' F ep : TPE| Furthermore, let tp be a term in the external language such that tp € |ep|. We say that tp meets our
annotation requirements when the following conditions hold for each sub-expression e of ep, corresponding sub-expression t of tp,
and corresponding sub-derivation TV & e : T of a derivation of T'Fep: Tp:

1. Ife=Xx:S.¢ for some S and €', then t=\x:S.t' for some t

2. If e occurs as a mazximal term application in ep and if
' Pt T~ (p,0iq) for some T' and p, then MV (T,p)=9.

3. If e is a term application and t =ty ty for some t1 and t2, and if T' FP oty o T ~ (p,0ia) for some T' and p, then
T'=VX.5 — Sy for some S; and Ss.

4. If e is a type application and t = t'[S] for some t' and S, and T =X ' : T" ~ (p, 0:q) for some T' and p, then T'=V X. S’ for
some S’.

If Definition |1] holds for some pair of internal and external terms (ep,tp) then we can show the following theorems.

3The subscript p indicates nothing more than an expression which we consider to be the whole program we are typing.

e If e occurs somewhere in ep as not a term applicand*, or if = App(e), then IV b ¢ : T ~~ e

I'" g tp : Tp ~» ep is a special case of this.
e If e occurs as an applicand in ep and e = ¢’ [S] for some €’ and S, t = t/
(p, 0iq) with some o such that dom(o) = MV (T,p) and o (p,T") = (e, T

[S] for some ¢/, with =TpApp(e’), then T' Y ¢ : T ~~
)

o If TmApp(e) and T'Fe: T’ then T FF ¢ : T~ (p', 044)
with some o such that dom(c) = MV (I',p’) and o (p',T) = (e, T")

o If
~TrelU)] [U]:8 =T and Tyt 0§~ €
— and some ¢ with dom(o) = MV (T,p [X1] [X2])
where o (p [X1] [X2],S = T) = (e [Ui] [U2],S" = T7)
(and ([X4], [Xz]) = (|T7], [U2]))
then

—I'e (p[Xl] :VX72. S — T, Uid) T s (p/,o'id)
— with some ¢’ with dom(o’) = MV (T',p') and where o (p/,T") = (e [U1] [U2] ¢/, T")

6.1 Qualified Completeness -, wrt -

Theorem 11.
Under the qualifications of Deﬁnition if e occurs as a non-applicand in ep or if ~App(e) then Tyt : T ~~ e

Proof. By induction on the assumed derivation
Case Var Our assumed derivation is
Fka:T(x) Var

There is only one partial erasure of — x. We apply rule Var of -4 to conclude

F'kyz:T(z) ~x Var

Case Abs Our assumed derivation is

z:Tke:S
I'FAx:T.e:T— S

AAbs

By our first assumed qualification, we have that our partial erasure ¢’ of Az:T.e has the form Az:T.t for some partial erasure
t of e. We invoke the IH (the body of our A-abstraction, e, is not itself an applicand) and conclude

x:Tke:S
De:Thkyt:S~e
Py XD t:T =S~ Ax:T.e

IH

AAbs

Case T'Abs Our assumed derivation is

I'Xke:T
TFAX. e:VX.T

T Abs

We have a partial erasure A X.t of A X. e, meaning that ¢ is a partial erasure of e. We invoke the IH to conclude
I''XkFe:T
N'XFpt:T~e
Py AX VX T~ AXee

IH

T Abs

Case TApp Our assumed derivation is

I'Fe:VX.T
TkelS]): [S/X]T

T App

By assumption, e[S] occurs somewhere not as a term-applicand* in ep. This means that its erasure ¢ corresponding to the same
position in ¢p has form ¢ = #/[S] by the definition of erasure (we only erase type arguments between term to term applications).
Because e[S] is not a term applicand®, neither is eﬂ Therefore, we can invoke the IH to conclude

The:VX.T
Thyt:VX.T e

[b t[S] 2 [S/X]T ~ e]S]

I1H

T App

Case App Our assumed derivation is

I'e: 8" =T T'ke:5
I'kFee:T'

App

Since the elaborated expression in question is e ¢/ we know that its erasure must be of the form ¢ /. We invoke mutual induction
for the qualified completeness of FF for applications to get

TC'FPtt T ~ (p,0,q) with o such that
e dom(o) =MV (T,p)
o (pT)=(ee,T)

Now, by assumption e e’ occurs as not a term applicand* in ep. By qualification #2 we have MV ([, p) = @. We use this to
rewrite the post-conditions of our invocation of mutual induction above:

e dom(c) =MV([,p) =0 = 0 =044
a (pa T) = Uid(pa T) = (pa T) = (6 6/3T/>
We can now conclude

TPt T~ (ee,0i4) MV(IT,ee)=MV(I,T) =
Phytt T ~eé

AppSyn

6.2 Qualified Completeness of - wrt - (TApp)

Theorem 12. Under the qualifications of Deﬁmtwnl zfe occurs as a term applicand® in ep and e = e’[S] for some €' and S, and
t =t'[S] for some t', with ~TpApp(€'), then T =Pt : T' ~~ (p, 04q) with some o such that dom(c) = MV (L', p) and o (p,T) = (e, T")

Proof. By induction on the length of S

Case [S] =@ Our assumed derivation is
IMte: T

By assumption, =T pApp(e). We therefore have that either TmApp(e) or else —App(e) In either case we can appeal to mutual
induction on qualified completeness to conclude:

Subcase T'mApp(e): We appeal to qualified completeness of Y for applications (Theorem [13) to get

I"FP ¢ : T ~~ (p,0iq) with o s.t. dom(c) = MV (I',p) and o (p,T) = (e, T'), which is what we need to conclude.

4Recall the definitions of term applicand* earlier in the document

Subcase —App(e): We appeal to qualified completeness of -y (Theorem to get
I'bpt:T ~~e
and using rule PHead we derive
I'EP T~ (e, 00q)

noting that MV (I",e) = @ and 0,4 (e,T") = (e,T"), which is what we need to conclude.

Case [S] = [S] [S] Our assumed derivation is

Tk e[S]:VX.T
T+ e[S [S]: [S/X|T"

T App

By the IH we have

IkelS]:VX.T

TPt [S]:T ~ (p,0ia) with o such that

e dom(c) = MV (T,p)

e o (p,T)=(e[9,VX.T)

By qualification #4 we have T'=V X.T”. By combining this with the second post-conditions from the IH we get o T" = T".
We derive

DSV T o)
TP (S [S]: [S/X]T ~ (p[S], 0ia)

and note we can produce o as the output substitutions, since

e dom(c) = MV (T, p[S]) = MV (T, p)

e o (p[S], [S/X|T") = (e [$] [S], [S/X]T")
(dom(o) N X = @ and cod(o) is only those types well-formed under T")

6.3 Qualified Completeness of F¥ wrt + (App)

Theorem 13. Under the qualifications of Deﬁm’tion if TmApp(e) and T e : T' then T FF t : T ~ (p,0:q) with some o such
that dom(o) = MV (L',p) and o (p,T) = (e, T")

Proof. Directly. Our internal term is ¢ €’ and external term is ¢ ¢’, and our assumed derivation is

T'Fe: S =T T'Fe : 5
I'kee: T

App

We can rewrite e = ¢’ [U], making visiable all of the outermost type applications in e (if any). Since e is an applicand, we know
that its erasure ¢ may have had some number of the right-most type applications erased — so t = " [U;] where [U] = [U;] [Us]
We examine the first premise of our assumed derivation. We now know it must have the following form:

ke’ U] : VY.T’Y
——— T App...
TrHe' U] [Ug): 8" =T Lke: 5

The [U)) [Us] € : T

App

where the (left-to-right ordered) substitution [Us/X|T% = " — T’
We appeal to mutual induction on the completeness of F wrt - (Theorem [12)) to get:

I =P ¢ [Uh] : Ty ~ (p, 044) with o such that

e dom(c) = MV (T,p)

e 0 (p, Ty) = (6 [Ul],VYT/Y)

Now, by qualification #3, from our FP derivation of applicand ¢ we have that T% = VX.S5 — T for some S and 7. The use of
the same bound type variables X as used in VX 'TIY is justified by rewriting the equality concerning ¢ T above with this new
information:

o (p,VX.S—T=([U],VX. %)

We now appeal to completeness of - wrt . We satisfy its preconditions:

e I'te' U] [Ug]: 8" =T and Ty t/ 2 S~ €

The second of these we get by mutual induction on the completeness of -y wrt I, noting that e’ occurs in a non-applicand
position.

e some o with dom(c”) = MV (T, p [X])

where o (p [X], 8 = T) = ((¢" [0h]) [03], ' — T")
(and (|2, |X]) = (|12],|02]))

Note that we parenthesize (e” [Ui]) for clarification || We are not providing vectorized type arguments U, and U, to the
theorem — we are providing type arguments @ and Us, and corresponding @ and X for the vectorized type meta-variables.

The ¢” we provide is [Uz/X] oo
Having set this up, we get the following from mutual induction:
e L' (p:VX.S = T,00) -t :T" ~ (P, 0:4)
e some ¢’ with dom(c’) = MV (T, p’)

where o’ (p',T") = ((¢” [U1]) [Uz] €/, T")

which is what we need to conclude. O

6.4 Qualified Completeness of - wrt I
Theorem 14. Under the qualifications of Definition[d] if

e The[Uh][Ug]: S =T and Tyt : S~ ¢
e and some o with dom(c) = MV (T,p [X1] [X2])

where o (p [X1] [Xa], S = T) = (e [U1] [Ua], 5" — T")
(and (|X1],|X2|) = (|01, U2]))
then
o TH (p[X1]:VX2. 8 = T,o5q) - t' - T" ~ (9, 04a)
e with some o' with dom(c') = MV (T, p') and where o (p/,T") = (e [U] [Us] €', T")
Proof. By induction on Xy
Case [X,] = X, X, We have

e 'tellh] [UUS:S =T

o o (pX[X][X5), 5 = T) = (e [U4] [U] [U3), $" = T7)

We appeal to the TH using variable groups 7{ = X;,X and X7§, noting that this regrouping does not keep us from providing
the conditions we received on our assumed derivation to the inductive invocation. We get

o I (p[XW][X]:V XSS = Tyoa) -t : T ~ (p/, 0ia)

e with some ¢’ with dom(o’) = MV (T',p’) and where o (p/,T") = (e [U1] [Uz] €/, T")

Sor at least some attempt at it

From this we derive

TH (p[Xi][X]:VX5.S = Tyoua) -t : T ~ (9, 0a)
r+— (p[Xl]:VX,Yé.S =T, 0q) -t : T ~~ (P, 0:q)

PForall

And provide the ¢’ prime we received from our IH, noting that the conditions on it are precisely what we need to conclude.

Case [X3] =@ We have
eThellh]:S8 =T
e Iyt S ~ ¢
e and o (p [X1],S = T) = (e [U1],S" = T).
To proceed, we must do case analysis on whether MV (T", S) = @ or not.

Subcase MV(I',S) = @: Because MV (I, S) C MV (T',p) = dom(o), we have 0 S = (c " MV (T, 9))(S) = 04a(S) = 5.
So we have by rewriting our second assumption that

Phyt': S~ e
By using the fact that checking mode extends synthesizing for the specificational rules (Lemma we can derive I' Fy ¢/ : .S ~» ¢
to get
MV(I,S)=0 Tkt :S~¢

—— , ————— PChk
F (p[X1]:S = T, 05a) -t : T ~ (p[X1] €, 0ia)

We must now provide a suitable ¢’ completing our partial type synthesis. Pick our assumed . Then we have

e dom(o) = MV (T,p [X,] €)

e o (p[X1] €,T)= (e [Uh] €, T)

allowing us to conclude this sub-case.

Subcase MV (I',S) =Y # @: We know that MV(I',S) =Y C MV(T,p) = dom(c). Let o = 0 NY. Then we know
o S =o0y(S)=25". We have

Pyt oy S~e
We can derive

MVT,S)=Y#@ Tkt o5 S5~e
— — PSyn
' (p[Xl] S =T, Uid) e oy T ~~ ((0'7 p[Xﬂ) e',aid)

We must now pick a suitable ¢’. Pick o — o3-. We have

e dom(oc —oy) = MV (T,p[Xi1] €)Y = MV (T, (o p[X1]) ¢)
o o/ oy (p[X1] ¢,05 T)
=0 (pmelvT)

(e [Uh] €', T")

which is what we need to conclude. O

6.5 Lemma: Checking extends Synthesizing (Specification)

Lemma 20. I[fTI'Fpt:T ~ethenkyt:T ~e
Proof. Directly. Take the assumed derivation of k., invoke completeness of IFy wrt 4 (refthmcomplete-alg), use the fact that

checking extends synthesizing for the algorithmic rules (Lemma , and then finish by invoking soundness of the I wrt
(Theorem [2). O

	Type Inference Rules
	Syntax
	Terminology
	Meta-language Definitions
	Bidirectional Rules
	Specificational Rules
	Algorithmic Rules

	Termination of Algorithmic Rules
	Soundness of wrt
	Bidirectional Rules
	Partial Synthesis Rules
	Partial Application Rules
	Lemma: Well-formed and well-scoped solutions
	Lemma: introduces no meta-variables
	Lemma: Sound use of on
	Lemma: Well-formed Partial Types

	Soundness of wrt
	Bidirectional Rules
	Prototype Rules
	Prototype Application Rules
	Lemma: Sound decoration erasure
	Lemma: Sound ? wrt :=
	Lemma: Matches generate well-formed Decorations
	Lemma: Substitutions on Matches
	Lemma: is sound wrt Matching

	Completeness of wrt
	Complete wrt
	Complete ?wrt P
	Complete wrt
	Lemma: Match solutions solve match meta-variables
	Lemma: Invertible substitutions in matches
	Lemma: preserves := (forwards)
	Lemma: preserves := (backwards)
	Lemma: Match Solutions are Match Sound
	Lemma: Function-ness of Matching
	Lemma: Checking extends Synthesizing
	Lemma: Matching Arrows of P and W:
	Lemma: Subject type reveals an arrow in
	Lemma: Peek-ahead for

	Qualified Completeness of wrt
	Qualified Completeness "322A37E wrt
	Qualified Completeness of P wrt (TApp)
	Qualified Completeness of P wrt (App)
	Qualified Completeness of wrt
	Lemma: Checking extends Synthesizing (Specification)

