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Abstract. We present a datatype subsystem for Cedille, a surface lan-
guage for the calculus of dependent lambda eliminations (CDLE). This
subsystem supports course-of-values induction, an expressive proof scheme
in which the inductive hypothesis may be invoked on predecessors of ar-
bitrary depth, using type-based termination checking. We justify our sur-
face language constructs using elaborating type inference rules, translat-
ing them to pure lambda expressions in CDLE, and show this translation
is type and value preserving. This datatype subsystem and elaborator are
implemented in Cedille, establishing for the first time a full translation
of inductive types to a small pure typed lambda calculus.
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1 Introduction

Algebraic datatypes (ADTs) are a popular feature of functional languages that
combine a concise scheme for declaring datatypes and a mechanism for defining
functions over them by pattern matching and recursion. This popularity extends
to implementations of proof assistants based on dependent type theories, wherein
proofs are given using these same mechanisms. However, wrinkles in bringing
ADTs to proof assistants are the issues of termination checking and positivity
checking, as non-well-founded recursion and mixed variant datatypes can lead
to non-termination and logical unsoundness.

Approaches to both termination and positivity checking may be classified as
either syntactic or semantic. For termination, syntactic analysis can be used to
determine whether some expression is a legal argument to the recursively de-
fined function, such as requiring it to be a pattern variable [15]. For positivity
checking, the syntactic approach tracks in the types of constructor arguments
the number of arrows of which recursive occurrences of a datatype appears to the
left (c.f. [18, Section 4.5.2]). Such analyses must usually be implemented in the
prover’s core theory, running afoul of the de Bruijn criterion [14], i.e., that the
prover produces proof objects checkable by an implementation of a small ker-
nel theory. This situation is especially unfortunate for termination checking, as
simple syntactic guards are brittle, incentivising implementors to make analyses
more sophisticated to grow the set of acceptable definitions.
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Semantic approaches address such concerns. For positivity checking, one
might translate datatypes down into a closed universe of strictly positive types [7]
or generate monotonicity witnesses [24] in the kernel theory. For termination
there is type-based termination checking, the most popular formulation arguably
being sized types [1, 5], in which structural decrease of a datatype in recursive
calls is enforced by requiring decrease in the size index. Many expressive re-
cursion schemes, like course-of-values iteration in which recursive calls can be
made on predecessor values of arbitrary depth, can easily be expressed using
sized types. However, adding this feature to a type theory requires rework of
existing meta-theoretic results, and in languages with both sized and unsized
variants of datatypes ergonomic reuse between the variants becomes an issue.

Semantic approaches to positivity and termination in CDLE The setting of the
present work is Cedille, a dependently typed programming language. Cedille’s
kernel theory, CDLE (the calculus of dependent lambda eliminations), is a com-
pact pure extrinsic type theory with no primitive notion of datatypes and which
can be implemented in ∼1K Haskell LoC [32]. Firsov et al. [11] showed that it is
possible to generically derive lambda encodings of datatypes and their induction
principles using a Mendler encoding that features constant-time predecessors and
linear-space representation. Their development uses a derived notion of positiv-
ity similar to Matthes’s monotonicity witnesses [23], and the Mendler encoding
naturally lends itself to the Mendler style of coding recursive functions [36], a
type-based form of termination checking that uses only polymorphic typing.

The result of Firsov et al. [11] demonstrates that the foundations for semantic
positivity and termination checking are present in CDLE already. However, it
does not address how these foundations might be used in the design of a conve-
nient surface language for ADTs in Cedille. Additionally, the induction scheme
their encoding directly supports allows recursive calls made only on immediate
predecessors. Can this be extended to richer schemes, such as course-of-values
induction, and if so could the extension be supported in the surface language?

Contributions This paper4 answers these questions affirmatively. We present
a datatype subsystem for Cedille with the expected convenience of compact
notation for declaring inductive types and with type-based termination checking
that supports course-of-values induction. In particular, we:

– extend Firsov et al. [11] with a generic encoding of course-of-values datatypes,
deriving implicitly restricted existentials and singleton types to achieve this;

– design a surface language for inductive types with type-based termination
checking based on course-of-values pattern matching, a feature allowing re-
cursive calls on arbitrarily deep predecessors;

– elaborate datatypes, positivity checking, recursive functions, and course-of-
values pattern matching to CDLE;

– and prove that elaboration is type- and value-preserving

4 This paper is a combination of two previously unpublished manuscripts [12, 19].
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The datatype system and elaborator are implemented in Cedille5, demonstrating
that inductive definitions in constructive type theory can be soundly translated
down to a small pure typed lambda calculus. This paper and its proof appendix
treats only the elaboration of non-indexed, non-parameterized datatypes.

Organization In Section 2, we informally describe course-of-values pattern match-
ing using an extended example of both implementing division and proving a cer-
tain property concerning it. We review CDLE and Firsov et al. [11] in Section 3.
Section 4 gives the derivation of course-of-values datatypes and characterizes
their computational behavior. Section 5 treats formally the surface language
constructs for datatypes in Cedille by elaborating type inference rules states
type- and value-preservation and the normalization guarantee for elaborations
of datatype expressions. Finally, Section 6 discusses related work and Section 7
concludes the paper and discusses future work.

2 Course-of-values pattern matching

We explain course-of-values pattern matching, the key feature of Cedille’s type-
based termination checker enabling course-of-values induction, with a demon-
stration of its use to both implement division and to prove that the quotient
is no greater than the dividend. This also establishes the expressive power of
course-of-values induction: our motivation for choosing division is that its natu-
ral implementation as iterated subtraction is neither obviously well-founded by
syntactic analysis, nor can it be simulated by nested pattern matching as the
predecessor at each recursive step is dynamically computed.

2.1 Implementing division

Figure 1 lists an implementation of division in Cedille. The declaration of the
datatype Nat is straightforward, following a similar format as for declaring
GADTs in Haskell. In addition to bringing into scope the type Nat and terms
zero and succ, this declaration also exports the following automatically generated
names that are used for termination checking:

– Is/Nat : ? → ?, a predicate on types that, when true of T , allows terms of
type T to be case analyzed with predecessors preserving the type T ;

– to/Nat : ∀R : ?. Is/Nat · R ⇒ R → Nat, a type coercion that converts any
term of type T for which Is/Nat holds into a term of type Nat (the center dot
denotes application to a type and the open arrow forms the type of functions
whose arguments are computationally irrelevant, discussed in Section 3);

– is/Nat : Is/Nat · Nat, a proof that Nat itself satisfies the predicate Is/Nat.

The first function of the figure, predCV, implements the predecessor operation
for naturals and shows how Is/Nat is used with the term construct σ for course-
of-values pattern matching. Given proof is that the predicate holds for the type

5 https://github.com/cedille/cedille
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data Nat : ? = zero : Nat | succ : Nat → Nat .

predCV: ∀ N: ?. Is/Nat ·N ⇒ N → N = Λ N. Λ is. λ n.

σ<is> n {zero → n | succ n’ → n’}.

minusCV: ∀ N: ?. Is/Nat ·N ⇒ N → Nat → N = Λ N. Λ is. λ m. λ n.

µ rec. n { zero → m | succ n’ → predCV -is (rec n’) }.

pred = predCV -is/Nat .

minus = minusCV -is/Nat .

data Bool: ? = tt : Bool | ff : Bool .

ite: ∀ X: ?. Bool → X → X → X

= Λ X. λ b. λ t. λ f. σ b {tt → t | ff → f}.

lt : Nat → Nat → Bool = λ m. µ lt. (succ m) {
| zero → λ n. tt

| succ m → λ n. σ n { zero → ff | succ n → lt m n} } .

divide: Nat → Nat → Nat = λ n. λ d. µ divD. n {
| zero → zero

| succ p → [p’ = to/Nat -isType/divD p] -

ite (lt (succ p’) d) zero

(succ (divD (minusCV -isType/divD p (pred d)))) } .

Fig. 1. Division in Cedille using course-of-values pattern matching

argument N , the argument n is analyzed: in the case it is zero, n is returned,
and if it is the successor to some n′ then n′ is returned. In both cases, the branch
bodies have type N as required.

With a parametric reading, the type of predCV suggests the only possible way
to return an expression of type N is by either giving back the first argument or
some predecessor of it. This reading also applies to the type of minusCV. Sub-
traction is defined by recursion, using the construct µ, over its second argument
and iteratively applies the type-preserving predCV to its first argument. Ordi-
nary predecessor and subtraction are special cases where the proof is is/Nat (the
hyphen indicates that is/Nat is an irrelevant argument to predCV and minusCV).

Analogously to datatype declarations, µ expressions export names within the
scope of the given case tree. In minusCV, these are:

– Type/rec :?, the type of predecessors of the scrutinee n;
– isType/rec : Is/Nat · Type/rec, evidence permitting the coercion to Nat, and

course-of-values pattern matching, for terms of type Type/rec; and
– rec :Type/rec→ N , the handle for recursion restricted to predecessors of n

The last definitions needed before implementing division is the declaration
of booleans, Bool), their conditional if-then-else function, ite, and the natural
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Lte : Nat → Nat → ? = λ m: Nat. λ n: Nat. { lt m (succ n) ' tt } .

lteTrans : Π l: Nat. Π m: Nat. Π n: Nat.

Lte l m → Lte m n → Lte l n = <..>

lteMinus : Π m: Nat. Π n: Nat. Lte (minus m n) m = <..>

lteDivide : Π n: Nat. Π d: Nat. Lte (divide n d) n = λ n. λ d.

µ ih. n {
| zero → β
| succ p →
[p’ = to/Nat -isType/ih p] -

[s = minusCV -isType/ih p (pred d)] - [s’ = to/Nat -isType/ih s] -

σ (lt (succ p’) d)

@(λ x: Bool. Lte (ite x zero (succ (divide s’ d))) (succ p’)) {
| ff → lteTrans (divide s’ d) s’ p’ (ih s) (lteMinus p’ (pred d))

| tt → β } } .

Fig. 2. Proof of n/d ≤ n

number less-than comparator, lt. Note that in Cedille, the global witness is/Bool
can be inferred and does not need to be given explicitly to σ expressions.

For divide, we have dividend n and divisor d, and define with a µ expression
the recursive function divD over n dividing its argument by d. In the successor
case, the pattern variable p has type Type/divD, so to compare its successor
with d we make a local definition p′ coercing it to type Nat with to/Nat and
the automatically available witness isType/divD of Is/Nat ·Type/divD. This local
definition of p′ is given with the syntax [x = t1] − t2, Cedille’s notation let-
bindings (as in let x = t1 in t2).

When it is not the case that succ p′ < d, we make essential use of type-
preserving subtraction with minusCV to make a recursive call on the differ-
ence between p and pred d. This is course-of-values iteration: the expression
minusCV -isType/divD p (pred d) dynamically computes a predecessor of p. Though
it is not obviously smaller than p using syntactic analysis, it has type Type/divD,
the domain of divD, making it a legal argument for recursion.

2.2 Proof concerning division

Figure 2 shows how course-of-values induction in Cedille is used to prove that
the quotient of division is no greater than the dividend. It begins by defining the
relation Lte using the comparator lt and Cedille’s primitive equality type {t1 '
t2} (see Section 3). The next definitions, lteTrans and lteMinus, are lemmas whose
definitions are omitted (indicated by <..>) proving resp. that Lte is transitive
and that m− n ≤ m for all naturals m and n.

In lteDivide, we inductively define over n a proof that n/d ≤ n. In the case
that n is zero, the goal becomes {tt ' tt}, which is proven by the introduction
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Γ ` t1 : T1 Γ ` t2 : T2[t1/x] |t1| = |t2|
Γ ` [t1, t2 @x.T2] : ι x :T1. T2

Γ ` t : ι x :T1. T2

Γ ` t.1 : T1

Γ ` t : ι x :T1. T2

Γ ` t.2 : T2[t.1/x]

Γ, x :T ` t′ : T ′ x 6∈ FV(|t′|)
Γ ` Λ x :T. t′ : ∀ x :T. T ′

Γ ` t : ∀ x :T ′. T Γ ` t′ : T ′

Γ ` t -t′ : [t′/x]T

FV (t) ∪ FV (t′) ⊆ dom(Γ )

Γ ` β〈t〉{t′} : {t ' t}
|β〈t〉{t′}| = |t′|, |[t1, t2]| = |t1|,

|t.1| = |t|, |t.2| = |t|,
|Λ x :T. t| = |t|, |t -t′| = |t|

Fig. 3. Typing and erasure for a fragment of CDLE

form β for the equality type. In the successor case, we locally define p′ by coercing
the predecessor, as we did in divide itself, but now also make two definitions for
the difference p−(pred d). The first of these, s, has type Type/ih, and the second,
s′, has type Nat. The σ expression following this inspects the result of comparing
succ p′ with d. A type annotation for inferring the types of the bodies of case
branches is given explicitly with @, as these types depend upon the result of the
comparison — the type of the entire σ expression is

Lte (ite (lt (succ p′) d) zero (divide s′ d)) (succ p′)

which is definitionally equal to the expected type Lte (divide (succ p′) d) (succ p′)
(strictly speaking, it is not p′ but its definition that occurs in the expected type;
inference for the insertion of coercions is given later in Figure 12).

In the branch for ff, we use transitivity of ≤ to combine a proof of s′/d ≤ s′
with a proof of s′ ≤ p′ to obtain the desired result, and the second of these proofs
is given by the lemma lteMinus. Course-of-values induction is used for the first:
the difference s has type Type/ih, and ih s proves that s′/d ≤ d, as required.

3 Background

We now review CDLE, Cedille’s kernel theory. CDLE extends the impredicative
extrinsically typed calculus of constructions (CC), overcoming historical difficul-
ties of lambda encodings (e.g., underivability of induction [13]) by adding three
new type constructs: equality of untyped terms; the dependent intersections of
Kopylov [21]; and the implicit products of Miquel [27]. The pure term language
of CDLE is untyped lambda calculus, but to make type checking algorithmic
terms are presented with typing annotations. Definitional equality of terms t1
and t2 is βη-equivalence modulo erasure of annotations, denoted |t1| =βη |t2|.
The type and erasure rules for the fragment of CDLE used in this paper are given
in Figure 3, with a full listing given in the proof appendix (see also Stump [31]).
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Equality: {t1 ' t2} is the type of proofs that t1 and t2 are equal. It is introduced
with β〈t〉{t′}, erasing to the erasure of an unrelated t′ and proving {t ' t} for
any term t whose free variables are declared in the typing context. Combined
with definitional equality, β〈t〉{t′} proves {t1 ' t2} for any t1 and t2 whose
erasures are βη-convertible with the erasure of t. CDLE has inference rules also
for using equality proofs, not only introducing them, but these are omitted.

By having β〈t〉{t′} to erase to |t′|, we effectively add a top type to the lan-
guage as every well-scoped untyped lambda term proves equations that hold
definitionally. This idea, which we call the Kleene trick, can be found in Kleene’s
later definitions of numeric realizability [20]. In code listings, we omit 〈t〉 when
t can be inferred; when {t′} is omitted, the erasure is λ x . x.

Dependent intersection: ι x :T1. T2 is the type of terms t which can be assigned
both type T1 and T2[t/x], and in the annotated language is introduced by [t1, t2],
where t1 has type T1, t2 has type T2[t1/x], and |t1| =βη |t2|. Dependent inter-
sections are eliminated with projections t.1 and t.2, selecting resp. the view that
term t has type T1 or T2[t.1/x]. In this paper, dependent intersections occur
explicitly only in the elaboration of datatype signatures (Section 5.2).

Implicit product: ∀ x :T. T ′ is the type of dependent functions taking an erased
argument t of type T and returning a result of type T ′[t/x]. They are introduced
with Λ x : T. t provided x does not occur free in |t|, and they are eliminated
with erased application t1 -t2. Erased arguments play no computational role and
exist solely for the purposes of typing. When x does not occur free in T ′ we write
T ⇒ T ′, similar to writing T → T ′ for Π x :T. T ′ under the same condition.

Omitted typing constructs Figure 3 omits typing and erasure rules for the term
and type constructs of CC. In terms, all type annotations and abstractions (also
using Λ) are erased, and type arguments in instantiations of polymorphic func-
tions (written t ·S) are erased. In types, ∀ and λ resp. quantify and abstract over
types, and type to type application is written T · S. In code listings, we omit
type arguments in terms when these can be inferred.

Meta-theoretic results for CDLE We list two of CDLE’s meta-theoretic results,
logical consistency and call-by-name normalization of closed functions.

Proposition 1 (Stump [31]). There t such that ∅ ` t : ∀X :?.X → X.

Proposition 2 (Stump [31]). Suppose Γ ` t : T , t is closed, and there exists
a closed t′ that erases to λ x . x and whose type is T → Π x :T1. T2 for some T1,
T2. Then |t| is call-by-name normalizing.

In Theorem 2, the condition on T that there be a retyping function (á la
Mitchel [28]) to a function excludes non-termination introduced by the Kleene
trick; requiring t be closed concerns the derivability of zero-cost coercions (Cast,
Figure 4), which can cause non-termination in inconsistent contexts [2].
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Γ ` S : ? Γ ` T : ?
Γ ` Cast · S · T : ?

Γ ` t : Cast · S · T
Γ ` elimCast -t : S → T

Γ ` t1 : S → T Γ ` t2 : Π x :S. {f x ' x}
Γ ` intrCast -t1 -t2 : Cast · S · T

Γ ` S : ?
Γ ` castRefl · S : Cast · S · S

Γ ` t1 : Cast · S · T Γ ` t2 : Cast · T · U
Γ ` castTrans -t1 -t2 : Cast · S · U

Γ ` F : ?→ ?
Γ ` Mono · F : ?

Γ ` t1 : Mono · F Γ ` t2 : Cast · S · T
Γ ` elimMono -t1 -t2 : F · S → F · T

Γ ` t : ∀X :?. ∀Y :?.Cast ·X · Y ⇒ Cast · (F ·X) · (F · Y )

Γ ` intrMono -t : Mono · F

|elimCast -t| = λ x . x, |elimMono -t1 -t2| = λ x . x

Fig. 4. Type inclusions and positivity (resp. Cast and Mono)

3.1 Generic encoding of datatypes

Firsov et al. [11] provide a generic development for efficient encodings of datatypes
and their induction principles. Genericity here means parametricity : the devel-
opment works for an arbitrary positive type scheme F : ? → ?, with positivity
expressed internally as a predicate Mono; efficiency means both that data de-
structors compute in constant time and lambda encodings have size linear in the
size of the data they encode. For brevity, we present axiomatically definitions of
their framework that we use with formation, introduction, and elimination rules,
and (when relevant) erasure and computation rules. We stress that all typing
constructs discussed are definitional extensions to CDLE, and the laws of each
type construct can be proven internally for the underlying definition.

Type inclusions and positivity Figure 4 gives the rules associated to type
inclusions and monotonicity witnesses (in Firsov et al., resp. Id and IdMapping).

Type inclusions For types S and T , Cast · S · T is the proposition that S is
included into (or a subtype of) T , i.e., every term of type S has type T . A proof
t of Cast · S · T is used with the elimination form elimCast -t, which has type
S → T and is definitionally equal to λ x . x. The hyphen in the expression marks
t as an erased argument: if S is included in T and t has type S, then t also has
type T regardless of the choice of witness of the inclusion, giving Cast a form of
proof-irrelevance. To introduce Cast·S ·T , intrCast requires a function t1 : S → T
and a proof t2 that t1 behaves extensionally as the identity function on terms
of type S. Finally, we list operations castRefl and castTrans showing resp. that
type inclusions are reflexive and transitive.
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Γ ` F : ?→ ?
Γ ` µF : ?

Γ ` t1 : Mono · F Γ ` t2 : F · µF
Γ ` in -t1 t2 : µF

Γ ` t1 : Mono · F Γ ` t2 : µF

Γ ` out -t1 t2 : F · µF

PrfAlg : Π F :?→ ?.Mono · F → (µF → ?)→ ?
PrfAlg · F t · P = ∀R :?. ∀ c :Cast ·R · µF. (Π x :R.P (elimCast -c x))

→ Π xs :F ·R.P (in -t (elimMono -t -c xs))

Γ ` t1 : Mono · F Γ ` t2 : PrfAlg · F t1 · P
Γ ` ind -t1 t2 : Π x :µF. P x

|out (in t)| =βη |t|
|ind t1 (in t2)| =βη |t1 (ind t1) t2|

Fig. 5. Interface for encodings of inductive types provided by [11]

Monotonicity Type Mono · F is the proposition that type scheme F is positive,
or monotone. To introduce Mono · F we provide a proof that, for all types X
and Y such that X is included into Y , we can show F ·X is included into F ·Y .
Finally, elimMono allows one to use a proof of Mono · T as a function of type
F · S → F · T that is definitionally equal to λ x . x. Mono enjoys the same form
of proof-irrelevance as does Cast.

Mendler-style encoding We next review definitions for generic Mendler-style
encodings of datatypes in CDLE, presented axiomatically in Figure 5.

Mendler-style inductive types It is well-known that an inductive type with sig-
nature functor F has as its semantics in category theory the initial F -algebra
(µF, inµF ), where an F -algebra is a pair (X,φ) with X (the carrier) an object
and φ : F X → X (the action) a morphism. As an example, for the datatype
Nat the signature F is X 7→ 1 +X (with + forming a binary coproduct) and the
algebra actions are morphisms φ : 1 +X → X.

Mendler-style F -algebras, developed by Uustalu and Vene [35] and based
on an impredicative encoding of Mendler [26], give an alternative semantics
of datatypes where the action of the algebra is a natural transformation ΦR :
C(R,X)→ C(F R,X), i.e., a mapping (natural in R) of morphisms f : R → X
in C to morphisms ΦR(f) : F R → X. In polymorphic type theory, this is
expressed by ∀R : ?. (R → X) → (F · R → X), where naturality comes as
a “theorem for free” (c.f. Wadler [37]) from parametricity. Writing recursive
functions in this fashion is known as the Mendler style of coding recursion [35],
which can guarantee termination by polymorphic typing alone.

Datatype constructor and destructor Returning to Figure 5, the formation rule
for datatype µF requires only that F is a type scheme. Positivity of F is required
by the generic constructor in and destructor out, in the form of a proof t1 of Mono·
F . The constructor in takes also a term t2 of type F · µF , building a successor
value from an “F -collection” of µF predecessors. The destructor out undoes this,
taking an expression of type µF and unravelling it to its predecessors.
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Mendler-style induction The definition of PrfAlg generalizes Mendler-style F -
algebras to dependent “proof algebras”. The carrier P is a predicate over µF , and
the action is a function polymorphic in R mapping dependent functions of type
Π x :R.P (elimCast -c x) to functions Π xs :F ·R.P (in -t (elimMono -t -c xs)),
where c proves R is included into µF and t proves F is positive. The key intuition
is to view R as a subtype of µF containing predecessors for which it is legal to
invoke the inductive hypothesis Π x :R. (P x) (coercions omitted); one assumes
such an inductive hypothesis and must show that P holds for the successor in xs
of an arbitrary xs :F ·R. With PrfAlg understood, so to is the induction principle:
ind -t1 t2 is a proof that predicate P holds for all µF when t1 proves F positive
and t2 is a proof algebra for P .

Characterization Proposition 3 gives the computational character of in, out, and
ind. The first result listed is the cancellation law, stating how ind computes over
values constructed with in. The second and third are the two halves of Lambek’s
lemma [22], stating that out and in are mutual inverses. Crucial to the claim that
this encoding is efficient (and summarized in Figure 5) is the first and second
hold by definitional equality alone (the third is an extensionality principle).

Proposition 3 (Firsov et al. [11]). For F : ?→ ? and m : Mono · F :

– For all term t1 and t2, |ind t1 (in t2)| =βη |t1 (ind t1) t2|
– For all terms t, |out (in t)| =βη |t|.
– If t is a term of type µF then {in -m (out -m t) ' t} is provable.

4 Course-of-values induction in CDLE

We now present the first listed contribution of the paper, the derivation of course-
of-values induction, and of implicitly restricted existentials and singleton types
used to achieve this, in CDLE. This result serves as the basis of type-based termi-
nation checking for the datatype subsystem for Cedille, as the surface language
is justified via elaboration to developments in this section.

Course-of-values iteration enables functions to be defined in terms of the
entire “course” of previously computed values. It is translated into the Mendler
style of coding recursion with the type ∀R :?. (R→ F ·R)→ (R→ X)→ F ·R→
X, the idea being to equip the function with a type-preserving destructor R→
F ·R to dig arbitrarily deeply into predecessors. We may think to derive course-of-
values induction from ordinary induction by augmenting the datatype signature
F with an abstract destructor, forming the signature R 7→ (R → F R) × F R,
but this attempt faces two difficulties.

– This signature is not positive, and while Mendler-style inductive types can
be safely formed from mixed-variant signatures, the desired destructor is
definable only for positive signatures in logically consistent type theories.
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Γ ` H : ?→ ? Γ ` F : ?→ ?
Γ ` RExt ·H · F : ?

Γ ` S : ? Γ ` s : H · S Γ ` t : F · S
Γ ` pack · S -s t : RExt ·H · F

Γ ` P : RExt ·H · F → ? Γ ` t : ∀X :?.∀ x :H ·X.Π y :F ·X.P (pack ·X -x y)

Γ ` unpack · P t : Π z :RExt ·H · F. P z

|pack · S -s t| = (λ x . λ f . f x) |t|, |unpack · P t| = (λ f . λ x . x f) |t|

Fig. 6. Derived implicily restricted existential types

– This signature defines a superset of course-of-values datatypes. The first
component of the product, R → F R, is not restricted to be just the
datatype destructor, leaving open the possibility that each predecessor is
tupled together with different “destructors”. This interferes with describing
the computational character of course-of-values induction.

This first difficulty was solved by Uustalu and Vene [35] with restricted ex-
istential types (categorically, restricted coends) used to form the covariant sig-
nature R 7→ ∃X . (X → R)× (X → F X)× F X. To solve the second difficulty,
we present a novel derivation of singleton types in CDLE, called View, enabling
us to specify the abstract destructor is precisely the desired one.

4.1 Implicitly restricted existentials

Figure 6 axiomatically summarizes the derivation of RExt, a family of implicitly
restricted existential types. This derivation follows a recipe similar to that given
by Stump [30] and can be found in the proof appendix. The type RExt · H · F
existentially quantifies over types S such that both F · S and the restriction
H · S holds. Differing from the usual presentation of restricted existentials, the
evidence for the restriction H · S is erased and cannot be used in computation.

To form this type, type schemes H and F must have kind ? → ?. The
introduction form pack takes a type argument S, a term s of type H · S as
an erased argument, and a term t of type F · S. The (dependent) elimination
form unpack takes a property P over RExt · H · F and a proof that P holds
of pack · X -x y for all types X, erased x : H · S, and y : F · S. The whole
expression is a proof that P holds for all RExt ·H · F . Finally, the erasure rules
for implicitly restricted existentials give the erasures that the Cedille tool reports
for the CDLE definitions of pack and unpack in the code repository.

4.2 Singleton types

We now describe the derived family of singleton types in CDLE that we use in
the choice of restriction made to define course-of-values datatypes. Recall from
Section 3 that the Kleene trick enables the definition of a type for all untyped
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Top = {λ x . x ' λ x . x}
Γ ` S : ? Γ ` t : Top

Γ ` View · S t

Γ ` t : Top Γ ` t1 : S Γ ` t2 : {t1 ' t}
Γ ` intrView t -t1 -t2 : View · S t

Γ ` t1 : Top Γ ` t2 : View · S t1

Γ ` elimView t1 -t2 : S

|intrView t -t1 -t2| = (λ x . x) |t|, |elimView t1 -t2| = (λ x . x) |t1|

Fig. 7. Derived singleton types

lambda calculus terms. We give such a type as Top, with which we can form
predicates over terms before they are known to have any other type.

For all types S, View·S is such a predicate, a derived type construct presented
axiomatically in Figure 7. View ·S t is the type of proofs that the Top-typed term
t can be annotated (via elimView) to have type S. Alternatively, it can be read
as the singleton type on S of term equal to t. The introduction form intrView
takes a Top-typed term t, an erased argument t1 of type S, and a proof t2
that t equals t1. The elimination form elimView takes a Top-typed term t1 and
a proof t2 of View · S t1 as an erased argument. As with the Cast and Mono
(Figure 4), View enjoys a form of proof-irrelevance suitable to be part of an
implicitly restricted existential. The erasure of the elimination form reinforces
this, with the expression elimView t1 -t2 erasing to (λ x . x) |t1|.

4.3 Course-of-values datatypes

We bring together the preceding results to define course-of-values datatypes. To
begin, notice that there is subtle circularity in proposing to define the generic
signature CVF for such datatypes in terms of their destructor outCV : µCVF →
F · µCVF . This circularity is broken using the following observations.

– CDLE’s equality is modulo erasure of typing annotations. We need only de-
fine CVF in terms of some term equal to the subsequent definition of outCV.
We find it expedient to give a Top-typed version of the destructor, outCVU.

– The destructor out (Figure 5) takes an erased monotonicity witness, mean-
ing it performs no computation specific to the datatype signature. No prior
operation on CVF is needed to express computation of out for µCVF .

The full CDLE derivation using these observations is given in Figure 8, with
some syntax modified to aid in readability (e.g., sugar for derived product types
S × T with projections π1 and π2, and removal of some type annotations). The
code listing is parameterized in a type scheme F : ?→ ? and monotonicity proof
m : Mono · F . We summarize the key aspects of the derivation.

Definition of CV The Top-typed definition outCVU gives the underlying compu-
tational content of the destructor for course-of-values datatypes. Reading it with
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outCVU : Top = β{| λ x. unpack (λ xs. xs) (out x) |} .

RCV : ? → ? → ?
= λ X: ?. λ R: ?. (Cast ·R ·X) × View ·(R → F ·R) outCVU .

CV : ? → ? = λ X: ?. RExt ·(RCV ·X) ·F .

mCV : Mono ·CV = intrMono -(Λ X. Λ Y. Λ c.

intrCast -(unpack Λ R. Λ r. λ xs.

pack -((castTrans -(π1 r) -c), π2 r) xs)

-(unpack Λ R. Λ r. λ xs. β)) .

outCV : µ CV → F ·(µ CV) = λ x.

unpack (Λ R. Λ r. λ xs. elimMono -m -(π1 r) xs) (out -mCV x) .

inCV : F ·(µ CV) → µ CV = λ xs. in -mCV

(pack -(castRefl, intrView outCVU -outCV -β) xs) .

PrfAlgCV : (µ CV → ?) → ? = λ P: µ CV → ?.
∀ R: ?. ∀ c: Cast ·R ·(µ CV). View ·(R → F ·R) outCVU →
(Π x: R. P (elimCast -c x)) → Π xs: F ·R. P (inCV (elimMono -m -c xs)) .

indCV : ∀ P: µ CV → ?. PrfAlgCV ·P → Π x: µ CV. P x = Λ P. λ alg.

ind -mCV Λ R. Λ c. λ ih. unpack Λ S. Λ r. λ xs.

alg ·S -(castTrans -(π1 r) -c)

(intrView outCVU -(elimView outCVU -(π2 r)) -β)
(λ x. ih (elimCast -(proj1 r) x)) xs .

Fig. 8. Generic encoding of course-of-values datatypes in CDLE

the intended typing, we have a function mapping datatypes µCV to F · µCV by
destructing them with out (giving a result of type CV · (µCV) and unpacking the
restricted existential to return the predecessor values. With outCVU, we define
the type family of restrictions RCV, whose first argument X is the parameter
in which we will take the fixpoint and whose second argument R serves as the
existentially quantified type variable. The body of RCV is the product of proofs
that R is included into X and that outCVU has type R→ F ·R.

Finally, we form the signature CV and give proof mCV that it is positive. We
do not detail this proof except to note the critical point where the existential is
re-packed: there, transitivity of type inclusions is used (castTrans, Figure 4) to
combine the hypothetical inclusion c : Cast · X · Y y with the inclusion π1 r :
Cast ·R ·X that is part of the restriction r.

Datatype destructor and constructor As promised, we can define an informatively
typed destructor outCV that is definitionally equal to outCVU. That this equality
holds follows from the erasure of the elimination form elimMono (Figure 4).
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Finally, we can define the constructor inCV for course-of-values datatypes. In
the argument to in we are required to give a restricted existential CV · µCV.
We chose for the existentially quantified type µCV, provide a proof that µCV
is included in itself (castRefl), and a proof that outCVU can be viewed at type
µCV→ F ·µCV, given with intrView — outCV equals outCVU and has this type.

Course-of-values induction To understand the definition PrfAlgCV of Mendler-
style course-of-values proof algebras, recall the definition in type theory of Mendler-
style course-of-values algebras: ∀R : ?. (R → F · R) → (R → T ) → F · R → T .
PrfAlgCV translates this into a dependently typed setting by:

– adding (erased) assumption c that R is included into µCV;
– restricting the destructor to be precisely outCVU;
– taking the handle for making recursive calls R→ T to an induction hypoth-

esis Π x :R.P (elimCast -c x);
– making the goal showing that P holds for every µCV built from arbitrary

xs : F ·R, lifting of the assumed c to an inclusion of CV ·R into CV · µCV.

The generic course-of-values induction principle, indCV, is defined as a com-
position of ind (Figure 5) and the eliminator for restricted existentials. After
applying both and introducing assumptions, the goal is to show P holds for
in (pack xs) (convertible with inCV xs; erased arguments are here omitted), ac-
complished by giving the proof algebra alg :

– a proof of inclusion of the existentially quantified S into µCV, using transi-
tivity on the inclusion of S into R and of R into µCV;

– a proof that outCVU has type S → F · S;
– and an induction hypothesis formed by restricting the domain of ih to S.

Computing with course-of-values datatypes To characterize our deriva-
tion of course-of-values datatypes, it is essential to abstract away from lambda
encodings and express their computational properties in terms of inCV, outCV,
and indCV themselves. The expected computation laws arise from the setting of
category theory as the cancellation law and one half of Lambek’s lemma (the
second half being an extensionality principle or η-law). Our encoding enjoys the
both cancellation law and Lambek’s lemma (in full).

Theorem 1 (Characterization). For all F : ?→ ? and m : Mono · F :

– for all terms t1 and t2, |indCV t1 (inCV t2)| =βη |t1 outCV (indCV t1) t2|;
– for all terms t, |outCV (inCV t)| =βη |t|
– for all terms t of type µ(CV · F ), {inCV -m (outCV -mt) ' t} is provable.

Proof. These are proven with respect to CDLE’s equality type in the code repos-
itory associated with this paper. For the first two, the proof holds by the β-axiom
alone (Figure 3), meaning the terms are definitionally equal. The last comes from
an inductive proof using indCV.
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Case : (µ CV → ?) → Π R: ?. RCV ·(µ CV) ·R → ?
= λ P: µ CV → ?. λ R: ?. λ r: RCV ·(µ CV) ·R.
Π xs: F ·R. P (inCV (elimMono -m -(π1 r) xs)) .

sigma : ∀ P: µ CV → ?. ∀ R: ?. ∀ r: RCV ·(µ CV) ·R.
Π x: R. Case ·P ·R r → P (elimCast -(π1 r) x) = <..>

ByInd : (µ CV → ?) → ? = λ P: µ CV → ?. ∀ R: ?.
∀ r: RCV ·(µ CV) ·R. (Π x: R. P (elimCast -(π1 r) x)) → Case ·P ·R r .

mu : ∀ P: µ CVF → ?. Π x: µ CV. ByInd ·P → P x = <..>

Fig. 9. Variants sigma and mu

4.4 Towards surface language constructs

It is preferable to not expose the datatype signature F to the user. In particular,
this means that outCV should be replaced by a general construct for proof by
cases, and should not appear in the reduction of recursive definitions in the
surface language, as it does in Proposition ??. We end this section by describing
variants of outCV and indCV, resp. sigma and mu in Figure 9, that correspond
directly to resp. the surface constructs σ and µ (Section 5.3). The variations are
minor, so we describe only their types and properties.

The type family Case expresses a generalized shape of proofs by cases of a
predicate P over a type R for which the restriction RCV · (µCV) holds. Its body
is the type of functions taking an F -collection of R values and returning a proof
that P holds for the value from them using inCV, after inserting the appropriate
coercion. The type of sigma then promises that for all such P and R, given a
proof by cases of P we have that P holds for all values of type R (the definition is
omitted, indicated by <..>). The type family ByInd gives a variation of Mendler-
style course-of-values proof algebras in terms of the restriction RCV, given as an
erased argument. The definition mu is a variant of indCV that takes a ByInd
argument.

Properties We can characterize sigma and mu (and the extensionality principle
of sigma) without referring to the encodings, as we did with outCV and indCV.

Theorem 2 (Characterization (mu, sigma)).

– For all terms t1 and t2, |mu (inCV t1) t2| =βη |t2 (λ x .mu x t2) t1|, where
x /∈ FV (t2)

– For all terms t1 and t2, |sigma (inCV t1) t2| =βη |t2 t1|
– For all terms t of type µCV, {sigma t inCV ' t} is provable.

Proof. Given in the code repository associated with this paper.
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5 Inductive definitions

We now turn to the syntax for Cedille’s datatype system and its translational
semantics into the encodings of the previous section. In this paper and its proof
appendix, we treat formally only non-indexed, non-parameterized datatypes (the
Cedille tool supports both of these); in this paper, we simplify the presentation
elaboration and further restrict ourselves to datatypes of one constructor taking
one argument. Multiple constructors can be simulated with a single constructor
taking a coproduct argument, and multiple arguments simulated with products
(and erased term and type arguments simulated with implicit restricted existen-
tials). We emphasize that Cedille’s surface language requires no such simulation.

Definition 1 (Datatype declaration). A datatype declaration is a triple,
written Ind[D,R, c :T → D], where:

– D (the datatype name) is a unique identifier supplied by the user;
– R is a freshly generated type variable;
– and c :T → D is the constructor declaration, with c (the constructor name)

is a unique identifier, and where all occurrences of D in the user-supplied
constructor argument type T [D/R] have been replaced by R.

Example 1. Natural numbers are declared in Cedille as

data Nat : ? = zero : Nat | succ : Nat → Nat .

and would be simulated by

data Nat : ? = mkNat : Unit + Nat → Nat

which would be represented by Ind[Nat, R,mkNat :Unit +R→ Nat] where ‘+’ is
sugar for the encoding of binary product types and Unit the singleton type.

We require that the type of the constructor argument is well-kinded and that
R occurs only positively within it. We describe the algorithm for checking these
requirements by a collection of judgments whose inference rules are mutually
inductively defined. The main judgments are:

– Γ ` Ind[D,R, c : T → D] a Γ, IndEl[D,R, c : T → D,m,L,Θ, E ], which
checks that the datatype declaration Ind[D,R, c : T → D] is well-formed
and adds to the current typing context (notated by a) the declaration, a
positivity witness m and predicate transformer L used during elaboration,
additional global constants Θ, and a mapping E of declarations in the surface
language elaborations to their CDLE elaborations;

– Γ ` F +
↪→ m, checking F is positive and elaborating witness m : Mono · F ;

– and Γ ` t : T ↪→ t′, meaning that term t has type T in the surface language
and elaborates to the CDLE term t′.
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Our notational convention is that judgments with the hooked arrow ↪→ are
for the surface language (which includes CDLE), whereas those without concern
only pure CDLE constructs. Due to space constraints, we cannot list the full set
of inference rules for elaboration here (see the proof appendix). Figure 10 lists re-
maining judgments needed for the statements of our main meta-theoretic results,
type and value preservation for elaborated terms. In particular, the definitions
of term, type, kind, and context elaboration consist mostly of congruence rules,
with the elaborations of global definitions exported by datatype declarations
given by their mappings in E of the elaborated declaration.

5.1 Positivity checking

The single inference rule for the judgment Γ ` F +
↪→ m for positivity checking is

given in Figure 11. It appeals to the auxiliary judgments for checking subtyping
and subkinding based on a given coercion, listed resp. in Figures 12 and 13.
The positivity judgment is defined only for type schemes of the form λX :?. T ,
and attempts to confirm monotonicity of this scheme following the introduction
forms of intrMono and intrCast (Figure 4) by assuming arbitrary types R1 and
R2 such that R1 is included into R2, witnessed by z, and using the coercion
elimCast -z to produce a coercion s from T [R1/R] to T [R2/R].

Subtyping and subkinding relation In the judgment Γ ; s ` S 6 T ↪→ s′ for
subtyping, input s is a coercion — a base subtyping assumption – and output s′ is
a coercion from S to T derived from it. The invariant this judgment maintains is
that if |s| =βη λ x . x, then so too does |s′|. We do not walk through the entire set
of inference rules for the subtyping judgment, but discuss a few interesting cases.
The first rule is simply a statement of reflexivity for type inclusions (c.f. [31] for
a description of the convertibility relation between types). The last rule of the
figure is for type quantification. If K2 is a subkind of K1 with kind coercion S,
and if after extending the current context with a type variable Y :K2 we have
that replacing all occurrences of X in T2 withS · Y (of kind K1) is a subtype
of T [Y/X] with type coercion s, then ∀X :K1. T1 is a subtype of ∀X :K2. T2.
The coercion produced in the conclusion takes a term f of the subtype and type
argument X :K2, instantiates f with S ·X and coerces the result to type T2.

The subkinding judgment Γ ; s ` K1 6 K2 ↪→ S is simpler, appealing in
the case of term quantification back to the subtyping judgment. We have that,
with coercion s, type ∀X :K1. T1 is a subtype of ∀X :K2. T2 when the kind K2

is a subkind of K1, witnessed by the kind coercion S, and for arbitrary Y :K2,
[S · Y/X]T1 is a subtype of [Y/X]T2.

Soundness Our positivity checker is sound, meaning that term it produces when
checking type scheme F really does prove that F is monotone.

Theorem 3 (Soundness of positivity checker). For all Γ and F , if Γ `
F : ?→ ? ↪→ F ′ for some F ′ and Γ ` F +

↪→ m, then Γ ` m : Mono · F ↪→ m′ for
some m′.
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Γ ` t : T ↪→ t′ Γ ` T : K ↪→ T ′ Γ ` K ↪→ K′ ` Γ ↪→ Γ ′

Terms Types Kinds Contexts

Γ ` Ind[D,R, c :T → D] a Γ, IndEl[D,R, c :T → D,m,L,Θ, E ]

Datatype declarations

Γ ` F +
↪→ m Γ ` S 6 T ↪→ s Γ ` K1 6 K2 ↪→ S

Positivity checking Subtyping Subkinding

Fig. 10. Summary of elaboration judgments

Γ,R1 :?,R2 :?, z :Cast ·R1 ·R2 ; elimCast -z ` T [R1/R] 6 T [R2/R] ↪→ s

Γ ` λR :?. T
+
↪→ intrMono -(ΛR1 . ΛR2 . λ z . intrCast -s -(λ y . β{λ x . x}))

Fig. 11. Positivity checking

Γ ` T1
∼= T2

Γ ; s ` T1 6 T2 ↪→ λ x . x
Γ ` s : S → T ↪→
Γ ; s ` S 6 T ↪→ s

Γ ; s′ ` S2 6 S1 ↪→ s Γ, y :S2; s′ ` T1[(s y)/x] 6 T2[y/x] ↪→ t

Γ ; s′ ` Π x :S1. T1 6 Π x :S2. T2 ↪→ λ f . λ x . t[x/y] (f (s x))

Γ ; s′ ` S2 6 S1 ↪→ s Γ, y :S2; s′ ` T1[(s y)/x] 6 T2[y/x] ↪→ t

Γ ; s′ ` ∀ x :S1. T1 6 ∀ x :S2. T2 ↪→ λ f . Λ x . t[x/y] (f -(s x))

Γ ; s′ ` S1 6 S2 ↪→ s Γ, y :S1; s′ ` T1[y/x] 6 T2[(s y)/x] ↪→ t

Γ ; s′ ` ι x :S1. T1 6 ι x :S2. T2 ↪→ λ u. [s u.1, t[u.1/y] u.2]

Γ ; s′ ` K2 6 K1 ↪→ S Γ, Y : K2; s′ ` T1[(S · Y )/X] 6 T2[Y/X] ↪→ s

Γ ; s′ ` ∀X :K1. T1 6 ∀X :K2. T2 ↪→ λ f . ΛX . s[X/Y ] (f · (S ·X))

Fig. 12. Subtyping with type inclusion

Γ ; s ` ? 6 ? ↪→ λX . X

Γ ; s′ ` S2 6 S1 ↪→ s Γ, y : S2; s′ ` K1[(s y)/x] 6 K2[y/x] ↪→ S

Γ ; s′ ` Π x :S1.K1 6 Π x :S2.K2 ↪→ λP . λ x . S[x/y] · (P (s x))

Γ ; s ` K′
1 6 K1 ↪→ S1 Γ, Y : K′

1; s ` K2[(S1 · Y )/X] 6 K′
2[Y/X] ↪→ S2

Γ ; s ` Π X :K1.K2 6 Π X :K′
1.K

′
2 ↪→ λP . λX . S2[X/Y ] · (P · (S1 ·X))

Fig. 13. Subkinding with type inclusion
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Proof. Given in the proof appendix.

5.2 Datatype declarations

Figure 14 gives the judgment for elaborating inductive definitions with the judg-
ment Γ ` Ind[D,R, c : T → D] a IndEl[D,R, c : T → D,m,L,Θ, E ]. For read-
ability, it has been broken into several single-use judgments, which we refer to
by the labels given to the single rule associated to each. Observe that, within
the CDLE derivations of Figures 8 and 9, the signature F and monotonicity wit-
ness m were implicitly parameters. In our elaboration judgments, the elaborated
signature and witness are resp. given explicitly those type and term definitions.

Datatype signature Rules F, FI, and FIX elaborate the datatype signature and
the datatype itself. In F, the signature for a datatype D with single constructor
c : T → D is elaborated to its usual impredicative encoding λR.∀X : ?. (T ′ →
X)→ X (where T elaborates to T ′) — call this type scheme F . Rule FI further
refines F , elaborating its CDLE version that supports an induction principle
(non-recursive proof by cases) using dependent intersections (Figure 3). Read
the body of this scheme as: terms z which have type F ·R and are proofs that, for
all properties X over terms of type F ·R, if X holds for terms constructed with t
(the elaboration c), then X holds for z. Finally, rule FIX elaborates the datatype
itself using the generic datatype former µ (Figure 5) on the inductive signature
further equiped with support for course-of-values induction (CV, Figure 8).

Datatype constructor Rules cF, cFI, and cFIX elaborate the constructor for
the datatype. Following the same pattern as for the datatype itself, the first rule
cF elaborates the usual lambda encoding of the sole constructor of F , which is a
term t of type ∀R :?. T ′ → F ·R. This is further refined in cFI: t is combined with
a proof that t satisfies the induction principle given by the elaborated inductive
signature of FI. Notice that these two terms are indeed definitionally equal,
as required to introduce dependent intersections. Finally, cFIX elaborates the
datatype constructor by combining the constructor for the inductive signature
with the generic constructor inCV. It is here that positivity is checked for the
elaborated inductive signature, as this is required by inCV.

Predicate lifting The penultimate rule is Lift, bridging the gap between the
proof principle supported by the type scheme F2 generated by FI, which con-
cerns predicates over the type scheme F1 generated by F, and a true induc-
tion principle. More precisely, it defines a family, over types R for which the
CV-restriction holds for the datatype µ(CV · F2), of transformers of predicates
P : µ(CV · F2)→ ? to predicates of kind F1 ·R→ ? by requiring that the given
x : F1 ·R may be viewed at type F2 ·R and giving as codomain that P holds for
the value constructed from x using inCV after inserting type coercions.
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Γ,R :?,X :? ` T : ? ↪→ T ′

Γ ` Ind[D,R, c :T → D]
F
↪→ λR. ∀X :?. (T ′ → X)→ X

F

Γ ` Ind[D,R, c :T → D]
cF
↪→ ΛR. λ y . ΛX . λ x . x y

cF

Γ,R :?,X :? ` T : ? ↪→ T ′

Γ ` Ind[D,R, c :T → D]
F
↪→ F Γ ` Ind[D,R, c :T → D]

cF
↪→ t

Γ ` Ind[D,R, c :T → D]
FI
↪→ λR. ι z :F ·R. ∀X :F ·R→ ?. (Π y :T ′. X (t y))→ X z

FI

Γ ` Ind[D,R, c :T → D]
cF
↪→ t

Γ ` Ind[D,R,∆]
cFI
↪→ ΛR. λ y . [t ·R y,ΛX . λ x . x y]

cFI

Γ ` Ind[D,R, c :T → D]
FI
↪→ F

Γ ` Ind[D,R, c :T → D]
FIX
↪→ µ(CV · F )

FIX

Γ ` Ind[D,R, c :T → D]
FIX
↪→ µ(CV · F ) Γ ` F +

↪→ m Γ ` Ind[D,R, c :T → D]
cFI
↪→ t

Γ ` Ind[D,R, c :T → D]
cFIX
↪→ λ y . inCV -m (t y)

cFIX

Γ ` Ind[D,R, c :T → D]
F
↪→ F1 Γ ` Ind[D,R, c :T → D]

FIX
↪→ µ(CV · F2) Γ ` F2

+
↪→ m

Γ ` Ind[D,R, c :T → D]
Lift
↪→ λP :µ(CV · F2)→ ?. λR :?.

λ r :RCV · F2 · µ(CV · F2) ·R. λ x :F1 ·R. ∀ y :View · (F2 ·R) β{x}.
P (inCV -m (elimMono -m -(π1 r) (elimView β{x} -y)))

Lift

Γ ` Ind[D,R, c :T → D] wf Γ ` Ind[D,R, c :T → D]
FIX
↪→ µ(CV · F )

Γ ` Ind[D,R, c :T → D]
cFIX
↪→ t Γ ` F +

↪→ m Γ ` Ind[D,R, c :T → D]
Lift
↪→ L

Γ ` Ind[D,R, c :T → D] a Γ, IndEl[D,R, c :T → D,m,L,Θ, E ]

where Θ = (Is/D : ?→ ?, is/D : Is/D ·D, to/D = λ x . x : ∀R :?.∀ is : Is/D ·R.R→ D)

E =


D 7→ µ(CV · F ), c 7→ t, Is/D 7→ RCV · F · µ(CV · F ),

is/D 7→ (castRefl · µ(CV · F ), intrView outCVU -(outCV -m) -β)

to/D 7→ ΛR. Λ is. elimCast -(π1 is)


Fig. 14. Elaboration of datatype declarations
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Datatype globals for termination checking The final (unlabeled) rule of Figure 14
elaborates the datatype D and its constructor c, add them as identifiers to the
surface language typing context and storing their CDLE encodings in the map E .
In addition, it exports several other identifiers, given in Θ (with the elaborations
of these also given in E) to support course-of-values induction. These identifiers
are automatically generated based on the identifier D of the datatype, e.g.,
Is/Nat. In the surface language, the type family Is/D is a predicate specifying that
some type S may be treated as if it were really the datatype D for the purposes
of case analysis; internally, it is the restriction RCV · µ(CV · F ) (Figure 8). The
type inclusion that this restriction provides is accessed in the surface language by
to/D, which is convertible with λ x . x, and is/D is a proof that D itself satisfies
the predicate Is/D. The monotonicity witness m and predicate transformer L
are not exported to the surface language, but are required for elaboration.

Soundness Datatype elaboration is sound, meaning that the elaborated datatype
is well kinded (at ?), the elaborated term constructs are well typed for the types
of their elaborations, and the elaboration of to/D is definitionally equal to λ x . x.

Theorem 4 (Soundness of elaboration of declarations). For all contexts
Γ , unique identifiers D and c, type variables R fresh wrt Γ , and types T , if:

– Γ ` Ind[D,R, c :T → D] a Γ, IndEl[D,R, c :T → D,m,L,Θ, E];
– and ` Γ ↪→ Γ ′ for some Γ ′;
– and Γ,X :?,R :? ` T : ? ↪→ T ′ for some T ′ implies Γ ′,X :?,R :? ` T ′ : ?,

we have that:

– Γ ′ ` E(D) : ? and Γ ′ ` c : T ′[E(D)/R]→ E(D)
– Γ ′ ` E(Is/D) : ?→ ? and Γ ′ ` E(is/D) : E(Is/D) · E(D)
– Γ ′ ` E(to/D) : ∀R :?.∀ is :E(Is/D) ·R.R→ E(D) and |E(to/D)| =βη λ x . x

– Γ ` m : Mono · F2, where Γ ` Ind[D,R, c :T → D]
FI
↪→ F2

– Γ ` L : (µ(CV ·F2)→ ?)→ Π R :?.RCV ·F2 ·µ(CV ·F2)→ F1 ·R→ ?, where

F2 is as above and Γ ` Ind[D,R, c :T → D]
F
↪→ F1

5.3 Functions

We now explain the term constructs σ and µ for resp. case analysis and combined
case analysis and recursion, given in Figure 15. These are the key constructs for
supporting course-of-values induction in the surface language.

Case branches For readability, the two typing rules use an auxiliary judgment
Γ ` {c y → t1} : (P, is) ↪→ (t′1, is

′) for checking case branches, consisting of a
single rule Case. In Case, first is is checked to be a witness of type Is/D ·S for
some type S and datatype D. Type S takes the place of all occurrences of R in
the type of the constructor pattern variable y (these are the recursive occurrences
of D in the user given datatype declarations), so a coercion s from T [S/X] to
T [D/X] is generated using the subtyping judgment (Figure 12). Finally, the
branch body t1 is checked to be a proof of P (c (s y)), and the rule elaborates
the elaboration of t1 (with y lambda bound) and of the witness is.
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Γ ` {c y → t1} : (P, is) ↪→ (t′1, is
′)

IndEl[D,R, c :T → D,m,L,Θ, E ] ∈ Γ Γ ` is : Is/D · S ↪→ is ′

Γ ; to/D -is ` T [S/R] 6 T [D/R] ↪→ s Γ, y :T [S/R] ` t1 : P (c (s y)) ↪→ t′1

Γ ` {c y → t1} : (P, is) ↪→ λ y . t′1
Case

Γ ` t : T ↪→ t′

IndEl[D,R, c :T → D,m,L,Θ, E ] ∈ Γ Γ ` is : Is/D · S ↪→ is ′ Γ ` t1 : S ↪→ t′1

Γ ` S : ? ↪→ S′ Γ ` P : D → ? ↪→ P ′ Γ ` {c y → t2} : (P, is) ↪→ λ y . t′2 z /∈ FV (t′2)

Γ ` σ〈is〉 t1 @P { c y → t2} : P (to/D -is t1) ↪→ sigma -m -is ′ t′1 · P ′ λ x .
x.2 · (L · P ′ · S′ is ′) (λ y . Λ z . t′2) -(intrView β{x.1} -x -β)

IndEl[D,R, c :T → D,m,L,Θ, E ] ∈ Γ Γ ` P : D → ? ↪→ P ′ Γ ` t1 : D ↪→ t′1

Γ ′ =df Γ,Type/f :?, isType/f : Is/D · Type/f, f :Π x :Type/f. P (to/D -isType/f x)

Γ ′ ` {c y → t2} : (P, isType/f) ↪→ λ y . t′2 z /∈ FV (t′2) = ∅

Γ ` µ f . t1 @P { c y → t2} : P t1 ↪→ mu -m t′ · P ′ ΛType/f . Λ isType/f . λ f . λ x .
x.2 · (L · P ′ · Type/f (isType/f) λ y . Λ z . t′2) -(intrView β{x.1} -x -β)

Fig. 15. Elaboration of datatype destructor and recursor

Case analysis The term construct σ〈is〉 t1 @P { c y → t2} provides a mechanism
for case distinction that preserves the type of its scrutinee t1 for its predecessors
(by using the judgment for case branches), making it suitable for case analysis
on terms of both type D as well as abstract types introduced during recursion.
Since t1 might not be given at type D, the σ expression returns a proof that P
holds of t1 coerced to type D using to/D. Similar to checking case branches, its
typing rule begins by checking that the term is has type Is/D · S for some D
and S. It then checks that t1 has type S and that the case branch {c y → t2}
is well-typed for predicate P . The term elaborated in the rule’s conclusion uses
the CDLE expression sigma (Figure 9). In the body of the function argument
given to sigma, the proof principle associated to argument x for the elaborated
inductive signature is invoked with the lifting predicate transformer L on the
elaboration of P ′. The first term argument to x.2 is the elaborated case branch
extended with an erased assumption z introduced by lifting, and the second
(erased) argument is a proof that x.1 can be viewed as having the type of x.

Recursion The term construct µ f . t1 @P { c y → t2} defines an anonymous
recursive function (referred to by f in the case body t2) over some data t1
and returning a proof of P t1. Its typing rule checks that the type of t1 is
some datatype D, then checks that the case branch is well typed for P under
a context extended by: an automatically generated type variable Type/f (based
on the user-supplied identifier f), a proof isType/f that this type satisfies Is/D,
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and a handle f for invoking the inductive hypothesis on terms of type Type/f .
It is the introduction of the witness isType/f that enables further inspection of
predecessors at the abstract type Type/f , and thus course-of-values induction.
Similar to σ, the elaboration of the µ expression uses the CDLE expression mu
and the predicate transformer L for signature induction.

| σ〈is〉 t1 @P { c y → t2} | = σ |t1| { c y → |t2|}
| µ f . t1 @P { c y → t2} | = µ f . |t1 | { c y → |t2|}

σ (c |t1|) { c y → |t2|}  |t2[t1/y]|
µ f . (c |t1 |) { c y → |t2|}  |t2[t1/y][t/f ]|

where t =df λ x . µ f . x { c y → |t2|}

Fig. 16. Erasure and reduction rules µ and σ

Operational semantics As primitives of the surface language, µ and σ expressions
require erasure and reduction rules. These are given in Figure 16, and are based
on the erasures and convertibility behavior of the underlying CDLE expressions
mu and sigma (see Proposition 2). When applied to data formed from constructor
c and a case branch for that constructor, both µ and σ reduce to the branch body
with the (erasure of the) constructor argument t1 replacing all occurrences of
pattern variable y. In µ, the bound variable f is replaced by a lambda expression
whose body is the same µ expression but with the scrutinee c t1 replaced by the
bound variable x. We denote the convertibility relation for the surface language
as =βηµ, the reflexive transitive congruence closure of the usual βη-reduction
rules of lambda calculus augmented with the rules of Figure 16.

5.4 Properties of elaboration

Our elaboration rules are type preserving, meaning that elaborated surface lan-
guage expressions can be classified in CDLE by the elaborations of their surface
language classifiers, and value preserving, meaning that the elaborations of sur-
face language terms and of the terms they reduce to are definitionally equal.

Theorem 5 (Value preservation). If Γ ` t1 : T1 ↪→ t′1, Γ ` t2 : T2 ↪→ t′2,
and |t1| =βηµ |t2| then |t′1| =βη |t′2|

Theorem 6 (Type preservation). If ` Γ ↪→ Γ ′ then:

– If Γ ` K ↪→ K ′ then Γ ′ ` K ′
– If Γ ` T : K ↪→ T ′ then for some K ′, Γ ` K ↪→ K ′ and Γ ′ ` T ′ : K ′

– If Γ ` t : T ↪→ t′ then for some T ′, Γ ` T : ? ↪→ T ′ and Γ ′ ` t′ : T ′
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The datatype system also enjoys a limited termination guarantee for closed
data terms (a similar limitation holds for CDLE, see Section 3).

Theorem 7 (Normalization guarantee).
If Γ ` Ind[D,R, c : T → R] a Γ, IndEl[D,R, c : T → D,m,L,Θ, E] and

Γ, IndEl[D,R, c :T → D,m,L,Θ, E] ` t : D ↪→ t′ with |t| a closed term, then |t′|
is call-by-name normalizing.

6 Related work

TCBs in ITPs Many interactive theorem provers (ITPs) have large trusted
computing bases (TCBs). For example, Coq’s kernel is ∼30K OCaml LoC, and
some provers like Agda [29] (∼100K Haskell LoC) have no kernel. But, there is
much interest in verifying provers themselves [9, 17] and thus practical interest
in keeping their kernels small [4].

Dagand and McBride [7] share both this goal and general method. They de-
scribe the elaboration inductive definitions, pattern matching, and recursion to
a simpler core, Martin-Löf type theory extended with a universe of positive in-
ductive types. In comparison, CDLE has no inductive primitives and elaboration
produces monotonicity witnesses á la Matthes [24] for positivity checking.

Goguen et al. [16] show how dependent pattern matching [6] can be elabo-
rated to the dependent eliminators of datatypes. While course-of-values pattern
matching as discussed in this paper is in many respects less sophisticated than
dependent pattern matching, an interesting point of comparison is the treatment
of course-of-values induction. They implement it by providing as the inductive
hypothesis BelowD P x, a large tuple containing proofs that P holds for all
subdata of x. Functions analysing a static number of cases may easily make
use of this, but accessing a proof for dynamically computed subdata (e.g. the
result of minusCV in divide) requires an inductive proof of a lemma such as
BelowNat P (succ n)→ P (minus n m) (for any m), not required in our work.

Semantic termination checking Abel [1] showed how to extend type theory
with sized types, allowing datatypes to be annotated with size information and
the type system guaranteeing that recursive calls are made on arguments of
decreasing size. Sized types require defining alternative, size-indexed versions
of datatypes and extension of the underlying theory, whereas in Cedille every
datatype declaration is defined with the usual notation and automatically sup-
ports course-of-values induction. Furthermore, the Mendler style of coding re-
cursion, on which Cedille’s termination checking is based, can be expressed using
polymorphic typing alone, making it suitable for a paradigm of strong functional
programming [34] (c.f. [33] for a demonstration of this Cedille). On the other
hand, sized types allow for even more powerful forms of recursive definitions. In
particular, the usual implementation of merge sort is definable using sized types
but is not easily expressible as course-of-values recursion, as it involves recursion
on terms that are not predecessors of the original list.
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The Nax language, described by Ahn [3], also takes an approach to ter-
mination based on the Mendler style. In Nax, recursive functions are defined
in terms of Mendler style recursion schemes, including course-of-values recur-
sion, whereas in Cedille the µ-operator supports course-of-values induction. On
the other hand, Nax soundly permits datatype definitions with negative recur-
sive occurrences, possible because Nax restricts the usage of negative datatypes,
whereas we opt for the more traditional approach of restricting declarations to
positive datatypes.

7 Conclusion and future work

We have presented a datatype subsystem for Cedille with type-based termina-
tion checking for recursive functions that supports course-of-values induction,
an expressive proof scheme. This subsystem required no extension to Cedille’s
core theory CDLE, which we demonstrated by first deriving course-of-values in-
duction for lambda encoded datatypes in CDLE using the generic framework
of Firsov et al. [11], then giving a type- and value-preserving translation of the
surface language constructs to these encodings.

One immediate usability concern is the proliferation of explicit type coercions
in the case branches of µ- and σ-expressions. We already automatically infer
the necessary type coercions for constructor arguments in the expected type of
case branches using the subtyping judgment in Figure 12; this can be further
integrated into the type system so that type coercions in the bodies of case
branches need not be explicitly coerced by the programmer, either.

Another direction is extending our datatype subsystem to support zero-cost
reuse for programs and data, derived generically in CDLE by Diehl et al. [10].
For datatypes with multiple constructors, one modest step would be to extend
definitional equality in the surface language so that constructors of different
datatypes are considered equal when their elaborated lambda expressions are.
This would allow users to derive reuse manually for datatypes and functions.
More ambitiously, a higher level syntax (such as ornaments [25, 8]) would allow
programmers to define, e.g., length-indexed lists in terms of ordinary lists by
describing the function or relation on terms of the latter to the indices of the
former. Such definitions could then be elaborated using the generic zero-cost
reuse combinators of Diehl et al [10].
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