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0 Figures and Definitions

0.1 Syntax

The reader is refered to Stump [Stul8] for more information about the standard fragment of Cedille that does not include
datatypes. In Figures 1 and 2, the new language constructs introduced by the datatype system are .

a, U, T, 1Y, 2 term variables

XY Z R type variables

constructors
datatypes

Figure 1: Identifiers

p,q = x variables
Az.p functions
pp applications

c constructors

wu.p{ca;—=pticin ‘ recursive definitions

opica—piti=1n case analysis

a == |0laa

Figure 2: Untyped terms

0.2 CDLE judgments and meta-theory

Our notational convention is that judgments with a hooked arrow < are for the surface language Cedille (which contains
CDLE) as a sub-language, and judgments without are for pure CDLE contstructs (as listed in [Stul8]). The CDLE
judgemnts are

e '~ K meaning under typing context I' the kind K is well formed

e I' T : K meaning under typing context I' type 7" has kind K

e ' -t : T meaning under typing context I' term ¢ has type T

We list two of CDLE’s meta-theoretic results, logical consistency and call-by-name normalization of closed functions.
Proposition 1 ([Stul8]). Theret such that 9t :VX:% X — X.

Proposition 2 ([Stul8]). Suppose T't: T, t is closed, and there exists a closed t' that erases to Ax.x and whose type
is T — IIz:Ty. Ty for some Ty, To. Then |t| is call-by-name normalizing.

In Theorem 2, the condition on ¢ that it may be “re-typed” to a function excludes non-terminating terms introduced
by the Kleene trick, and the condition that ¢ be closed relates to the derivability of “zero-cost type coercions” in CDLE
(Cast, Figure 7), which can cause non-termination in inconsistent contexts [AC19].



Kinds K

Types S, T, P

Terms s,t

Argument Sequence 5
Variable Sequence a

Typing contexts I' ::=

IX:K K’
IHx:T. K

xz:5.T
Va:8.T
VX:K. T
Ax:S. T
AMX:K.T
Tt

T .S
va:T. T
{p1 ~ pa}

T
Ax.t

Az.t

AX.t

ts

t-s

t-T

I, ]

t.1

t.2

B

ptQzT —s
pt—t {ta}
0T —t

[c]

pz.s QP {¢; @ — titim1n ‘

0<81> 89 QP { ¢; @ = t;}iz1..m ‘

| - Ss|-s3
| - Xal|-aa

Q| @l

0]s
0] a

the kind of types that classify terms

product over types
product over terms

type variables

product over terms
implicit product over terms
implicit product over types
term-to-type function
type-to-type function
type-to-term application
type-to-type application
dependent intersection
equality of untyped terms

datatypes

variables

term abstraction

erased term abstraction

type abstraction

term application

erased term application

type application

intro dependent intersection
dep. intersection left projection
dep. intersection right projection
reflexivity of equality

rewrite by equality

cast by equality

anything by absurd equality
data constructors

recursive def. over datatype

case analysis over datatype

for constructor patterns and applications

Figure 3: Syntax for Cedille kinds, types, terms

Figure 4: Contexts

0|T,2:T|T,X:K | T,IndEl[D, R, A, m,L,0,¢]



0.3 Erasure

]
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Figure 5: Erasure for annotated terms



0.4 Vector notation

Notation #3 denotes the number of terms in the sequence s, and similarly for #p for untyped terms and #a for variables.
Variable sequences are assumed to contain no repeating variables.

Notation {c¢; @ — p;}i=1...n denotes a case tree with n branches, headed by n distinct constructors (¢;)i=1..n, and n
variable sequences (@;)i=1...n-

Notation [s/a] denotes the point-wise simultaneous and capture avoiding substitution of each expression in 3 with each
variable in @. These will always be checked to have the correct length and, in typed settings, that s can be classified by
the telescope given by a.

0.5 Other notation

We write FV(t) (resp. FV(T)) to denote the set of free variables of term ¢ (resp. type T'). We write DV (T') to denote the
set of declared variables contained in context I" (this applies also to constructor contexts, where FV(A) indicates the set
of constructor identifiers).

0.6 Operational Semantics

The operational semantics for Cedille is defined on untyped terms extracted from erasure. We add to fBn-conversion
reduction rules for 4 and o and an axiom that identifiers of the form to/D are convertible with Az.z. (Identifiers with
/ are not legal for names for user defined terms, only for automatically generated names). For this proof appendix!,
constructors are convertible precisely when they have the same identifier.

1<j<n #p=#a; 1<j<n #p=%#a; q= zv.pih. z{c @G — ¢i}ti=1.m
o (¢; D) {ci @ — titi=1.n ~ [p/ajlt; wy. (¢; ) { ¢ @ = qiti=1.n ~ [p/as]la/Ylq;
to/D=MAz.x

Figure 6: Conversion rules for u, o, and identifiers of the form to/D

The convertibility relation =gy, is the reflexive transitive congruence closure of 3n-reduction additionally equipped
with the reduction rules of Figure 6. Constructors are convertible when they are identical. The convertibility relation for
terms is lifted to types similarly to Stump [Stul8], with datatype identifiers also convertible when they are identical.

1Cedille actually does something different, but that’s for a separate paper on zero-cost reuse between datatypes in the surface language,
c.f. [DFS18].



0.7 CDLE derivations

For simplicity, we treat all CDLE typing constructs presented axiomatically as globally available, i.e., they do not need to
appear in the local typing context to be used. All such types and terms are closed and could be replaced in proofs with
their direct definitions.

'FS:x T'HT:%x I't¢t:Cast-S-T
I'Cast-S-T:% I'elimCast-t: S — T

F'Ft:S—=T Trty:Hz:SA{f x~a}
T'FintrCast -t; -t9 : Cast- S - T

I'S:«% I'tt1:Cast-S-T T'hty:Cast-T-U
'k castRefl - S : Cast- S-S '+ castTrans -t; -to : Cast- S - U

THEF:%x— % 't :Mono-F T'hty:Cast-S-T
I'FMono- F:x I'+elimMono -t -to : F- S — F-T

FFt:VX:xVY:xCast- X Y = Cast- (F-X) - (F-Y)
I' - intrMono -t : Mono - F

lelimCast -t| = Az.x, lelimMono -t -t2] = Az.z

Figure 7: Axiomatic presentation of inclusions and positivity

Proposition 3 (Firsov et al. [FBS18]). For F : x — x and m : Mono - F':
e For all term ty and to, |ind ty (in t2)| =gy |t1 (ind t1) o
e For all terms t, |out (in t)| =g, |t|.
o Ift is a term of type uF then {in -m (out -m t) ~t} is provable.

For our termination guarantee of elaborations of datatype expressions, we must record an additional fact: the impred-
icative encoding of datatypes can be included into a function type.

Lemma 1. For all closed definitions of F' : x — x and m : Mono-F, there exists some closed termt’ of type pF — I z:T1. T
for some Ty and Ty such that |t'| =g, Az.x

Proof. Consulting Firsov et al. [FBS18], one sees that pF is formed of a dependent intersection type whose first component
is
VXx(VR:x)(R—-X)—-F -R—>X
It is then clear that Az.z.1- (V X :%. X — X) has a type of the desired form and erases to Az.z. O

Theorem 1 (Characterization). For all F': x — x and m : Mono - F':
o for all terms t1 and ta, |indCV t; (inCV ta)| =g, |t1 outCV (indCV ty) tol;
e for all terms t, outCV (inCV t)| =g, |t|
o for all terms t of type p(CV- F), {inCV -m (outCV -mt) ~ t} is provable.

Proof. Given by resp. indCVHom, lambekCV1, and lambekCV2. O



module util.Cast .
CastCod : IT A: %. IT B: x. A — x = A A: . A B: x. Aa: A. ¥ b: B. { b~a} .

Cast : IT A: x. IT B: x. x = X A: x. A B: x. Il a: A. CastCod ‘A -B a .

intrCast : V A: x. V B: x. V £: A — B. (Il x: A. {f x ~ x}) = Cast -A B
=AA AB. Af. Aeq. X a. (p (eqa) - (f a) {lal}, B

elimCast : V A: . V B: x. Cast ‘A B = A — B =
AA.AB. Ac. Ma. p (m (c @) - (m (ca)) {lal}.

_: { elimCast ¥~ A x. x } = (.
castRefl : V A: x. Cast ‘A ‘A = A A. intrCast -(\ x. x) -(\ x. )

castTrans : V A: x. V B: x. V C: %. Cast ‘A -B = Cast -B -C = Cast ‘A -C
=AA. AB. AC. A cl. A c2. intrCast -(\ x. elimCast -c2 (elimCast -cl x)) -\ x. B .

Mono : () — %) = %= AF: * = x. VX: x. VY: %. Cast -X -Y = Cast -(F -X) -(F -Y).

intrMono : V F: x — %. (V X: x. V Y: x. Cast ‘X ‘Y = Cast -(F -X) -(F -Y)) = Mono -F
=AF. Af. AX. AY. A c. intrCast -(elimCast -(f -c)) -\ x. (8 .

elimMono : V F: x — . Mono 'F = V X: x. VY: . Cast X .Y = F X - F ‘Y
= AF. Amono. A X. A Y. A c. elimCast -(mono -c)

_: { elimMono ~ A x. x } = (.

Figure 8: CDLE derivation of inclusions and positivity

TFEF:x— % 'ty :Mono-F Tty F-uF T'Fti:Mono- F T Fiy:puF
F'FuF % I'Fin -ty ty: uF IF'Fout-ty ty: F - uF

PrfAlg : IT F:% — . Mono - F' — (uF — %) — *
PrfAlg- Ft-P= VR:xVc¢:Cast-R-pF. (I z:R. P (elimCast -c x))
— ITzs:F - R. P (in -t (elimMono -t -c zs))

I'Ft;:Mono-F T'kFty:PrfAlg-F t1-P
'kFind -ty to: Hz:uF.Px

Clout (in6) =sy [
lind t1 (in t2)] =g, [|t1 (ind t1) tof

Figure 9: Interface for encodings of inductive types provided by [FBS18]



I'FH: x—% T'HFF:%x—%x I'S:« I'ks:H-S T'Ht:F-S
I'FRExt-H: -F:x I'Fpack-S-st:RExt-H-F

'P:RExt-H-F —% ThHt:VX:%xVz:H -X. Il y:F-X. P (pack- X -z y)
I'tunpack-Pt: Il z:RExt-H-F.P z

|pack- S -st| = (Az. Af.fx)|t], |unpack-Pt| = (Af.Az.z f) |t

Figure 10: Axiomatic presentation of implicily restricted existential types

module util.RExt .

RExtC : (x — %) — (x — %) — %
= ANH: * > %x. AF: x — *.
VX . (WVR: x. HR=F R = X) — X .

packC : VH: x =+ x. VF: x - x. VR: x. H R = F -R — RExtC ‘H ‘F

=AH. AF. AR. Ar. Axs. AX. X f. f -r xs .

unpackC : V H: * = x. VF: x = x. VX: x. (VR: . H R=F R — X) — RExtC ‘H F = X
=AH AF. AX. Xf. A x. xf

RExtI : II H: * — . II F: x — *. RExtC ‘H -F — %
= XNH: *x =5 %. MF: ¥ - %. A x: RExtC ‘-H ‘F.
V P: RExtC ‘H -F — *.
(WR: . Vr: H-R. Il xs: F -R. P (packC -r xs)) — P x .

RExt : (x = %) — (x — %) — *
= ANH: « > . MNF: x — %x. ¢ x: RExtC ‘H ‘F. RExtI ‘H -:F x .

pack : VH: x - . VF: x - x. VR: x. H R = F ‘R — RExt ‘H ‘F
=AH AF. AR. Ar. A xs. [ packC -r xs , AP. A f. f -r xs ]

_:{pack ¥ A xs. A f. fxs}=p.

unpack : V H: * — x. V F: « — x. V P: RExt ‘H -F — =*.
(WR: . Vr: H-R. Il xs: F -R. P (pack -r xs)) — II x: RExt ‘-H -F. P x
Af.

x.2 -(\ x: RExtC ‘H -‘F. V
(AR. Ar. Axs. Ay

-X _/67 )

RExt ‘-H F. Veq: y~x .P (peq-y Ix]))

= AH. AF. AP. f. A x.
y:
. Aeq. f-r xs)

_:{unpack ~ A f. A x. xf }=7.

Figure 11: CDLE derivation of implicitly restricted existential types



module util.view.

Top : * = A x. x

I'ES:x I'kHt:Top

Top={Az.x ~ Az.x} ' View- St
FHt:Top ThHt:S Thity:{t; ~t} FHt;:Top T'kHty:View- Sty
I'FintrView t -t1 -to : View- S ¢t I' FelimView t; -t5 : S
lintrView ¢ -t; -to| = (Az.x) |¢], lelimView ¢ -ta] = (Az.z) |t]

Figure 12: Axiomatic presentation of singleton types

~ )\ X. X

View : IT A: x. Top = x = X A: x. A x: Top. ¢ a: A. { a~zx} .

intrView : Il x: Top. V A: %x. V a: A. { a ~ x } = View ‘A x
=Ax. AA. Aa. Aeq. [ peq-a{lxl}, B{lxl}]

_: { intrView ~ A x. x } = § .

elimView : Il x: Top. V A: %. View ‘A x = A
=Ax. AA. Av. pv.2 -v.1 {Ixl}.

_: { elimView ¥ A x. x } = (.

Figure 13: CDLE derivation of singleton types



import util.Cast .
import util.View .

module cv.CVF (F: * — %) {mono: Mono ‘F} .
import encoding.FixIndM . {- Comment: [FSB18] -}

import util.RExt .
import util.Sigma .
import util.Top .

outCVU : Top = B{| A x. unpack (A xs. xs) (out x) |} .

RCV : % — x — %
=X X: x. MR: . (Cast R -X) X View -(R — F -R) outCVU .

CV :  — x = X\ X: . RExt -(RCV ‘X) ‘F .

mCV : Mono -CV = intrMono -(A X. A Y. A c.
intrCast -(unpack A R. A r. X xs.
pack -((castTrans -(m; r) -c), mo r) xs)
-(unpack A R. A r. XA xs. 8))

outCV : p CV — F -(u CV) = X x.
unpack (A R. A r. XA xs. elimMono -m -(m; r) xs) (out -mCV x)

inCV : F -(u CV) — p CV = X xs. in -mCV
(pack -(castRefl, intrView outCVU -outCV -f3) xs)

PrfAlgCV : (u CV — %) — x = A P: pu CV — .
V R: x. V c: Cast R -(u CV). View -(R — F -R) outCVU —
(IT x: R. P (elimCast -c x)) —
II xs: F -R. P (inCV (elimMono -m -c xs))

indCV : V P: pu CV — *. PrfAlgCV P — II x: u CV. P x = A P. X alg.
ind -mCV A R. A ¢c. A ih. unpack A S. A r. X xs.
alg -S -(castTrans -(m r) -c)
(intrView outCVU -(elimView outCVU -(my r)) -f3)
(A x. ih (elimCast -(projl r) x)) xs .

lambekCV1l : V x: F -(u CV). { outCV (inCV x) =~
lambekCV2 : V x: g CV. { inCV (outCV x) ~ x }
[pf : { inCV (outCV x) ~ x }
= indCV -(\ y: p CV. { inCV (outCV y) ~ y })
(AR. Ac. Xo. XA ih. X xs. ) x]
-ppft -0 .

indCVHom : V P: pu CV — . V alg: PrfAlgCV -P. V xs: F -(u CV).
{ indCV alg (inCV xs) =~ alg outCV (indCV alg) xs }
= AP. Aalg. A xs. .

Figure 14: Generic encoding of course-of-values datatypes in CDLE
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import util.Cast .
import util.View .
import util.Sigma .
import util.RExt .

module cv.MuSigma (F: x* — %) m: Mono ‘F .

import cv.CVF :F -m .
import encoding.FixIndM -CVF -monoCVF .
{- Comment: [FSB18] -}

Case : (u CV — %) — Il R: . RCV -(u CV) R — %
= AXP: pCV —= %. XR: x. A is: RCV -(u CV) -R.
II xs: F -R. P (inCV (elimMono -m -(m; is) xs))

sigma : V P: u CV — x. V R: %. V is: RCV -(u CV) -R.

II x: R. Case ‘P ‘R is — P (elimCast -(m is) x)

AP. AR. Ais. XA x. X f.

p ¢ (lambekCV2 -(elimCast -(m; is) x)) - f (elimView outCVU -(n? is) x)

_ :VP: uCV— %. VR: x. V is: RCV -(u CV) -R.
V f: Case ‘P ‘R is. V xs: F ‘R. { sigma (inCV xs) f ~ f xs }
AP. AR. Ais. A f. A xs. 8 .

AlgMu : (u CV — %) — *x = A P: 4 CV — %. V¥ R: %. V is: RCV -(u CV) -R.
(IT x: R. P (elimCast -(m; is) x)) — Case ‘P ‘R is .

mu : V P: puCV — %. Il x: pu CV. AlgMu P — P x
=AP. Ax. A\ f. ind P
(AR. Ac. X ih.
unpack -(RCV -R) -F -(\ x: CVF -R. P (in (elimMono -monoCVF -c x)))
AS. Ar. X xs.
f S
-(pair (castTrans -(m r) -c) (m 1))
(XA x. ih (elimCast -(m; r) X)) x8) X .

muComp : V t1: Top. V t2: Top. { mu (inCV t1) t2 ~ t2 (A x. mu x t2) t1 }
=Atl. At2. 8.

sigComp : V tl: Top. V t2: Top. { sigma (inCV t1) t2 ~ t2 t1 }
= A t1. A t2. 8.

sigExt : V x: IndCV. { sigma x inCV ~ x } = A x. p (lambekCV2 -x) - (3 .

Figure 15: CDLE derivation of sigma and mu
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Theorem 2 (Characteriation (mu, sigma)).
e For all terms t1 and ta, |mu (inCV t1) ta| =g, [t2 (Az. mu x t3) t1|, where x ¢ FV (t2)
e For all terms t1 and ta, |sigma (inCV t1) ta| =g, |t2 t1]
e For all terms t of type nCV, {sigma t inCV ~ t} is provable.

Proof. These proofs are listed in Figure 15 as muComp, sigComp, and sigExt. Notice that the computation rules hold for
all Top-typed terms O

12



0.8 Elaboration Rules

Notation 1. Let @ be a variable sequence, 3 be an expression sequence, and A be a classifier sequence (i.e., types and
kinds).

o We write a: A to denote a telescope.
For example if @ = x1, -2, -X and A =T,,Ts, K then

a:A=x;:T1,-29: T, - X: K

o We write g a:A. for erasure-respecting quantification in types.

Let @ and A be as above, then

\177 a:A.D=0Hx;:T1.Vao:To.VX:K.D

o We write ;\1 a:A. to indicate erasure-respecting term level abstraction.

Let @ and A be as above, then
Na:At=Nz Ty Azg:To. AX:K.t

o We write t 5 to represent erasure- and level- respecting application of t to's

Let 5 be as a above, then
ts=txy -r9 - X

Definition 1 (Datatype declaration). A datatype declaration is a triple, written Ind[D, R, A], where:
e D (the datatype name) is a unique identifier supplied by the user;
e R is a freshly generated type variable; and
o A is a context associating the #A unique constructor identifiers (¢;)i=1..xa to their type signatures

— if ¢ € DV (A) is a constructor declared in A, we require that the type associated to ¢ in A, A(c), is of the form
Ta A D

— every occurrence of D in the user-supplied constructor argument types a: A[D/R] is in A replaced by the fresh
variable R.

We write Ind[D, R, A] wf if this declaration satisfies the above criteria.
Example 1. Natural numbers are declared in Cedille as
data Nat : x = zero : Nat | succ : Nat — Nat .
would be represented by

zero : Nat

Ind[Nat’ R, suc : R — Nat ]

Restricted existentials for specific H and F' can be declared in Cedille as
data RExt : x = pack : V X: x. H X = F X — RExt .

and would be represented by
Ind[REzt, R, pack : VX:x.H-X=F-X — REzt |

The elaboration IndEl[D, R, A, m, L, ©, £] of a delcaration Ind[D, R, A] carries the same information, as well as
e a monotonicity witness m that the elaborated signature of datatype D is positive
e a predicate transformer L used for deriving the induction principle for the particular datatype D

e additional global declarations given in © for termination checking

13



e a map & associating all exported definitions to their elaborations in CDLE

We require that the type of the constructor argument is well-kinded and that R occurs only positively within it. We
describe the algorithm for checking these requirements by a collection of judgments whose inference rules are mutually
inductively defined.

We remark that some inference rules have premises in the form (T g a;:A;. T @ % = _)=1.4a, accompanied by a
premise (¢; : \117 a;:A;. D € A)j=1._un; the first indicates a family of derivations of the parenthesized judgment indexed by
the 7th constructor of A and its constructor argument telescope a;:A;, and the second names these telescopes explicitly,
and also carries with it the assumption that FV(A) = {¢; | i = 1...A}. A premise of the form ¢;:{/ a;:4;.D € A
indicates not only that the constructor ¢; is declared in A with the given classifier, but that it is the jth constructor, i.e.,
1 < j < #A. [Iialics indicates meta-variables, teletype font indicates code literals (except in meta-variables denoting
generated names like Is/D), and normal text superscript qonotes labels for meta-variables.

We use the following naming convention for expressions elaborated from datatypes and their constructors: DY for the
usual impredicative encoding of a signature functor of D; DT for the intersected version supporting functor induction;
and DF™X for the least fixpoint of the inductive functor.

(a) |IT + K — K’ |Kind elaboration

'Ky —> K, ZWX:Kh1FKy— Ky, THEFT: Ko =T T,2:TFK; — K|
I'x—x FrFIX:K.Ky—IIX:K|. K} '+z:T Ky — Dz:T.K]

(b)|T =T : K — T’ | Type Elaboration (congruence rules)

FV(p1 p2) Cdom(T') Thkp —p) TFpy=p) PETix =T Tya:TibETy:%x—= Ty

T {p1 =p2}: %= {p] =ph} Py Ty %= vx:T). Ty
PETy % —=T) T,x: Ty FTy:+T} PET ix =T Tya:TibETh:%x—=Th
PEVe:Ty. Ty :x = Va:T].Th PH-Hae:T.Ty:*x— Hx:T]. T3
I'" KK DI X:KFT:x=T r-S:Ky—S T,z:S+T: Ky =T
Fr-vVX:K.T:x—=VX:K'.T' FEXz:S.T:MMz:S. Ky — Ax:S".T'
'Ky — K, T)X:K)h+T:Ky =T PFT:HX: Ky Ky =T THETy: Ky —=T)

TEAX K. T: XK. Ky 5 AX:K|. T’ T T : T2/ XKy s T} - T3

I'FT:z:SK—=T TFt:S—¢
TFT¢:[tjaK =T t TFX:T(X) = X

Figure 16: Type and kind elaboration
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(a) Elaboration of contexts

i M O

F'FT:%x—T

FO—0

FI—-I" T K< K’

FT 2T — TV, z: T

FT — IV

FI,X:K > T, XK'

(b)|T; (@A) F5:(a:B) =

Dz:Sts: T s

- T,IndEl[D, R, A,m,L,0,&] — I"

Elaboration of type-coerced constructor argument telescope

[,2:8; (a:A)F5:([s/x]a:B) — &'

oo g—=9

Mz:Sks: TS

D,2:5; (a:A)F3:

[;(z:5,a:A)Fs,5:(2:T,a:B) — s,

([s/x]a:B) < s

I';(-2:8,a:A)F-5,5: (-z:T,a:B) — -s', s

F,X:K1|—SZK2‘—>S/

[X:Kp; (a:A)F35:([S/X]a:B) — s

[; ((X:Ky,a:A)F-S,35: (-X:Ky,a:B) — -5, s

Figure 17: Context and telescope elaboration

Fka:T'(zx) >z

F'ES:x—=S z¢FV(t]) T,2:Skt:T <
Azt :Vz:8.T— Az.t/

PHt:Hz:8T—=t T'ks:S—s
F'kts:[s/z]T —t s

FFt:V2: STt Ths:S—¢
Tkt-s:[s/z]T <t -5

~

'kt ZTlHtll 'ty [tl/(E]TQ%té
'k [tl,tg] vx: T Ty — [tll,té]

th =t

I'Ht:ivx:Ty.Ts
THt1: Ty =1

'ES:x—98 T,z:Stt: Tt
Xz t:Hz:S.T—= Nzt

TFK K X¢FV(t) T,X:Kkt:T <t
THFAX t:VX:K.T— AX.t

THt:VX: KTt THS: K S
THt-S:[S/X]T—t-5

'Ft:S—=t S=T TFT:x—=T
THt: Tt

Pt T Ty — t
THt2:[t1/z]Th — t'.2

TEs:{|t1] = |ta|} = & T'kt:[t/z)Ty =t
T, =715 Fl—[tg/x]TQ*‘—}[é/l‘]Té

IE Bt} : {ti =~ t1} — Blpy){ph}

Ths:{{ti~|tal} =8 TFt T, Thtyest

Pkps@QuaTy-t:[to/x]Te —ps QaTy-t

FHt:{ Az y.z~ Az Ay.a} >t THT:x—T

Theps—t {ta}: T = s —t) {th}

FrEST—t:T—=6T -t

Figure 18: Term elaboration (congruence rules)
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reDV(z) Te:{dz.x~Az.atbFp—p Thkp—=p, TFp—ph
Ncz—=x PEAz.p—=Az.p T p1 p2 = Py po

Figure 19: [T F p < p’ | Post-erasure term elaboration (congruence rules)

(ci:llaitA;.De Ay pn O, Rix, Xeixbai 4, X ix T a;: AL X )iz 4a

I+ Ind[D, R, A] 5 AR X v, (I -7 @ AL X )iy wn. X

leg aj:Aj.DGA

cF
T+ (Ind[D, R, AL j) S ARAG. AX Ntiey.pn.v; @
I+ Ind[D, R, A] < DF (CF (Ind[D, R, Al,i) S5 F)i1 s

(Ciig a;:A;. D € A)i:l..#A (F,RI*,XI*FQ ai:Ai.X:*%g ai:A;.X)Z-:L_#A

I'FInd[D, R, A ‘F—I> AR.vx:D¥ RV X:D¥ - R— x. (Il z;:{l a;: AL. X (cF @7))iz1.60. X

I'F (Ind[D, R, Al, j) & cf ¢;:llaj:A;.D e A

cFI
Tk (nd[D, R, AL j) & ARA @ [F - Raj, A X Awieypa.7; @)
FI
I+ Ind[D, R, A] &5 DF!

— FIX

['+Ind[D, R,A] < pu(CV- DFT)

FIX FI 7

I'FInd[D,R,A] <= u(CV-D*Y) ¢y a;:A;.D e A
Tk (Ind[D, R, A],j) & ¢F! I+ D
CFIX
cFIX 2

I+ (Ind[D, R,Al,j) < % @. inCV -m (cf! @;)

J

'+ Ind[D, R,A] < DF T+ Ind[D,R,A] > u(cv-DFY) T+ DFI &,

Lift LIFT
[+ Ind[D, R,A] < AP:pu(CV-D¥Y) — % A R:x.
A7:RCV- D¥L. p(cv- D¥Y - R A z: DY - R.Vy:View- (D' R) g{x}.
P (inCV -m (elimMono -m -(m; r) (elimView S{z} -y)))

[+ Ind[D,R,A] wf T+ Ind[D,R,A] > u(cv- DY)

(- (Ind[D, R, A],7) ‘5 eFX)._ 4o T+ DS m TFInd[D, R, A] <5 L

I'F Ind[D, R, A] 4T, IndEI[D, R, A,m, L, O, €]

@
I

Is/D:% — x,is/D:1s/D - D, to/D = Az.2:VR:x.Vis:Is/D-R.R — D

D~ p(CV-D¥Y (¢ XY,y 4a  Is/D s RCV-DYL. y(CV - DY),
E = is/D ~ (castRefl - yu(CV - D), intrView outCVU -(outCV -m) -3)
to/D — AR.Ax.elimCast -(m )

where

Figure 20: Elaboration of datatype declarations
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D,R;:%,Ry:%,2:Cast - Ry - Ry ; elimCast -z T[Ry/R] < T[R2/R] < s

I'F AR:% T < intrMono (AR;.ARy.\z. intrCast -s -(Ay. f{\z.z}))

Figure 21: Positivity checking

T =1, F'Fs:S—>T<—_
TistET1 <Ty — Az.x IisEFS<T < s

I8’ Sy <81 —s Ty:Se;s' FT(s y)/x] < Taly/z] — ¢
Iys' a5 Ty < Ha:S2. T = Af.dx. t[x/y] (f (s 2))

I8 FSy<S) = s T,y:Sy8 FTi(sy)/x] < Tely/x] <t
Iy EVa:S1. Ty SVz:Se.To = Af. Az t[z/y] (f -(s z))

;8BS <S5y —=s T,y:S1;8 FTfy/x] < Tol(s y)/x] — t
Iy’ boa:S1. Ty <ea:Se. Ty = Au.[s w1, tlu.l/y] u.2]

i PRy <Ky — S T,Y: Koy FTY[(SY)/X]| < T[Y/X] — s
e EVX KT SVX K. To =5 Af.AX S[X/Y] (f - (S- X))

Figure 22: Subtyping with type inclusion

Is'E Sy <81 —=s T y:Sy8'FKi[(sy)/z] < Kaly/z] — S
Iy b Ha:S. Ky <Hxz:55. Ky = AP. Az.S[z/y]- (P (s x))

Tishx < x5 AX. X
DiskK| < Ky 8 Y :K|iskK[(S-Y)/X] < Kj[Y/X] < S,
TiskIIX:K. Ko< I X:K|. Ky, AP.XX.5[X/Y]-(P-(S X))

Figure 23: Subkinding with type inclusion

I FAS A —s Ty:A;8'Fafy/z]A) < a:[(sy)/z]As — 5

;b (z:4,a: A1) < (2:A,a:Az) = (s z),[z/y]s

' 00

I FEKKK <S5 TYV:K;ska:[Y/X]A; < a:[(S-Y)/X]Ay =5

' B (X:K,a: A1) < (X:K',z:43) — (5 X),[X/Y]s

Figure 24: Telescope coercion
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IndEl[D, R,A,m,L,0,E] €T Ttis:Is/D-S < is
(ci:llaitA;.D e A)my pn
(I'; to/D -is = ([S/R]a;: A;) < ([D/R]ai: A;) < 5)i=1..4A
(CrFA@.ti I [S/Rla;i: Ai. P (ci 31) <= 4 @i-t))iz1. A
DH{ci@ — titictpn: (Pis) = (3@ t)iz1..2a

CASE

IdEI[D, R,A,m,L,0,6] eT THP:D %< P Thkt:Dest
IV =q¢ T, Type/ih : x,isType/ih : Is/D - Type/ih,ih : IT y:Type/ih. P (to/D -isType/ih y)
I {c; @ — titizc1. #a : (PisType/ih) — (@G- ti)ic1..2a (2 € FV(t))iz1. 2a
I'Fpih.t QP { ¢; @ — ti}iz=1.4a Pt —
mu -m t' - P’ AType/ih. A isType/ih. \ih. A .
2.2 (L- P'-Type/ih isType/ih) () @i. A z.t})i—1. ga -(intrView B{z.1} -z -B)

IdE[D, R,A,m,L,0,€] €T T is:Is/D-T < is’
'kt:T—t TFT:x—=T TFP:D-—x< P
DE{ei @ = titiziga s (Pris) = Q@G- t)izi.pa (2 ¢ FV(t))i=1..4
o<is>t QP { ¢; @ — ti}i=1.4 : P (to/D -is t) — sigma -m -is’ t' - P’
Az, 2.2 (L-P T is') (3 @. Az th)iz1. 4n -(intrView B{z.1} -z -B)

IndEl[D, R,A,m,L,0,] € T IndEI[D, R, A,m,L,0,] €T ¢;:0a;:4,.D e A

TFD:x=€D) D Tte 0 [D/Rla:4,.D— E(c;)

IndEI[D, R,A,m,L,0,] €T IndEI[D, R,A,m,L,0,] €T

TF1s/D:D = »— &(1s/D) TFis/D:1s/D-D < E(is/D)

IndElD, R, A,m,L,0,&] € T
TFto/D:VRx1Is/D- R RoD °

Figure 25: Elaboration of terms
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IndEI[D,R,A;m,L,0,E] e’ DV(A)={¢|i=1...n} Trkp—=p Trqg<=dq)i=1n
TFpih.p{ca;— qlizin = mu|l p’ Nih.Az.x (NG ¢))iz1..n)

IndEI[D,R,A,m,L,0,E] €T DV(A)={¢ |i=1...n} Tkp—=p [TFqg<—=4q¢)iz1n
I'op{ci @ — ¢tiz=1.n = |sigmal p’ (Az.2 (A\G. ¢})i=1..n)

IndEI[D,R,A,m,L,0,E] e T IndEl[D,R,A,m,L,0,E] €T ce DV(A)
I'+is/D — |E(is/D)| I'kc—|&(0)]

IndEl[D, R,A,m,L,0,&] €T
'k to/D < |E(to/D)|

Figure 26: |T' I p < p’ | Elaboration of untyped (post-erasure) expressions

Lemma 2. IfTHt <t then T F |t| — |t/]

Proof. By a straightforward induction on the assumed derivation. O
Lemma 3.

o IfTHt:T <=t andTHt:T < t, then t; = ta (denoting syntactic equality)

o IfTFT:K T/ andT - T : K < T} then T| =T}

o IfTHFK — K| andT'+ K — K then K| = K

Proof. By a straightforward mutual induction on the assumed typing derivation. There is no overlap between inference
rules. O
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1 Datatype Declarations

1.1 Positivity Checker

Theorem 3 (Soundness of positivity checker).
1. IfTs5sEFSST — s then ks :S—=T— _and|s'| =p, \z.x
2. If IsF Ky < Kg— Sthen T'ES: Ky — Ky —

3. IfFI—F‘i>mth€n 'Fm: Mono- F — _

4.2 If T8 Fa:A<a:A 5 thenT;(a:A)F5: (a:A’) — _ and |3 = [a]

Proof. By a straightforward mutual induction on the assumed derivation. A few example cases are given

Part 1. Case
F}_TlgTQ F}_Tli*‘—>, FFTQZ*%,

IisET <Ty — Az.x

Appeal to convertibility and function rules of Figure 18

Part 1. Case
Fks:S—=>T<_ |s|Z¥Az.x

IisEFSKT — s

From the premises

Part 1. Case
D;8'F Sy < S —=s Ty:Se s F((sy)/z]Th < [y/z|Ta — ¢t

Dys' a5 Ty < Ha:S2. Ty = Af.dz. [z/ylt (f (s 2))

By the IH, s has type S2 — S7 and reducible with A z.x

By the TH, (under context extended by y:S2), t has type [(s y)/z]Th — [y/x]T> and reducible with A z.x

Assume f has type I z:51.T) and x type Sa

f (s x) has type [(s z)/x]Ty and reducible with f x

[z/y]t of this has type T, reducible to the same

e 7-contract and conclude

Part 1. Case
I8 FSy<S—=s T,y:Sy58F[(sy)/z)Th < [y/z]Ta <=t

Iy EV2:S1. Ty SVz:Se.To > Af. Az [z/y]t (f -(s z))

Similar to above

2¢.f. Figure 17b
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Part 1. Case
i PRy <Ky — S TY: Koy HI(S Y)/X|Th L [Y/X]|Tz — s

Dy EVX KTy SVX: K. To 5 AN AX [ X/Y]s (f-(S- X))

By mutual induction on 2., S has kind Ky — K3

By IH, s (under context extended by Y of kind K3) has type [S - Y/X|T1 — [Y/X]T5, and convertible with A z. x

Assume f:VX:K;.Ty, X : Ko

f-(S-X) has kind [S - X/ XT3, convertible (after erasure!) with f

[X/Y]s of this has type T3, convertible with the same

Erase to get conversion with A f. f

Part 1. Case
I8 FES <Sy—=s Tyy: S8 Fy/a]Th < [(sy)/z]Ta —t

Iy’ Fox:S1. Ty <va:Se. Ty = Au.[s w.l, [u.l/y]t u.2]
By assumption I' =5 : S1 — Sy and s =g, Az.z, and I', y: Sy F ¢ : [y/z|Thy — [(s y)/x]T> and t =g, Az. .
Thus, the two components of the intersection in the body of the elaborated term have type Ss and [(s w.1)/z]T> (and
this type is convertible with [u.1/x]T%), and are convertible with «.1 and u.2. Thus the entire expression is convertible
with A u.u and can be assigned type tx:51.T7 — tx:S52.75

Part 2. Case

Iisk*x < x=2>AX. X

Immediate

Part 2. Case
ISy <81 —s Ty: S8 F[(sy)/z]K1 < |y/z]Ky — S

Iys'Fa:51. K1 < Hx:S9. Ko — AP Az.[z/y]lS - (P (s x))

e By mutual induction on 1., s : So — 57 and convertible with A z.z

e By IH, (under context extended by y:S3), S has kind [(s y)/z]K1 — [y/z] K>

Assume P: I z:5,. Ky, x: 5

P (s z) has kind [s z/z] K3

[z/y]S of this has kind K

Part 2. Case
DisEFK < K1 =S5 T)Y:K{;sH[(S1-Y)/ XKy < [Y/X]KL <= S,

Tisk 11 X:Ky. Ko < 11 XK. K} AP.AX:[X/Y]S5- (P-(S;-X)).
By assumption I' - Sy : K| — Ky and 51 =g, A X. X,

and I' Y : K1 F Sy 1 [(S1-Y)/X]|Ky — [Y/X]|K) and Sy =g, AX.X. It is clear then that the elaborated type in the
conclusion has kind I7 X : K. K — II X : K{. K}, and reduces and 7-contracts to A P. P

Part 3. Case
I R;:*, Ry:x,2z:Cast - Ry - Ry ; elimCast -z T[R,/R] < T[R2/R] < s

Tk AR:% T <5 intrMono -(AR;.ARy. A z.intrCast -s -(Ay. f{\z.z}))

We appeal to the proof of 1. (noting that the premises of the “base” rule will be satisfid as elimCast -z has the required
type and erasure). Then, ¢ has type F - Ry — F - Ry, A_. 8 is a proof that that IT R; : . {t r ~ r}, and thus the whole
elaborated expression has type Mono - F.
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Part 4. Case
D' O —0

Trivial

Part 4. Case

s FAS A s Ty:A;8'Fa:fy/z]A) < a:[(sy)/z]As — 5

' ba:iAja:Ay <z:A a: Ay — (s ), [z/y]s

So, these are pretty nasty. The difficulty is mostly notational, not theoretical — that is, describing the coercion, and
typing, of telescope of constructor arguments.

e Appealing to 1., we have s has type A — A’ and erases to Az.x

This means (s x) has type A" and erases to z

e Appealing to the inductive hypothesis, we have T', y: 4; (a: A1) F5: (a:[s y/x]A2) — _ (Figure 17b) and § converts
with @

e Conclude I'; (z:A,a: A1) F (s x),5: (x:A',a:Az) — _

Part 4. Case

DX:KiFS:Ky—= S T,X:Kiy;(a:A)F35:([S/X]a:B) — &

I (X:Ky,a:A)FS5: (X:Ks,a:B) — 5, ¢

Similar to above O
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1.1.1 Additional Proofs

Lemma 4. (Reconstruction of coercions from datatype elaboration) Assuming some T', T, IndEl[D,R,A,m,L,0,E], U,
U’ and term is such that

o FT TV

o IndElD,R,A,m,L,0,8] € T,E(D) = u(cv- DFT)

e I'FU:x—=U andTtris:Is/D-U —is', and " U’ : %

we have the following:

o I[fT5to/D-ist ST s, whereTFS xS TET:x—=T , TVES :x, and TV T : %
then there is some s’ such thatT'Hs:S =T — ¢ and TV;E(to/D) -is' =S <T' — &

o IfT;to/D -is - Ky < Ko < S, where T Ky < K|, T - Ky < Kb, I' F K1, and I’ + K,
then there is some S’ such thatT' =S : K1 — Ky — 5’
and IT7;E(to/D) -m -is' H K’ < Ky — &',

That is, that constructor-argument coercions produced from base assumption to/D for types and kinds in the surface
language elaborate to coercions produced by base assumption E(to/D) for their elaborations.

Proof. By induction on the assumed derivation of the coercion. Corollary 3.1 of this lemma is used by Theorem 6. Some
interesting cases are given below

I'to/D-is:U — D [|to/D -is| = Az.x
Case I';to/D -isHU < D — to/D -is

The elaboration of to/D -is is £(to/D) = AR. Ax.elimCast -(m; ) and it has the desired type and erasure under the
elaborated context I by assumption.
I+ &(to/D) -is’ : " = T" |E(to/D) -is’| = Az.x

I";E(to/D) -is' = 8" < T" — E(to/D) -is’

Iito/D -isk Sy < S1— s T,y:S9;t0/D -is - [(s y)/z)Th < [y/z|T> —t
Case Dito/D -ist I x:51. Ty S Hx:5.To = Af. A y.t (f (sy))

Our assumptions are:
1. FT T
2. IndEl[D, R, A,m,L,0,&] € T,E(D) = u(Cv - D)
3. TFU :x—=U' and 't is:1Is/D-U —is’,and IV F U’ : %
4. THFIHz:5.Ty : x— I x:5].T] (inversion of elaboration for types)
5. TF I x:85.Ts : % — I x:5,. Ty (inversion of elaboration for types)
6. V- Mx:5,. Ty : %
With this and assumptions 1. and 4., we know FT',y: S — I, y: S5 and I, y: S5 - [y/x]T5 F *
7. xS T %
With this and assumptions 1., 5., and 6., we know that I, y: 55 - [s' y/z]Ty - % for any s : S5 — 5]

Invoke the induction hypothesis on s and ¢ to get their elaborations s’ and t’, noting that for the latter the elaborated
context is F I', y: Sy < I, y:S5 and that (from the IH) s’ : S, — S] under the elaborated context. Then, the coercion we
want is Af. Ay.t’ (f (' y)), and this is obviously the elaboration of Af. Ay.t (f (s y))
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I'sto/D -isH K3 < Ky — S1 IY : K3;to/D -is - [(Sl . Y)/X]K2 < [Y/X]K4 — Sy
Case  Tito/D -ist I X K. Ko < 11 X:K3. Ky 3 AP.AX:[X/Y]Ss- (P-(S1-X)).

This follows by a similar argument to the case above. Invoke the induction hypothesis on S; and S5 to get their
elaborations 5] and T3, noting that for the latter the elaborated context is IV, y: K5 T,V : K3 — IV, y: K} (where we
know K3 is the elaboration of K3 by assumption and by inversion of the elaboration rules). Then, the coercion we want
IS AP.AX.[X/Y]S, - (P-(S]-X)), which is obviously the elaboration of A P.A X :[X/Y]Sy - (P (S1 - X)).

O

Corollary 3.1. Lemma 4 also holds when extended to a sequence of coercions 35 for telescope g a:A;. < \1] a:As.

Proof. By a straighforward induction over the rules of Figure 17b, appealing to Lemma 4 for each non-empty telescope. [
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1.2 Datatype and Constructor Elaboration

Theorem 4 (Soundness of elaboration of declarations). For all well-formed contexts T, and well-formed datatype decla-
rations I' b Ind[D, R, A] wf, if

e 't IndD,R,A] 4T, IndEI[D,R,A,m,L,0,&] and (¢;: 1 @:A;. D € A)i=1. 4a
e and T < IV for some I implies T is well formed
e and (0, Xix, Rix - a;: A, X i x = Ta;: A X for some (a;: Ay)iz1.. 4
implies (IV, R:x, X :x b \gm X i x)i=1. %A
we have that:
o I E(D): % and (" F &E(c;) - I a;:[E(D)/R]AL. £(D))i=1. 4
I"F E(Is/D):x—* and T+ E(is/D) : E(Is/D) - E(D)
It E(to/D) :VR:%.Vis:E(Is/D)- R.R — £(D) and |E(to/D)| =p, Az.x

o '+ m: Mono- DF!, where T+ Ind[D, R, A] &3 DFT
I'+L:(E(D)— %) — I R:%xE(Is/D)-R— D R — x,

where DT is as above and T+ Ind[D, R, A i) DF

Proof. The proof proceeds by traversing the derivation of the premises of rule [Data] and by mutual induction on the
soundness of elaboration of terms and types (Theorem 6). We will write [Rule|Premise : Classifier to help guide the
reader, and author(s). Throughout the proof a;: A} will refer to the elaboration of the construct ¢;’s argument telescope
a;: A;. We will also abbreviate u(CV - DF!) to DFIX.

We start at the root: the unlabeled judgment for elaborating datatype declarations.

[ T/ F DFIX . &«
The rule for deriving this premise is FIX. In that rule, we must show the single premise

o [FIX]I'F D¥l:x — %

[FIX] T" F DFL: % — %
The rule for deriving this premise is FI. There, we must show
e [FI|TVFDF:%—x
Shown later in the proof
o [FI] (I"Fcf :VR:xFa;:AL.DY - R)izq ya

Shown later in the proof

For now assuming we have the above, to ensure that D¥T = AR.c2:D¥-R.V X :D¥-R — %. IT x;: (g a; AL X (@)1 4n. Xz

1
has kind x — %, we show the two components of the intersection have kind x under a context extended by R:x.

e We see that DF - R has kind % from the temporary assumption.

e We show the second component VX :DF - R — %. IT 2;: (g a;: AL X (cF @;))i=1.#a. X o has kind x under a context
extended by z:DF - R by
— taking the premise (I', R:%, X 1 - \1] a;:A; X x> g a;: A} X)i=1.4#A and combining it with the assumed
implication that this means (I", R:%, X :% = a;: A;7. X 1 %)i=1. 24
— from this we have I", R: %, X : DFT. R — x I g a;: AL X (¥ @) : %)i=1. 4 by an easy inductive argument,

using our temporary assumption that the ¢ have the desired type
— and we finally have (I, R:x+V X:D¥1. R — *.\1] ai: AL X (F @) %)z un

Thus the elaborated DF! has kind * —
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[FI] IV F DF : % — x
The rule for deriving this premise is F.

e We have that DY = AR.V X : . Hmi:(\g a;: AL X)i=1. 4. X has the desired kind x — %
since we have a premise (I, X : %, R:x \117 a;:A; X 1% — \I] ait A X)i=1. #A,
and by assumption this implies (T, R:%, X : % - \1_/7 @it Ay X D x)i=1. %A

[FI] TV FcF :VR:x T a;: A.DF - R);—1 4n
The rule for deriving these premises is CF. We consider each constructor ¢; € A.

e We wish to show A X.x;—1. zax; @; has the type DY . R under a context extended by R:* and a; :A;.

From [FI]I” - D¥ : x — * above, we have that D¥ - R =V X :x. Il ;:({f a;: AL. X);=1. 4. X has kind *.

We further extend the context by X : and (z; :\I] ai: AL X)i=1.. %, and wish to show that z; @; has type X, which
it clearly does.

[ (T ™ ai: [DFIX/RIAL DF)icy ia
We signpost that we are now at the next premise of the root rule for elaborating datatype declarations. The rule for
deriving this premise is CFIX. For each j = 1...#A, it suffices to show the following for the premises:

o [CFIX]T'F DFIX . 4
This is satisfied by [| T F Ind[D, R, A] I DFIX . o above (the provisional assumptions we made there have been
discharged above).
o [CFIX]I"F e VR a;: Al D" R
We show this further below, and for this case temporarily assume this has been shown.
e [cFIX] I’ m : Mono - D!
Shown later in the proof, temporarily assumed.
We must now show that inCV -m (cj' @;) has type DF™™ = u(CV - D) under a context extended by a;:[D¥1X/R] A’

e by the typing of inCV, we have inCV -m has type F - DFIX — DFIX

so it suffices to show c]FI a; has type I - DFIX

e instantiating the type argument R of ¢}’ to DF*, we see that this is indeed the case

[cFIX] I - m : Mono - D¥!  This comes from Theorem 3. We satisfy the requirements:
e I is well formed by assumption

e we established above [FIX|T” - DFL: x — x

[cFIX] T+ ' :VR:x.{ a;: A7. D' - R
The rule for deriving such premises is CFI. In that rule, we must show, for each instance j, the following for the premises
e [CFIITH c? VR:x I aj :A;..DF -R
Proved above in case [FI] (I'F cf : VR:*.Q a; A DF. R)i=1. 4

We wish to show that ¢ = AR.} . [} @j, AX.X&i—s 4a.x; @] has the expected type VR : . a;: A;. D' - R
where D' = AR..2: DY - RV X:D¥ R — x. (I z;:{ a;: AL X (cF @))ic1pn. X @

e extend the context by R:x and a;: A’
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e for the first component of the intersection, we know that |cf | =gy ATi=1..#A.z; |G;|, and from above that cjF aj
has type DY - R
e for the second component, we see immediately that it is convertible with the first component, so it remains to show

that it has type VX :D¥ - R — x. (I z:{] a;: A;. X (¢} @))iz1..pa. X (¢ @)

— extend the context by X :D¥ - R and (z;: [T a;: A;. X (cF T7))i=1.. #A
(we know that the resulting context is well formed)

— we see then that x; has type Hm. X (cf @)
and so x; @; has type X (cf @;) as required

[] I’ + DFL: Mono - DF!
This is a repeat of [CFIX] I - m : Mono - D!

TFL:(DFIX = %) — II R:%x.RCV- DFL. DFIX 5 DF . R+« The rule for this premise is LIFT sc, which gives us
the definition of L.

e We extend the context by P:D¥® — x R:%, r:RCV- D¥l. DFIX. R and 2:D¥ - R.
We have from above that D¥! and D are well kinded and have the approriate kind.

e Further extend the context by y:View - (D! . R) g{x}

e It suffices to show that inCV -m (elimMono -m -(m; 7) (elimView B{x} -y)) has type DFl. DFIX

we established in previous cases that m has type Mono - D¥!

— since r has type RCV - D¥1. DFIX . R = (Cast - R- D¥X) x (View: (R — D¥!'-. R)) outCVU, we have 7 r has
type Cast - R - DFX

— with elimMono -m -(m; r) we have a function (convertible with Az.x) of type D¥!- R — D¥l. DFIX

— from the typing rules for View in Figure 13, we have elimView 3{z} -y has type D¥!. R.

[T'FE&(Is/D): % —*
We have £Is/D = RCV - DFT. DFIX_ Since we have from earlier in the proof IV + DF! : « — % and IV - DF™X : %, we have
the desired result.

[ T'F&(is/D) : E(1s/D) - DFX
We have £(is/D) = (castRefl - DFX intrView outCVU -(outCV -m) -3) It is clear castRefl - DX has type Cast -
DFIX . DFIX_Gince we have from earlier that IV - m : Mono - D, we know that outCV -m has type D¥*X — DFI. DFIX|
and since this is clearly convertible with outCVU, we have that the exression intrView outCVU -(outCV -m) -8 had type
View - (DFX — DFL. DFIX) outCvu.

This gives us that the entire expression has type £(Is/D) - D¥X = Rrcv . D¥!. pFIX. pFIX,

[l T'FE(to/D):VR:%x.Vis:E(Is/D) - R.R — DF™* and |€(to/D)| =p, Az.x

We have that £(to/D) = AR. X z.elimCast -(m z), and the desired result follows from the definition of £(Is/D) and
the erasure of elimCast. O
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2 Functions over Dataypes

2.1 Value preservation

Lemma 5 (Soundness: Value-preservation of u and o). The elaborated lambda expresions of p and o expressions are
confluent with the elaborations of the terms they step to, i.e.:

o If T-pih. (¢;P) { ¢i @— ¢i}i=1.n — P, and
— pih. (¢; P) { ¢ @— qi}im1..n ~ D2, and
-TI'k p2 — p/Z;
then py =gay Db
o IfTFo (¢; D) {ci @ — ¢i}i=1.0 — P}, and
— 0 (¢; D) {¢i @ — ¢i}i=1.n ~ D2, and
- T'F p2 — P/z
then py =gay Db
Proof.
Case pu: By elaboration of untyped u-expressions in Figure 26, we know that our u-expression elaborates as
Py = |mu| (|C§IX| ) Nih Az (AT q)im1.m)

and by inversion of reduction rule for 1 we have the form of the single step reduction of the p-expressions with know

the shape of ps
1<j<n #p=+#a; r=Az.pih. z{c; @G — qi}i=1.n

pih. (¢; P) { i @i = Giti=1.n ~ [p/a;][r/ih]q;
Now, the elaboration pj of ps has the form

T+ [p/agl[r/ibt; — [p'/as][r'/iblg;’
where r is as in the premise of the reduction rule. Appealing again to the rules for elaboration of untyped p expressions
in Figure 26, we see that the elaboration r’ of r is.

v =Xz.|lmu| z Nih. Az.x (NG q)im1..n)
Now, recall that |C§IX| P is by the rules of Figure 20 convertible with inCV (|c'!| p). By muComp in Figure 15, we have

Py =gn (Nih Az.2 (AT )imt.n) 7 (7] )
which further simplifies to
Py =pn 16" D (NG [r'/ih)q})i=1..n
(the same ' that occurs in the elaboration of py shows up in the equivalence given by muComp applied to p}).
Referring to the rules for the elaboration of c?l, we see that it’s body is formed by dependent intersection, so its erasure

is equal to the erasure of the first component of that intersection, i.e., \cf\ We further have
Py =py Aiz1n-xj D) (NG [ /ih]q))i=1..n
which simplifies to
Py =pn (A [r'/ih]q})
Since by assumption #p = #a;, we finally have

P1 =pn [p/a;llr' /ihlq; = P
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Case o: Similar to the case for p. By the untyped elaboration rule for o expressions in Figure 26, we know that

Py = |sigma| (|C§IX\ p) Az (NG ¢})i=1..n)

where each p’ and ¢/ are the elaboration of p, g;
By inversion of the reduction rule for o we have the form of the expression that our o expression steps to, po, is forced
by the inference rule

1<j<n #p=+#a;

o (¢; ) {¢i @G = qi}ti=1.n ~ [p/ajlq;
The elaboration of this, ph, thus has the form

Py = [p/ajlg

Just as we noted in the case for u, we observe that |c§'™| p reduces to inCV Azi—;. n.2; p. Now, by sigComp in
Figure 15, we have

PL=pn Az (AT Gi)i=1..n) ATiz1..n-T; D

which reduces to

p1 =gy AZiz1.n.-2; D) (NG Gi)i=1..n
which reduces to
Py =y (\G.4;) B
which finally reduces to

Py =pn [p/ajlg; = ps

Corollary 4.1 (Generalization of Lemma 5).

o IfT'Fpy = pi, T'F pa = phy, and p1 =gy, P2, then py =g, ph

Proof. By a straightforward induction on the assumed derivations. The extension of the convertibility relation in the
surface language are the p and ¢ reduction rules and the axiom for identifiers of the form to/D, so we appeal to Lemma 5
and the observation that if IndE1[D, R,A,m,L,0,&] € T then |E(to/D)| = Az.x. O

Theorem 5 (Value preservation). IfI'Ft1 : Th — t] and T'Fty : Ty — ty and [t1| =gy, |t2] then |t)] =g, [t5].

Proof. Appeal to Lemma 2 to obtain that I' F |¢1] < |t]| and T' - |t2| < |t}|, then appeal to Corollary 4.1 to finish. O
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2.2

Type Preservation

Theorem 6 (Type preservation). If FT'— I” then:

IFTFEK < K thenT' - K’
IfTHT: K< T then for some K', 7'+ K' and T+ T’ : K’
IfTHt:T <t then for someT', T =T :x =T and '+t : T’

Proof. By mutual induction on the assumed derivation.

Term: I'+¢:T < t' [o] By inversion, the assumed typing derivation is

IndEl[D,R,A,m,L,0,E] €T Ttis:Is/D-T < is
'ct:T—t T'FT:%x—=T T'FP:D—=%<P
D {ci @ = titimi ot (Pris) = (3@ t)iz1 48 (2 & FV(]))iz1. %A
o<is>t QP { ¢; @ — ti}i=1..4A : P (to/D -is t) — sigma -m -is’ t' - P’
Az, 2.2 (L-P T is') (3 @. Az t))iz1. 4n -(intrView f{z.1} -z -B)

and we may further invert the judgement for case branches:

IndEI[D,R,A,m,L,0,E] €T Ttis:Is/D-S < is
(ci IgM~ De )1 g
(T'; to/D -is = ([S/R]ai: A;) < ([D/R]a;: Ai) <= 5i)iz1..#a
(CEAa.t; T [S/Rla;i: Ai. P (¢; 57) = 3 @5 th)iz1.. 4n
DE{ci @ = titicr. an: (Pis) = (38 t)iz1.. 24

CASE

By use of the inductive hypothesis (IH) on the premises of these rules:

from DT :%x— T’

we have I = T” : x by mutual induction on type elaboration, and by inversion of kind elaboration (I' F % < *)
fromTH¢: T < ¢
we have I' F ¢/ : T’ by induction (and by Lemma 3).

from T'Fis:Is/D-T < is'

we have I I 45’ : RCV - D¥!. (Cv - D¥1) . T” by induction and by inversion on type elaboration rules. Here, DT is
the inductive signature produced by elaboration of datatype declarations.

fromI'FP:D — x— P

we have IV = P : u(CV - DFT) — % by mutual induction and by inversion of kind elaboration

from (¢;:f a;:A;:D. € A)iz1. 2a

we have the family of typing derivations (I ™ : [T g, :[u(CV - D¥Y)/R]A". u(CV - D¥1))iz1 4a,
where (I'H T a;:[D/R]A;. D : x — I a;:[u(CV - D¥Y)/R] A’ u(CV - D¥1)) i1 a

This is from Theorem 4, whose assumptions are satisfied:

— IndEl[D,R,A,m,L,0,&] € T, which can only occur after elaborating a datatype declaration (Figure 20) (we
implicitly using weakening here)

— we have that I', X : ¥, R : x | \I]al-:AZ-.X s gai:A’i.X implies that IV, R : %, X : % \gai:A’i : X. @ x for
i=1...#A.
This is by induction (note that before we weaken the context to I' the antecedent is a sub-derivation, since we
have elaborated datatype D) and inversion of type elaboration.
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e from (I';to/D -is - [T/R]a;: A; < [D/R]a;: Ai = 87)i=1.4a
— we have (I'+ [T/R](a;: A;) & 5; : [D/R](a;: A;) = 8;')i=1.#a and |5;| =gy, |a;] by Theorem 3, so by Theorem 5
we have |s]| =g, |@;].
— and have I''; £(to/D) -is’ + [T"/R](a;: A;') < [u(CV - D¥Y)/R](a;: A;) < s;’ by Corollary 3.1 and Theorem 3.
— and finally T+ [D/R|{f a;: A;. P (c; 5i) : x = [u(CV - D¥V)/R)T a;: A7 P (E(c;) )

3

the derivation of which we can easily obtain from the pieces elaborated already

e from the family of derivations (I' % @.t; [T/R] a;i: A P (¢ 37) = %@ th)i=1. H#A

we have (I' F 4 @.t;" : I a;: AJ[T"/R]. P' (£(ci) 8}))i=1.4a by induction, and by inversion of type elaboration

It is clear that P’ (€ (to/D) -is’ ') is the elaboration of P (to/D -is t) and has kind x under IV. The goal is thus to
show

I+ sigma-is' t' - P’ (Az. 2.2-(L-P - T is') (3 @. Az t)iz1. 4 -(intrView f{z.1} -z -B)) : P' (£(to/D) -is' t')
which we do by walking the sequence of arguments to sigma, checking types as we go
o IV is' : £(Is/D) - T', established above
o IVt : T, established above
o IV P': (D) — *, established above

o I'F Az 2.2(L-P' T is") (@G- A z.t))i=1. 4 -(intrView f{x.1} -z -B) : Il z: D¥L.T'. P (inCV -m (elimMono -m -(m; is’) z))
If we can show this, then the type of the entire sigma expression is P’ (€(to/D) -is’ ') as required

— we observe that the type we are trying to assign this term is well kinded

extend the typing context with z: D¥!. T’
— the head of the application, .2, has type V X : D¥ - T — . (Il z;:{ a;: AJ[T"/R). X (cf @))iz1. p4a.X 2.1

— by Theorem 4 and weakening, we have ', z: D¥L. T - L : (£(D) — *) — I R:x.E(Is/D)-R— DY - R — %
we can quickly see then that L - P’ -T" is’ has type DFT- R — x under the current typing context

we must now check that the remaining arguments can be given to a function of type

(I = :\IJ a; A, L' - P -T s (CF @;))iz1..pn.- L-P T is" z.1
For each i =1...#A
* we have from above that T -} @. t; : I ‘a;: A;[T'/R]. P'(E(c;) s)
* the goal is to show
UVEAG Azt e AT /R.L-P - T is' (¢] @)
* extend the context by a;: A/[T'/R] and z:View - (D¥'.T") g{cl a’}
* now the goal is to show t; has type

P (inCV -m (elimMono -m -(m; is') (elimView f{c} @;} -2)))

* by weakening, conversion and inversion of typing derivations, we know that under the current context t;
has type
P (inCV -m (ci' &)

F

x and these two types are convertible: 57 is convertible with @;, ¢! is convertible with ¢, and by the erasure

rules for View and Mono these type coercions disappear
— the last expression must be an argument of type View - (D¥' -T") p{z.1}.

Since x has this this type and is convertible with z.1, the introduction form intrView g{x.1} -z -8 is well
typed.
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Term: I'H¢:T < t' [4] By inversion, our assumed typing derivation is

IdEI[D, R,A,m,L,0,6] €T THP:D %< P Tht:Dest
I =q¢ ', Type/ih : x,isType/ih : Is/D - Type/ih,ih : II y:Type/ih. P (to/D -isType/ih y)
I {c; @ — titiz1. 4a : (P,isType/ih) — (@G- ti)ic1..4a (2 € FV(t))iz1. 24
I'kpih.t QP { ¢; @ = ti}i=1.460 : Pt —
mu -m t' - P’ AType/ih. AisType/ih. \ih. A z.
2. (L - P'-Type/ih isType/ih) () @i. A z.t.)i=1. 4 -(intrView B{z.1} -z -B)

and we may further invert the the judgment CASE for case branches:

IndEl[D, R,A,m,L,0,E] €T Ttis:Is/D-S < is
(ci:gm D e A)j=1..4a
(T'; to/D -is - ([S/R]a;: A;) < ([D/R]ai: A;) < 5i)iz1..#A
(Fl_/laz z-g[S/R]ai:Az-P (Cz i)<_>;\1az t)z 1...#A
DE{ea; = titimi pga: (Pris) = (3. t])iz1. 4

CASE

and we have also F T' — T (to avoid a name clash with the extended context I'" in premise of the assumed derivation).
The proof proceeds similarly for the cases for o above. By use of the inductive hypothesis on the premsises of these
rules:

e 'T:x < T yields I'" = T : ¥ by mutual induction on type elaboration and by inversion of kind elaboration
e 't:T <t yields I+t : T' by induction and by Lemma 3.
eI'FP:D— < P yeildsT” F P : £(D) — * by mutual induction and inversion of kind elaboration.
e the family (¢; :l a; 1 A;.D € A)i=1. 4a
yields (I + E(c;) : [E(D) /R a;: A7.£(D))i=1. 4a by Theorem 4, whose assumptions we satisfy below

— we obtain I' - Ind[D, R, A] 4T, IndEl[D, R, A, m, L, ©, E] from the premise IndEI[D, R,A,m,L,0,£] € T and
context weakening.

— we have that (I, X :x,R:x - T a;:4;. X 1 x — T a;7 A/ X implies T, R:x, X :x = T a; i A7 X 0 %)iz1 g
as an instance of our induction hypothesis (note that before we weaken the context to I' the antecedent is a
sub-derivation, since we have elaborated type D) and by inversion of type elaboration

and can also construct (I'F¢; : [D/R){ a;: A;. D)iz1. ga — E(c;) directly (Figure 25)
e also from Theorem 4 we have I'” - m : Mono - DYt and T - L : (£(D) — %) — I R:x.£(Is/D)- R — DY - R — x

e from the assumption - I" < I'”/, we can construct a derivation of - IV < I Type/ih : x, isType/ih : £(Type/ih) -
Type/ih, ih:II y:Type/ih. P’ (E(to/D -isType/ih y) using of Theorem 4. Call the resulting elaborated context I'"”

e the family of premises (I';to/D -isType/ih t (a;: A;)[Type/ih/R) < (a;: A;)[D/R] < 5i)i=1.#a
— yields (I'; (a;: A;)[Type/ih/R] = 5; : (a;: A;)[D/R] = s;')i=1. 4 and |5;] = |@;] by Theorem 3

(by value-preservation, Theorem 5, we have |s]| = |a;])

— which yields T"; £(to/D) -isType/ih & (a;: A;’)[Type/ih/R] < (a;: A;/)[DF¥X/R] — s;/ by Corollary 3.1 and
Theorem 3

— and we have (I" - [D/R) a;: A;. P (¢; 5) : x = [DYX/R) a;: A7. P" (£(c;) s}))
easily obtained from the pieces we have elaborated already
e premise (I'" -} @;.t; : [Type/ih/R)Y a;: A;. P (¢; 57) = } 5. t})iz1..4n
yields (T A @. t;' : [Type/ih/R) a;: A%. P' (£(c;) 8}))i=1.4a by induction and by inversion of type elaboration.
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The goal
I” - mu-mt'-P' (AType/ih. A isType/ih. X ih. \ x.x.2-(L-P'-Type/ih isType/ih (} G. A z.t)i=1. 4 -(intrView f{z.1} -z -3)) : P't'
We walk the sequence of arguments in this expression, checking types as we go

e we have I' = DF!: x — x from Theorem 4

e I m : Mono - DFT by the same

o It : DFX from above

o I+ P : DFIX 5 & from above

I + AType/ih. AisType/ih. Nih.\z.2.2 - (L - P’ - Type/ih isType/ih) (}@.Az.t;) -(intrView B{z.1} -z -B) :
AlgMu- P’

If we can show this, then the entire mu expression has the type P’ t' as required.

— we observe that the type we are trying to assign this term is well kinded

extend the typing context with Type/ih:x, isType/ih:E(Is/D) - Type/ih,
and ih:IT y: D¥' - Type/ih. P (elimCast -(m; isType/ih) y) and we get precisely I,

extend the typing context with z: D! . Type/ih
— the head of the application, x.2, has type

VX :DY - Type/ih — *.[Type/ih/R|(IT z;:{ a;: AL. X (¢} @))iz1.4a. X x.1
by Theorem 4

check that L - P’ - Type/ih isType/ih has kind DF - Type/ih —
This follows similarly to how we proceeded in the case of o

— We must now check the remaining arguments can be given to a function of type

Type/ih/R|(II z;:{ a;: AL. (L - P’ - Type/ih isType/ih (¢F' @)))i=1.4a.L - P' - Type/ih isType/ih x.1
y v i 4 #

— For each case i = 1..4#A:
* we have from above that T" 4 @;. 1} : I a;: A} [Type/ih/R]. P' (£(c;) )
* the goal is to show

I 3@ Azt a;: A[Type/ih/R). L - P’ - Type/ih isType/ih (c} @;)
* extend the context by a;: A;[Type/ih/R] and z:View - (D) - Type/ih p{c} a;}
* now the goal is to show t; has type
P’ (inCV -m (elimMono -m -(m; isType/ih) (elimView B{cl @;} -2)))

* by weakening, conversion, and inversion of typing derivations, we know that ¢; has type

P’ (inCV -m (cf* s)))
and these two types are convertible (see the case for o).

— the last expression is an argument of type View - (D¥! . Type/ih) f{z.1}, by a similar argument as for the o
case.

Term: [c] [to] [is] By appeal to Theorem 4, appealing to the inductive hypothesis to show the elaborations of constructor
argument types are well-kinded
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Type: [D] [Is] By appeal to Theorem 4, appealing to the inductive hypothesis to show the elaborations of constructor
argument types are well-kinded

Kind: Case
I'Fx—x%

Immediate

Kind: Case
'K — K T,X:K1+F Ky — K}

THIX:K.Ky,— II X:K| K}

e By the IH, IV - K{
o By the IH, I, X : K| I K},
e Conclude IV - IT X : K. K},

Kind: Case
'FT:Ky =T T,z:TH K, — K]

FFHz:T. Ky — Dz:T'.K;

e By mutual induction, IV - 7" : K, for some K} where I I K
e By IH, I',2:T' - K
e Conclude I" + IT z:T'. K|

Type: Case
FV(py p2) Cdom(T) Tkp—p] THEpy—ph

L' {p1 = po}:x— {p] ~ph}

e Appeal to Lemma 6 to get FV (p} p5) C dom(I”)
e Conclude IV - {p} ~ph} : %

Type: Case
FTET x> T] Ta:ThFTh:x—=T)

Phex:Ty.To:x—vx:T]. T4

o By IH, I" F T} : x
e By IH, IV, 2: Ty - T} : %
e Conclude I'" F v z:T7. T4 : x

Type: Case
FFTli*‘%T{ F,x:leTQ:*TQ’

TEY2: Ty Ty x> Va:T,. T}

Similar to above

Type: Case
PET :x =T Ta:ThFTy:x—= T}

PFDe:T.To:x— Oa:T].T)

Similar to above
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Type: Case
''-K—>K T, X:KFT:%x—=T

FEYX:K.T: x> VX:K.T

e By mutual induction, IV - K’
e ByIH IV X . K'+T : %
e Conclude I"FVX:K'. T : %

Type: Case
'S Ki—=S8 T,z:SFT:Ky—T

F'FAXz: ST :Hx:S. Ko Xx:S".T'
e By IH, IV 5’ : K for some K;" where I'" F K}
e By IH, IV, z: 5"+ T" : K/, for some K} where I, X : 5" - K} : x
e Conclude IV - Az:S". T : [T z: 5. K},

Type: Case
'Ky — K, T,LX:KhWFT:Ky—T

TEAX:K,.T:IX:K). Ko - AX:K[.T

Similar to above, appealing to mutual induction for the kind K; of the A-bound variable X

Type: Case
F}_T1HXK2K1;>T1/ F"TQKQ"—)TQ/

TFT, Ty : [Io/X|K, — T} - T}
e By IH, I -1y : I K}:K;. for some K}, K| s.t. I+ II X: K. K; (inversion of kind elaboration)
o By IH, I T} : K}
e Conclude I'" - T - T : [T/ XK}

Type: Case
'ET:z:SK—T TFt:S—¢

THT t:[t/a]K — Tt

Similar to above, appealing to mutual induction for the elaboration of term argument ¢

Type: Case

IFX:I(X)— X

Immediate (Lemma 6 and Figure 17a)

Term: Case

'tz :T'(z) ==z
Immediate (Lemma 6 and Figure 17a)

Term: Case
'FS:x—=98 T,z:SFt:T—t

Xzt : Hx:S. T Mzt

e By mutual induction, IV F S’ : %
e By IH, IV, z:S" = : T' for some T" s.t. IV, z: 5" T : x
e Conclude IV Az.t' : M z:5.T
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Term: Case
r-K—>K X¢FV(t) T, X:Kkt:T =1t

FFAX.t:VX:KT—AX.t

By mutual induction, I + K’

By IH, IV, X : K' -t : T for some T" such that IV = T" : %

By Lemma 6, X ¢ FV(|t'])
Conclude IV AX. ¢ VX :K'.T'

Term: Case
x¢ FV(|t)) T,z:SkHt:T

I'Az.¢t:Vz:5.T

Similar to above, invoking mutual induction for elaboration of type S of the A-bound variable

Term: Case
't:z:ST—t T'kFs:S—s

FkHts:[s/a]T —t s

e By IH, IV ¢ : [T z:5".T for some S’ and T’ s.t. IV F IT 2:S'. T’ : % (inversion of type elaboration)
e ByIHIVF s : 8
e Conclude I" ¢ s : [ /z]|T”

Term: Case
'-¢t:vVX:KT—t T'HFS: K<Y

THt-S:[S/X]T—t-5

Similar to above, invoking mutual induction for the the type argument S

Term: Case
'Ft:Vz:SST—t I'kFs: S5

Pkt-s:[s/z]T —t -5

Similar to above

Term: Case
'Ft:S—=¢t S=T TFT:x—=T

PHt: Tt

By the IH, invoking Corollary 4.1 and referencing the type-convertibility relation of [Stul8]

Term: Case
'kt ZT1;>tll Fl—tgi[ﬁ/x]Tg%tlz tllgté

TF[t1,te] i va:Th. To < [t],th)

By IH, TV -t} : T} for some T} s.t IV F T} : %

By IH, TV -t} : [t} /z]T4 for some Ty s.t. TV, z:T] - T4 : %

By Corollary 4.1, t} 2 ¢

Conclude I = [¢h,t5] : vz :T7. T}
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Term: Case
THtive:T. Ty — t

FH¢l1:Ty — 1

e By IH, IV - ¢ : va:T]. Ty for some T7, Ty s.t. IV F va:T]. Ty : x (inversion of type elaboration rules)

e Conclude IV - ¢.1" : T}

Term: Case
PHtive:T. Ty — t

THt2:[t1/z]Ty — t'.2

e By IH, IV ¢ : va:T7]. T4 for some T7, T4 s.t. IV v x:T7. TS : * (inversion of type elaboration rules)
e Conclude IV F /.2 : [t/.1/x]T}
Term: Case

CEA{Jt] =t} : x = {p=p}
CEB:{Jtl =t} — B

e By mutual induction TV - {p ~ p} : x
e Conclude I" + 8 : {p ~ p}

Term: Case
F"SZ{|t1|§|t2‘}‘—)8/ Fl‘t:[tl/x]Tl‘—)t/
T =T, TF [ta/x]Ts : x — [th/x]Ty

Phps@QuaTy-t:[to/x]Te —ps QaTy-t

Since you have made it this far: there’s actually quite a subtle issue in [Stul8] concerning p, namely that rewriting by
untyped equalities may produce a result type that is not re-kindable. This does not effect the denotational semantics (nor
soundness proof) for Cedille. We have separately developed kind-preserving rewrite rules for the unguided (no @ z.7%)
p; the rule here is a specificational one that is consistent with the original rules but requires additional burden on the
programmer to provide the correctly-rewritten T5 that satisfies the premises (being convertible with 77 modulo erasure
and being well-kinded when instantiating ¢s for x)

e By IH, IV & : {|t}] = |t5]} where some #] and ¢} s.t. T7 F {|t]]| =~ |t5]} : * (inversion of type elaboration rules)
e By IH, IV ¢/ : [t} /z]T} for some Ty such that I - [t} /x]T] : %

By IH, I & [t} /x]Ty : * for some Ty s.t. TV F [th/x]Ty : %

e By Lemma 4.1 and reference to the type convertibility rules of [Stul8], 7] = T4

Conclude IV p ¢ @ ©. Ty —t' : [th/x]Ty

Term: Case
F}—S:{|t1|2|t2|}‘—)s/ Fl—tllT"—>t/1 Fl—tgg)té

TFes—ty {to} : T = p s —t) {th}

e By IH, I - ' : {|t}] = |t5|} for some #], t5 s.t. TV = {|t]] ~ |t5]|} : * (inversion of type elaboration rules)
e By IH, I ¢} : T' for some T" s.t. TV FT" : %

e Conclude IV F ¢ s —t] {t2}: T’
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Term: Case
FFt:{Az  y.z~Az. y.a} =t THT: %=1

FrE6T—t:T—>6T -+t

Note that we are considering the restricted form of §. Proving sound elaboration for the full Béhm-out algorithm,
implemented by the Cedille tool, is beyond the scope of our contributions.

e By IH, I"Ht': {Az. Ay.z ~Az. Ay.y}
e By mutual induction, IV F 71" :

e ConcludeIVFo6 T —¢t' : T
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2.3 Termination Guarantee

Theorem 7 (Normalization guarantee). Suppose T'Ft: D < t' and IndEl[D, R,A,;m,L,0,E] € T. Suppose further that
t is closed. Then |t'| is call-by-name normalizing.

Proof. By Theorem 6, there is a type T such that ' D : x < T and I' - ¢/ : T’. By inversion on type elaboration, T'
is £(D), which is of the form p(CV- D¥!). By Lemma 1, there is an identity function from this type to a II-type. So, by
Theorem 4 of [Stul8], |t'| is call-by-name normalizing. O
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2.4 Additional Proofs

Lemma 6.
o IfTHK < K' then FV(K) = FV(K')
o IfTHT:K <— T then FV(T) = FV(T")
o [fTHt:T <t then FV(t) = FV(t')
o If-T < T then DV(T') = DV (IV)
Proof. By a straightforward mutual induction on the assumed derivations. O

Lemma 6 is needed for type-checking the term elaborations of implicit products and kind-checking the elaborations of
equality types.
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