
CS1210 Lecture 9 Sept. 13, 2021
• Quiz 1: Wednesday in class
• HW1 scores have been posted
• HW2 due 8am tomorrow
• Don’t violate the Academic Honesty Policy on the course

website. Some borderline violations/collaborations in
HW1 that will be watched further.

• DS3 due 8pm tomorrow
• Again, optional to attend BUT this time TA will walk students through some of the examples

Today
• A debugging example
• Introduce the range() function
• Develop printFirstNPrimes
• Discuss quiz

HW1 Most Common Comments
Q1
-1 doesn’t correctly handle trip lengths that are exact multiples of 8. E.g. you say an 8 hour trip should have 1
hotel night

-1 hotel nights calculation is not correct

-1 lunches calculation is not correct

-1 breakfasts calculation is incorrect

-1 dinner calculation not correct

-1 doesn’t handle rest days correctly (this is more specific than just generally having incorrect hotel nights)

-1 loops were not allowed. See the assignment spec. I talked in class about how to do this easily without
loops

-5 file does not successfully load into Python due to basic syntax errors. As discussed carefully in class, we
cannot give significant credit for files with syntax errors. Syntax errors are easy to correct, and must be
eliminated before submitting your code.

Q2

-1 Q2 does not call Q1. The assignment spec said that it must.

-1 prints the required value but returns nothing. It needs to return the string as well

Note: it is completely unnecessary/wasteful to call computeTripData *twice* from Q2. Call it *once* - it gives
back everything needed in one call.

A debugging example

def is_reverse(word1, word2):
 if len(word1) != len(word2):
 return False
 i = 0
 j = len(word2)

 while j > 0:
 if word1[i] != word2[j]:
 return False
 i = i + 1
 j = j - 1

 return True

is_reverse should
return True if word1
is the reverse of
word2.
I.e. is_reverse(“abc”,
“cba”) should return
True while
is_reverse(“ab”,
“ab”) should return
False

Is code correct?

code in lec9.py

The range function
Python’s range function is very useful. There is no one clear
place in the text where it is presented. It is first mentioned in 4.7
of the Turtle chapter, and then used in examples in Ch 9 and 10.

The range function produces values of a range type
The range type is another sequence type, like list and string.

range(9) is a sequence of the integers 0, 1, …, 8
range(2,6) is sequence 2, 3, 4, 5
range(2,13,3) is sequence 2, 5, 8, 11

Since range is a sequence type, (most of) the standard sequence
operations apply (not nicely specified anywhere in text – go to
Python sequence docs on-line)

https://docs.python.org/3/library/stdtypes.html

range – standard sequence ops
>>> 5 in range(9)
True
>>> 5 in range(2,10,2)
?
>>> len(range(2,10,2))
?
>>> myRange = range(2,20,2)
>>> myRange[3:6]
?
>>> range(5) + range(5)
? Exercise: use range with for to easily

create lec8’s loopchars() fn without
while

lec9primes.py : printFirstNPrimes
• A prime number is an integer greater than one

that has no divisors other than 1 and itself.
– 2, 3, 5, etc.

• Goal: implement function printFirstNPrimes(n)
that takes integer n as input and prints the first n
prime numbers.
>>> printFirstNPrimes(4)
2
3
5
7

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 # starting at 2, count upwards, testing
 # candidate integers for primeness,
 # printing those that are prime
 # and stopping after n
 # have been printed

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 candidate = 2
 while (numPrimesPrinted != n):
 # test candidate for primeness
 # print, update numPrimesPrinted if prime
 candidate = candidate + 1

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 candidate = 2
 numPrimesPrinted = 0
 while (numPrimesPrinted != n):
 # test candidate for primeness
 # print, update numPrimesPrinted if prime
 candidate = candidate + 1

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 candidate = 2
 numPrimesPrinted = 0
 while (numPrimesPrinted != n):
 isPrime = numIsPrime(candidate)
 # print, update numPrimesPrinted if prime
 candidate = candidate + 1

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline. Incrementally
refine and implement steps.

def printFirstNPrimes(n):
 candidate = 2
 numPrimesPrinted = 0
 while (numPrimesPrinted != n):
 isPrime = numIsPrime(candidate)
 if isPrime:
 print(candidate)
 numPrimesPrinted = numPrimesPrinted + 1
 candidate = candidate + 1
Now, just need to implement numIsPrime() BUT first test this
code using “stub” numIsPrime() ! lec9primes.py

stub like this VERY
USEFUL for testing!!

def numIsPrime(n):
 isPrime = True
 return isPrime

Next: finish printFirstNPrimes by replacing stub isNumPrime with correct
code

Again, develop isNumPrime in top-down fashion:

def isNumPrime(n):
presume number is prime
check potential divisors 2 .. n-1. If any evenly divides n
then n is not prime

Top-down design of printFirstNPrimes
Now develop isNumPrime in similar fashion:

def isNumPrime(n):
 isPrime = True

check potential divisors 2 .. n-1. If any evenly divides n
then n is not prime

Top-down design of printFirstNPrimes
Now develop isNumPrime in similar fashion:

def isNumPrime(n):
 # presume number is prime
isPrime = True
check potential divisors 2 .. n-1. If any evenly divides n
potentialDivisor = 2
while potentialDivisor < n:
 # check if potential divisor evenly divides n,
 # update isPrime if it does
 potentialDivisor = potentialDivisor + 1

return isPrime

Top-down design of printFirstNPrimes
Now develop isNumPrime in similar fashion:

def isNumPrime(n):
 # presume number is prime
isPrime = True
check potential divisors 2 .. n-1. If any evenly divides n
potentialDivisor = 2
while potentialDivisor < n:
 # check if potential divisor evenly divides n,
 # updating isPrime if it does
 if (n % potentialDivisor) == 0:
 isPrime = False
 potentialDivisor = potentialDivisor + 1

return isPrime

Note: this can be improved:
1) When find divisor, stop searching,

return False
2) Search doesn’t need to go to n-1.

Can stop when potential divisor
reaches square root of n (if n has
divisor bigger than its square root,
it must also have one smaller)

BUT general rule: worry about correctness
before working on optimizations like thislec9primes.py

Next time: quiz 1
• 45 minutes, 4 questions
• Probably:
• One piece of code in which you must replace logical

expression with some if/elif/elses (see ex1a and ex1b
in lec9.py)

• Two small functions to implement
• Surely involving basic loops. Style and level of

difficulty of HW2 and DS3 problems.
• Compare two or more functions and determine

whether or not they produce the same result on all
inputs (see f1a, f1b in lec9.py)

