
CS1210 Lecture 44 Dec. 10, 2021
• HW 11 due Sunday, 8pm
• Scores are up to date.

• One DS score has been dropped.
• Only HW11 is not included.

• Depending on your other HW scores, you can get from 0-7 additional
HW points based on your HW11 score

• Course grading scales on next slide
• Optional final exam: Monday, Dec. 13, 12:30-2:30pm

• Complete “Will you take the final exam?” ICON quiz/survey before noon
Monday to let me know whether or not you will take the exam

• Exam will be 80 minutes.
TODAY

• Python can answer an important question 😁…
• UI CS courses beyond this one
• The Halting Problem
• Questions about courses, careers, life?
• Information about the final exam

Final Exam is optional. The default is that you are NOT taking it. You must
OPT IN and notify me if you want to take it

Grade scales the are same percentage-wise except for rounding differences

NOTE: POINTS ARE THE OFFICIAL SCALE – NOT PERCENTAGE

Grade Points approx %

A+ 163 97

A 148 88.1

A- 141 83.9

B+ 133 79.2

B 122 72.6

B- 117 69.6

C+ 109 64.9

C 92 54.8

C- 83 49.4

D+ 80 47.6

D 73 43.5

D- 67 39.9

Without final
Possible points: 168 Without final max: 168

HW: 10 x 6 = 60
DS: 10 x 3 = 30
Quizzes: 18 + 3 * 20 = 78

HW11: 0-7 additional
depending on what
HW &DS assignments
 you will drop

Grade Points approx %

A+ 194 97

A 176 88

A- 167 83.5

B+ 158 79

B 145 72.5

B- 139 69.5

C+ 130 65

C 110 55

C- 99 49.5

D+ 95 47.5

D 87 43.5

D- 80 40

With final scale
Possible points: 200

With the skills learned in this course you can
now answer the age-old question:

Which came first, the chicken or the egg?

def whichCameFirst():

 chickenAndEgg = ['🥚', '🐓']
 answer = sorted(chickenAndEgg)[0]
 return answer

>> whichCameFirst()
??? What do you think will be printed ???

Comments on more
other CS/Informatics

courses
CS2110

Programming
for Informatics

CS2210
Discrete

Structures

CS3330
Algorithms

CS2230 CS2: Data
Structures

CS2630
Computer

Organization

CS3820
Programming

Languages

CS2820 Object
Oriented
Software

Electives in: mobile and embedded computing, web programming, cloud computing,
machine learning, HCI, security, databases, distributed systems, numerical and scientific

computing, software engineering (different numbers required for BA/BS)

CS majorCS2420
Analyzing Data
for Informatics

CS2520 Human-
computer

Interaction

CS2620
Server-side

Development

Elective
CS3910

Informatics
Project

Informatics major (minus cognate)

CS4340, 4340, or
4350 . Theory, limits,

or logic in CS (BS
only)

CS3620, 3640
(Operating Systems,

Networks)
Related majors:
Data Science
Computer Science & Engineering)

The Halting Problem

▪ it’s important to know what we can and can’t compute
▪ It turns out that we cannot create a program that can

check all other programs for infinite loops
▪ see, e.g., http://en.wikipedia.org/wiki/Halting_problem
▪ First: demonstrate that we can write programs that create

and execute new programs/functions.
testProgramOnInput.py

▪ Informal proof that we can’t write doesItHalt
▪ why can’t we create fully correct doesItHalt function?

(doesItHalt.py)
▪ To see why, consider function test in doesItHaltTest.py

http://en.wikipedia.org/wiki/Halting_problem

Halting Problem
• Consider trying to write program

 doesItHalt(programString, dataString)
where
 programString is a string representation of a program, e.g. “def foo(n): \n\treturn(n+1)”
 and dataString represents the input to that program

such that doesItHalt returns
 “Yes” if the program would halt on the specified input, and
 “No” if the program would not halt (i.e. would go into an infinite loop)

• It is not obvious that such a program can’t be written. But it should be clear that
doesItHalt can’t simply execute the specified program on the specified input.
(Why?) Instead, doesItHalt would need to rely on more sophisticated analysis

• HOWEVER, we can prove that doesItHalt cannot exist

doesItHalt cannot exist
Informal proof:

Suppose doesItHalt exists. I.e. doesItHalt
correctly determines/prints, for any possible
program and input, whether or not the
program halts on that input

Given assumption that doesItHalt exists,
we’ll define function test as follows:

def test(programString):

 result = doesItHalt(programString, programString)

 if result == "No":
 print("I'm done (hey, in fact, I halt)")

 else:
 loopFinished = False
 while(not loopFinished):
 print ("I'm gonna live forever ...")

Consider: what happens when you
execute test(“def test …”)?

doesItHalt does not exist
Informal proof:
1. Suppose doesItHalt exists (i.e. correctly states, for any possible

program and input, whether or not program halts on that input)
2. Create function ‘test’ of previous slide. This is real Python code that

works.
3. Now consider test(“def test …”)

a. test(“def test …”) first executes doesItHalt(“def test ..”, “def test ..”), saving
returned value in variable result

b. if result was “No” test(“def test ..”) clearly halts and returns.
c. If result was “Yes” test(“def test ..”) clearly loops forever.
d. BUT NOTICE! result would be “No” if doesItHalt determined that test(“def test

…”) would not halt! And would be “Yes” if doesItHalt determined that
test(“def test …”) would halt!

e. THUS, test(“def test …”) halts if and only if test(def test …”) does not halt!!

4. This is a contradiction, so we must conclude that the
original assumption, that doesItHalt exists, is false.

Depiction of this on next slide might be easier to follow

test

doesItHalt

programString
programString

dataString Yes

No

Loop
infinitely

I’m done!

When does test(‘def test …’) print ‘I’m done’ (i.e. when does it halt)?
 It halts when doesItHalt(‘def test …’, ‘def test …’) returns No
 But, by assumption, doesItHalt(‘def test …’, ‘def test …’) returns No if and only

 if it determines that function test would not halt given ‘def test …’ as input.
 Thus, test(‘def test …’) halts if and only if test(‘def test…’) does not halt.

When does test(‘def test …’) loop infinitely? (i.e. when does it not halt)?
 It loops infinitely when doestItHalt(‘def test …’, ‘def test …’) returns Yes
 But, by assumption, doesItHalt(‘def test …’, ‘def test …’) returns Yes if and only

 if function test would halt given ‘def test …’ as input.
 Thus, test(‘def test …’) does not halt if and only if test(‘def test …’) halts.
BOTH SITUATIONS LEAD TO A CONTRADICTION, SO THE ASSUMPTION THAT (A CORRECT)
doesItHalt HALT EXISTS MUST BE FALSE.

def test (…): …

Optional final exam
Setting: on Zoom, 12:30-2:30 pm, Monday, Dec. 13
Length: 5 - 8 questions, 80 minutes

To take the exam, you must answer “yes” on the “Will you take the final exam?” assignment on ICON by noon Monday.

Important note: If you open/begin the exam, it WILL be graded and your course grade will be calculated based on the 200-point with-final scale.

Main goal of exam: to test your ability to understand, analyze, and write small programs involving lists, dictionaries, strings, loops, functions,
objects/classes

Material:
• all the material of Quizzes 1 through 4
• Possibly a programming question involving GUI programming with tinter
• Possibly a question related to HW10 & 11 but not requiring knowledge of Google or Twitter APIs. E.g. DS 11 would be an appropriate question.

Types of questions
• The same as those you’ve seen in previous exams, plus perhaps some multiple choice/matching questions
• Analyze, understand, explain code
• Write code

Specific topics:
•Expressions, variables, assignments, and functions
•Conditional expressions - if/elif/else
• Iteration/looping - while and for
•Lists and dictionaries
•Recursion
•Basic running time complexity – Big O notation
•Defining and using classes
•Sorting, binary search
•Graph representations – adjacency lists for directed and undirected graphs
•GUI programming with tinter
•basic familiarity with (but not specific knowledge of) programming with GUI/Google maps/Twitter material. E.g. questions like DS11 that don’t

depend on specific API knowledge

Have a great break!

• I’m always available if you have questions
about future courses, the major, etc. Send me
email …

Do something GOOD with your skills – the
world needs innovative and creative thinking
now and in the future ☺

