
CS1210 Lecture 40 Dec. 1, 2021

• HW 10 due Saturday
• HW 11 will be posted tomorrow, due Sunday, Dec. 12

Today
• Final course grade scales are on the next slide
• One more sample widget, perhaps useful for HW10 and/or

11
• Continue with introduction to accessing web services such as

Google Static Maps and Geocoding APIs
• Structure of HW10

Final Exam is optional. The default is that you are NOT taking it. You must
OPT IN and notify me if you want to take it

Grade scales the are same percentage-wise except for rounding differences

NOTE: POINTS ARE THE OFFICIAL SCALE – NOT PERCENTAGE

Grade Points approx %

A+ 163 97

A 148 88.1

A- 141 83.9

B+ 133 79.2

B 122 72.6

B- 117 69.6

C+ 109 64.9

C 92 54.8

C- 83 49.4

D+ 80 47.6

D 73 43.5

D- 67 39.9

Without final
Possible points: 168

I will provide a with-final scale in a
few days. The percentages to
achieve grade levels will be very
nearly the same.

So far, maximum possible points: 156
HW: 8 x 6 = 48
DS: 10 x 3 = 30
Quizzes: 18 + 3 * 10 = 48

Maximum without final is: 168
HW9: 6 HW10: 5 HW11: up to 7 additional
DS11: up to 3 additional

Structure of HW10start.py

• Classes
– Globals. A class but we won’t ever create instances. Just use

the properties of the class as global variables. “Holding” them
all in a Class object keep things a little bit better organized
• properties include:

– rootWindow
– mapLabel
– others you will add for new widgets you add to GUI
– mapFileName, a string that never needs to change
– mapSize, an integer that you can change if you want but doesn’t need to

change during execution of program
– mapLocation, a string that you change via GUI
– zoomLevel, an integer that you will change via GUI
– other properties you will add such as mapType

Structure of HW10start.py
• Functions

– geocodeAddress(addressString)
• Calls Google geocoding service to get lat, lng for address specified in input string. Note:

returns (0,0) if Google failed to yield lat/lng for the string
– getMapUrl()

• Uses values in Globals such as mapLocation, zoomLevel, etc. to construct a string that can
be sent to Google to produce desired map.

– retrieveMapFromGoogle()
• Calls getMapUrl and then makes request to Google with that URL. Google returns an

image that is stored in file Globals.mapFile
– displayMap()

• Calls retrieveMap… then then update GUI stuff to make map (which was stored in an image
file by retrieveMap…) appear on Globals.mapLabel widget

– readEntryAndDisplayMap()
• *should* read string from Entry widget you add, save value in Globals.mapLocation, then

display map. Initial version just displays map based on setting Globals.maplocation to
“Beijing”

– initializeGUIetc()
• Creates GUI, sets values of Globals properties so we can access GUI widgets in other code.

– HW10()
• initializes GUI, displays map, starts Tkinter loop

 geocodeAddress function: using the Geocoding
API from Python

Input: string for a location. Return value: a latitude, longitude pair
1. Create a URL string describing the geocoding info you want.

– first few lines of geocodeAddress
2. Send the URL to Google and receive the results

– urlopen(…) line of geocodeAddress
3. Google returns a JSON-formatted string.

– JSON is a commonly used open standard for transmitting data as text. http://
en.wikipedia.org/wiki/JSON Perhaps most commonly, JSON is used to transmit data in
dictionary form – i.e. before transmitting, data is encoded into a long string that
“looks” (to human reader) like a dictionary representation. The receiver of this string
can then “decode” the string into a dictionary data structure and extract the items of
interest out of it.

– Json.loads(…) line decodes the JSON result, yielding a Python dictionary
– Remaining lines look in the dictionary to extract the info we need (here, latitude and

longitude). Study the Google Geocoding API - https://developers.google.com/maps/
documentation/geocoding/intro to see what information is in the dictionary (much
more than you’ll likely use!)

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro

Similarly, using the Static Maps service
from Python

1. Create a long URL string describing the map you
want. Use the documentation - https://
developers.google.com/maps/documentation/
maps-static/intro to learn the URL format
– see getMapUrl in hw10start.py
– You will need to modify getMapURL for the pin and

maptype parts of HW10

2. Send the URL to Google and receive the results
– see retrieveMapFromGoogle

https://developers.google.com/maps/documentation/maps-static/intro
https://developers.google.com/maps/documentation/maps-static/intro
https://developers.google.com/maps/documentation/maps-static/intro

HW10 todo list
• understand the use of class Globals as “nice” way of handling global values
• add Entry widget so you can change location

– Upon button press, callback should read Entry, set Globals.mapLocation property,
and call displayMap()

• enable zooming
– Upon use of widget (button or whatever you choose - consider +/-buttons as in

simplegui2.py), set Globals.zoomLevel, call displayMap()
• enable changing map type

– add a new Globals property for mapType
– modify getMapURL to so that string representing request to Google Static maps

API specifies desired map type
– upon use of widget, set Globals.mapType value, and call displayMap() Consider

radio buttons as in radioButton.py
• display pin at map center

– modify getMapURL so that string representing request to Google Static maps API
includes specification of pin at map center

• Demo: basic retrieving of Web pages via
urlopen, etc. – getWebPage.py

1. GET A TWITTER DEVELOPER ACCOUNT! It’s FREE
– https://developer.twitter.com/
– If you are worried about us seeing your personal tweets, make a different Twitter account

just for this class
– It used to be simpler. Now you need to answer a bunch of questions to get the access we

need. Just say you things like “For a university class project, learning about Twitter API and
writing a Python program to search for tweets based on keywords and general location”. The
answers DO MATTER – some students have had their requests denied based at least partly
on these answers I think.

– For any required URLs (website, callback, etc.) when you are in the app creation screen, can
just use http://www.uiowa.edu or similar

– Some email addresses (maybe particularly some international ones) seem problematic –
result in delayed or denied approval.

2. Add required keys to twitteraccess.py. Test that searchTwitter() in twitteraccess.py
works for you.
3. Then start working on HW11…

– More important than ever: do not write many lines of code before testing! This assignment
has a lot of code and many little things can go wrong. If you add a lot of lines and then it
crashes/doesn’t work, it can be very difficult to debug/find where the error is.

– Add a few lines, test, add a few lines, test, …

Needed for HW11: DO SOON!
 Definitely do step 1 before Monday

https://developer.twitter.com/
http://www.uiowa.edu/

Next time

• Details and important information about HW 11
– Twitter accounts
– How to access/authenticate with web services like

Twitter that require authorization

