
• HW 7 due
• DS 9 available at the end of class, due Friday 8pm
• HW 8 available after class, due Thursday next week

– you MAY NOT import any modules (such as Fraction) to help with HW8 Q1, the q1()
function. Do the necessary basic math operations directly.

– for buildWordGraph in DS9 and HW8, it should *not* take several minutes to build the
graph for words5.txt. If it takes several minutes, you probably are using an O(n^3)
algorithm rather than O(n^2), often because you use a linear time operation such as
g.hasNode(…) inside the inner loop of your nested loops. (See slide 17 of this lecture)

Last time
• Intro to optimization algorithms, greedy algorithms
• Introduced graphs (the computer science/mathematical kind),

not the charts you’ve been plotting with pylab
Today
• Graph representations
• Basic graph algorithms

CS1210 Lecture 33 Nov. 8, 2021

Graphs and optimization problems based on graphs
• Many important real-world problems can be modeled as optimization

problems on graphs
• A graph is:

– A set of nodes (vertices)
– A set of edges (arcs) representing connections between pairs of nodes

• There are several types of graphs:
– Directed. Edges are “one way” from source to destination)
– Undirected. Edges have no particular direction – can travel either way, “see”

each node from other, etc.
– Weighted. Edges have associated numbers called weights that can be used to

represent cost, time, flow capacity, etc.
• See, e.g., Ch. 2 of free online book – Think Complexity - http://

greenteapress.com/complexity/html/thinkcomplexity003.html

http://greenteapress.com/complexity/html/thinkcomplexity003.html
http://greenteapress.com/complexity/html/thinkcomplexity003.html
http://greenteapress.com/complexity/html/thinkcomplexity003.html

Directed graph
• edges are “one way” from

source to destination
• Can have two (one each

way) between a pair of nodes
• Node can have edge to self
• Example relationships:
– course prerequisite
– hyperlink between web pages
– street between intersections
– Twitter follower
– Infection spread from-to

4

3

1

2

5

CS1210

CS2230

CS2820 CS3330

Undirected graph
• Edges have no direction. Can

“travel” either direction
• Can have only one edge

between a pair of nodes*
• Node cannot have edge to self
• Example relationships:
– Facebook friend
– Bordering countries/states

*another kind of graph – multigraph –
relaxes this rule

4

3

1

2

5

 Iowa

Minnesota

South Dak

Illinois

Wisconsin
n

Missouri

Nebraska

Weighted graphs
• Variant of both directed and

undirected graphs in which each edge
has an associate number called a
weight or cost

• Edge weight provides additional
information about the relationship
between the nodes.

• Example relationships:
– Airfare between two cities
– Distance between two cities
– Flow capacity of oil/water pipeline

between two points
– Network bandwidth between two ISP

nodes

4

3

1

2

5

JFK

ORD

SFO

23
2

1

100

5

CID

$496

$195

$395

$396
$724

Classic graph problems
• Determine if a graph has a cycle, a path that loops back

to start points (e.g. 2-4-5-3-2)
• Find a path (non-branching) that traverses each

(undirected) edge exactly once
– Leonhard Euler and the Bridges of Königsberg
– Not possible in graph on top right

• Find the shortest path between source s and
destination
– Different algorithms for weighted/unweighted graphs

• Find longest path between source and destination
• Find a path that visits each vertex exactly once

– A, E, D, C, F, B, A in example on bottom right
• Path of minimum cost that visits each vertex once

– A, E, D, C, B, F, A (cost 15) in example
• Assign no more than n different colors to vertices under

constraint that no pair of connected vertices has the
same color

Some of these are easy (have fast algorithms), others hard
(no known efficient solution)

4

3

1

2

5

6

E

A

F

C

D

1

1 1

3 2

1000

4

5

B

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Representing graphs
• How can we represent general graph in Python?
– Need to keep track of nodes
– Need to keep track of edges

• Several ways to represent graphs have been developed
• List of nodes and list of edges
• Adjacency matrix
• Adjacency lists
• Dictionary of dictionaries

– Efficiency of algorithms that solve graph problems can vary
greatly depending on how graph are representated

– a strong influence on choice is the fact that one of the most
common things needed in graph algorithms is access to
immediate neighbors of a node (nodes that are destinations
of edges for which “current” node is source)

Adjacency matrix

• Appealingly simple to understand and implement
• Use, e.g. a list of lists containing True/False, 0/1, or similar
• NOT the most common graph representation for most problems. Can you

think of a reason why?
– Consider representing Facebook friends graph where each node is a FB user and

an edge exists between two nodes whenever the two are FB friends.
– One billion nodes. Adjacency matrix 1B x 1B in size! Your computer doesn’t have

that much storage. But FB graph can be represented in computer! How?
– The 1B x 1B would be mostly False/0 – most people don’t have huge number of

friends. Should be representable in closer to 1B * median number of friends.
Other representations enable this huge memory savings.

4

3
1

2

5

1 2 3 4 5

1 False True True True False

2 True False False False False

3 True False False True False

4 True False True False False

5 False False False False False

Adjacency list
Use a dictionary with
• Nodes as keys
• Values are lists of neighbor nodes

4

3
1

2

5

KEY
 1
 2
 3
 4
 5

VALUE
[2, 4, 3]
[1]
[1, 4]
[3, 1]
[]

Compared to adjacency matrix:
+ Much less space (when, as is common, most nodes have only a small relatively small
number of neighbors). Facebook graph. People have hundreds of friends, not many milliions

- Query of “does edge (i,j) exist?” not O(1). Must search list associated with node i to see if j is
there. Turns out this is not crucial in many graph algorithms. (could address this using
dictionary of dictionaries but often not necessary)

Adjacency list graph representation
Suitable for both undirected and directed graphs
(and can be use for weighted graphs as well)

 KEY
 CS2230
 CS2820
 CS1210
 CS3330

 VALUE
[CS2820, CS3330]
[]
[CS2230]
[]

4

3
1

2

5

KEY
 1
 2
 3
 4
 5

VALUE
[2, 4, 3]
[1]
[1, 4]
[3, 1]
[]

CS1210

CS2230

CS2820 CS3330

An adjacency list representation for undirected graphs in
Python

Two classes: Node and Graph

Node
• properties:
– name : string
– status: string (we’ll use this to “mark” nodes during

 traversals)
• methods
– getName
– __repr__ : we’ll print nodes as <name>

Note: in your HW8 you’ll add one or more additional properties that
help with traversing/walking through graphs to solve specific problems

basicgraph.py

Adjacency list representation for undirected graphs
Graph
• properties

– nodes: a list of Node objects
– adjacencyLists: a dictionary with all nodes as keys. The value

associated with a key n1 (where n1 is a node) is a list of all the
nodes, n2, for which (n1,n2) is an edge.

• methods
– addNode(node) : nodes must be added to graphs before edges
– addEdge(node1, node2) : presumes both nodes in graph already
– neighborsOf(node) : returns list of neighboring nodes
– getNode(name)
– hasNode(node)
– hasEdge(node1, node2) : return T if edge node1-node2 in graph
– __repr__

basicgraph.py

G

H

A

B

F

KEY
 A
 B
 C
 D
 E
 F
 G
 H

VALUE
[B,C,E,H]
[A,C,D,F]
[A,B,F]
[B]
[A,G]
[B,C]
[E,H]
[A,G]

C

D

E

This graph is generated by genDemoGraph() in basicGraph.py

Note: for exams, you need to be able to 1) draw graph given adjacency list
dictionary, and/or 2) show adjacency list dictionary given graph drawing

G

H

A

B

F

KEY
 A
 B
 C
 D
 E
 F
 G
 H

VALUE
[B,C,E,H]
[A,C,D,F]
[A,B,F]
[B]
[A,G]
[B,C]
[E,H]
[A,G]

C

D

E

As I’ve said, many real-world problems can be represented as
problems involving graphs. The algorithms to solve those problems
often involve graph traversals, organized exploration or
“walkthroughs” of the graph.
Two famous ones are: depth-first search and breadth-first search. I
will present breadth-first search.
You will not be responsible for knowing the details of breadth-first
search (for exam purposes) but you need to understand it well
enough to use and extend it in HW8.

Word ladder puzzles

CAT
???
???
DOG

Find 3-letter English words for ??? Positions. Each must differ from
previous and next word in only one location

CAT
COT
???
DOG

CAT
COT
DOT
DOG

This problem is easily representable and solvable
using graphs!

DS9 buildWordGraph
Be careful in buildWordGraph - what is potentially slow about this?

for w1 in wordList:
 n1 = g.getNode(w1)

for w2 in wordList:
 n2 = g.getNode(w2)
 If shouldHaveEdge(w1, w2):

 g.addEdge(getNode(w1), getNode(w2))

Instead, recommend organizing as

for n1 in g.nodes:
 for n2 in g.nodes:
 If shouldHaveEdge(n1.getName(), n2.getName())
 …
 g.addEdge(n1, n2)

Better yet:

for i in range (len(g.nodes)):
 n1 = g.nodes[I]
 for j in range(i, len(g.nodes)):

 n2 = g.nodes[j]

Note: fixes problem 2 above

This has two problems:
1) error because
2) very slow because ?

Note: fixes both problems

<— : You could address problem 1 here with
and ‘if …’

Next time

• Graph traversals
• Breadth first search
• Depth first search

• HW 8

