
CS1210 Lecture 32 Nov. 5, 2021
• HW 7 due Monday
• Quiz 4: Nov. 19
Last time

• Finished sorting - efficient O(n log n) sorts
• Merge sort and quicksort

• demo of plotting/graphing sorting results using
matplotlib/pylab

This week
• Greedy algorithms
• Begin optimization and graph algorithms

Optimization and graph problems

• Many computing tasks these days involve solving optimization problems –
finding the smallest, biggest, best, cheapest of something

• In general, optimization problems are expressed in terms of two
components
– An objective function that is to be minimized/maximized (e.g. airfare, travel

distance, travel time)
– A set of constraints that must be met (e.g. route must include these intermediate

cities, departure must be after 8am, arrival must be before noon)
• Many optimization problems can be addressed as problems on graphs (the

computer science kind, consisting of nodes/vertices and edges/
connections, not the 2D x-y plots you have been using to visualize running
time behavior.)

• HW 8 will focus on optimization
and graphs. Before we get to graphs,
a quick look at other optimization
problems …

A simple optimization problem
Suppose you need to give someone n cents in change (given US coins – penny,
nickel, dime, quarter). How do you do it with the minimum number of coins?
• “greedily” give as many large value coins as possible first, then next largest

size, etc. That is, first as many quarters as possible, then as many dimes, …
• E.g. for 56¢: 2 quarters, 1 nickel, 1 penny

What if we replace nickel (5c) with 3 cent and 4 cent coins? Does same greedy
approach work?
• for 56¢ greedy approach yields 25, 25, 4, 1, 1 but 25, 25, 3, 3 is fewer coins!

For US coins, the algorithm works. It is an example of a broad class of “greedy
algorithms” – if you take Algorithms (CS3330), you will likely study more about
greedy algorithms.

Greedy algorithms

• Generally, a greedy algorithm is one that proceeds as follows:

– At each step, choose the “locally”/”apparently”/”immediately” best
option (e.g. the one that seems like to make the most progress toward a
solution)

• The idea (hope!) behind greedy algorithms is that by making many locally
optimal choices we end up with overall optimal solution.

• But, as we saw, doesn’t always succeed! Sometimes need to work harder.

• Greedy algorithm for Travelling Salesperson problem? No, does not always
yield optimal solution

• Greedy algorithm for shortest driving route between two cities? (E.g. driving
directions in Google maps). Yes, Dijkstra’s algorithm.

• Greedy algorithms are very important and useful. But you need to think
carefully about whether greedy approach indeed gives you an optimal
solution (or, if not, a good enough one)

• for more, see http://en.wikipedia.org/wiki/Greedy_algorithm

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Greedy_algorithm

Source: http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-
shiny/

http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/
http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/

See also nice short video at:http://www.youtube.com/watch?
v=SC5CX8drAtU&list=PLxH6ufuE9gKtM5-bbFMTp_1-avAN-iuiq&index=3

Source: http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-
shiny/

http://www.youtube.com/watch?v=SC5CX8drAtU&list=PLxH6ufuE9gKtM5-bbFMTp_1-avAN-iuiq&index=3
http://www.youtube.com/watch?v=SC5CX8drAtU&list=PLxH6ufuE9gKtM5-bbFMTp_1-avAN-iuiq&index=3
http://www.youtube.com/watch?v=SC5CX8drAtU&list=PLxH6ufuE9gKtM5-bbFMTp_1-avAN-iuiq&index=3
http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/
http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/

Egyptian fractions
3/4 -> sum of (different) fractions all with 1 as
numerator

E.g. 3 / 4 -> 1 / 2 + 1 / 4

Greedy algorithm?

Try in sequence ½, 1/3, ¼, 1/5, …

Implementing this will be Q1 of HW8. Note: DO NOT use
any division – it does not work well!)
Lots of info about this problem at: http://www.maths.surrey.ac.uk/hosted-
sites/R.Knott/Fractions/egyptian.html

If current fraction is n/d and current candidate to
subtract is 1/c:
• How do we know if 1/c is less than n/d?
• How do we calculate (n/d) - (1/c)?
both without using division?

Another optimization problem

Burglar with a knapsack in a home full of valuable
items
– Objective function: fill knapsack with maximum

value
– Constraint: knapsack can only hold 20 pounds

Algorithm to solve this?

Value Weight

clock 175 10

painting 90 9

radio 20 4

vase 50 2

book 10 1

computer 200 20

Burglar filling knapsack
Value Weight Val/wt

clock 175 10 17.5

painting 90 9 10

radio 20 4 5

vase 50 2 25

book 10 1 10

computer 200 20 10

• Greedy approach says to pick “best” at each step. What rule could we use for best
here?
– Highest value ->
– Lowest weight ->
– Highest value/weight ->

None of these criteria produce the optimal solution for this particular situation (best
total is $275 via clock, painting, book).
We could easily write an algorithm that always find the best by trying every subset of
items. However, this solution is very inefficient for many knapsack-like problems. If have
n items, how many subsets?
At present, no known efficient algorithm for knapsack problems

computer only -> $200 total
book, vase, radio painting, -> $170 total

vase, clock, book, radio -> $255 total

Constraint:
Knapsack
can hold up
to 20lbs

2^n, so exhaustive search potentially very slow

Graphs and optimization problems based on graphs
• Many important real-world problems can be modeled as optimization

problems on graphs
• A graph is:

– A set of nodes (vertices)
– A set of edges (arcs) representing connections between pairs of nodes

• There are several types of graphs:
– Directed. Edges are “one way” from source to destination)
– Undirected. Edges have no particular direction – can travel either way, “see”

each node from other, etc.
– Weighted. Edges have associated numbers called weights that can be used to

represent cost, time, flow capacity, etc.
• See Ch. 2 of follow-up book to our text – Think Complexity - http://

greenteapress.com/complexity/html/thinkcomplexity003.html

http://greenteapress.com/complexity/html/thinkcomplexity003.html
http://greenteapress.com/complexity/html/thinkcomplexity003.html
http://greenteapress.com/complexity/html/thinkcomplexity003.html

Directed graph
• edges are “one way” from

source to destination
• Can have two (one each

way) between a pair of nodes
• Node can have edge to self
• Example relationships:
– course prerequisite
– hyperlink between web pages
– street between intersections
– Twitter follower
– Infection spread from-to

4

3

1

2

5

CS1210

CS2230

CS2820 CS3330

Undirected graph
• Edges have no direction. Can

“travel” either direction
• Can have only one edge

between a pair of nodes*
• Node cannot have edge to self
• Example relationships:
– Facebook friend
– Bordering countries/states

*another kind of graph – multigraph –
relaxes this rule

4

3

1

2

5

 Iowa

Minnesota

South Dak

Illinois

Wisconsin
n

Missouri

Nebraska

Weighted graphs
• Variant of both directed and

undirected graphs in which each edge
has an associate number called a
weight or cost

• Edge weight provides additional
information about the relationship
between the nodes.

• Example relationships:
– Airfare between two cities
– Distance between two cities
– Flow capacity of oil/water pipeline

between two points
– Network bandwidth between two ISP

nodes

4

3

1

2

5

JFK

ORD

SFO

23
2

1

100

5

CID

$496

$195

$395

$396
$724

Next week

• Graph representations
• Graph traversals: BFS, DFS, and the HW8 word

ladder problem
• HW 8 second question will work with graphs

