- HW 7 due Monday
- Quiz 4: Nov. 19

Last time

- Finished sorting - efficient O(n log n) sorts
- Merge sort and quicksort
- demo of plotting/graphing sorting results using matplotlib/pylab
This week
- Greedy algorithms
- Begin optimization and graph algorithms

Optimization and graph problems

- Many computing tasks these days involve solving optimization problems finding the smallest, biggest, best, cheapest of something
- In general, optimization problems are expressed in terms of two components
- An objective function that is to be minimized/maximized (e.g. airfare, travel distance, travel time)
- A set of constraints that must be met (e.g. route must include these intermediate cities, departure must be after 8am, arrival must be before noon)
- Many optimization problems can be addressed as problems on graphs (the computer science kind, consisting of nodes/vertices and edges/ connections, not the 2D x-y plots you have been using to visualize running time behavior.)
- HW 8 will focus on optimization and graphs. Before we get to graphs, a quick look at other optimization problems ...

A simple optimization problem

Suppose you need to give someone n cents in change (given US coins - penny, nickel, dime, quarter). How do you do it with the minimum number of coins?

- "greedily" give as many large value coins as possible first, then next largest size, etc. That is, first as many quarters as possible, then as many dimes, ...
- E.g. for 56c: 2 quarters, 1 nickel, 1 penny

What if we replace nickel (5c) with 3 cent and 4 cent coins? Does same greedy approach work?

- for 56 c greedy approach yields $25,25,4,1,1$ but $25,25,3,3$ is fewer coins!

For US coins, the algorithm works. It is an example of a broad class of "greedy algorithms" - if you take Algorithms (CS3330), you will likely study more about greedy algorithms.

Greedy algorithms

- Generally, a greedy algorithm is one that proceeds as follows:
- At each step, choose the "locally"/"apparently"/"immediately" best option (e.g. the one that seems like to make the most progress toward a solution)
- The idea (hope!) behind greedy algorithms is that by making many locally optimal choices we end up with overall optimal solution.
- But, as we saw, doesn't always succeed! Sometimes need to work harder.
- Greedy algorithm for Travelling Salesperson problem? No, does not always yield optimal solution
- Greedy algorithm for shortest driving route between two cities? (E.g. driving directions in Google maps). Yes, Dijkstra's algorithm.
- Greedy algorithms are very important and useful. But you need to think carefully about whether greedy approach indeed gives you an optimal solution (or, if not, a good enough one)
- for more, see http://en.wikipedia.org/wiki/Greedy algorithm

Source: http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-andshiny/

Source: http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-andshiny/

See also nice short video at:http://www.youtube.com/watch? $\mathrm{v}=$ SC5CX8drAtU\&list=PLxH6ufuE9gKtM5-bbFMTp 1-avAN-iuiq\&index=3

Egyptian fractions

 $3 / 4$-> sum of (different) fractions all with 1 as numeratorE.g. 3 / 4 -> $1 / 2+1$ / 4

Greedy algorithm?

Try in sequence $1 / 2,1 / 3,1 / 4,1 / 5, \ldots$
mplementing this will be Q1 of HW8. Note: DO NOT use any division - it does not work well!)
_ots of info about this problem at: http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fractions/egyptian.html

If current fraction is n / d and current candidate to subtract is $1 / \mathrm{c}$:

- How do we know if $1 / \mathrm{c}$ is less than n / d ?
- How do we calculate (n / d) - ($1 / \mathrm{c}$)?
both without using division?

Another optimization problem

	Value	Weight
clock	175	10
painting	90	9
radio	20	4
vase	50	2
book	10	1
computer	200	20

Burglar with a knapsack in a home full of valuable items

- Objective function: fill knapsack with maximum value
- Constraint: knapsack can only hold 20 pounds Algorithm to solve this?

Burglar filling knapsack

	Value	Weight	Val/wt	
clock	175	10	17.5	Constraint:
painting	90	9	10	Knapsack
radio	20	4	5	can hold up
vase	50	2	25	to 20lbs
book	10	1	10	
computer	200	20	10	

- Greedy approach says to pick "best" at each step. What rule could we use for best here?
- Highest value -> computer only -> \$200 total
- Lowest weight -> book, vase, radio painting, -> \$170 total
- Highest value/weight -> vase, clock, book, radio -> \$255 total

None of these criteria produce the optimal solution for this particular situation (best total is $\$ 275$ via clock, painting, book).
We could easily write an algorithm that always find the best by trying every subset of items. However, this solution is very inefficient for many knapsack-like problems. If have n items, how many subsets? $\quad 2^{\wedge} n$, so exhaustive search potentially very slow At present, no known efficient algorithm for knapsack problems

Graphs and optimization problems based on graphs

- Many important real-world problems can be modeled as optimization problems on graphs
- A graph is:
- A set of nodes (vertices)
- A set of edges (arcs) representing connections between pairs of nodes
- There are several types of graphs:
- Directed. Edges are "one way" from source to destination)
- Undirected. Edges have no particular direction - can travel either way, "see" each node from other, etc.
- Weighted. Edges have associated numbers called weights that can be used to represent cost, time, flow capacity, etc.
- See Ch. 2 of follow-up book to our text - Think Complexity - http:// greenteapress.com/complexity/html/thinkcomplexity003.html

Directed graph

- edges are "one way" from source to destination
- Can have two (one each way) between a pair of nodes
- Node can have edge to self
- Example relationships:
- course prerequisite
- hyperlink between web pages
- street between intersections
- Twitter follower
- Infection spread from-to

Undirected graph

- Edges have no direction. Can "travel" either direction
- Can have only one edge between a pair of nodes*
- Node cannot have edge to self

- Example relationships:
- Facebook friend
- Bordering countries/states

*another kind of graph - multigraph -
relaxes this rule

Weighted graphs

- Variant of both directed and undirected graphs in which each edge has an associate number called a weight or cost
- Edge weight provides additional information about the relationship between the nodes.
- Example relationships:
- Airfare between two cities
- Distance between two cities
- Flow capacity of oil/water pipeline between two points
- Network bandwidth between two ISP nodes

Next week

- Graph representations
- Graph traversals: BFS, DFS, and the HW8 word ladder problem
- HW 8 second question will work with graphs

