
CS1210 Lecture 32   Nov. 5, 2021
• HW 7 due Monday 
• Quiz 4: Nov. 19 
Last time 

• Finished sorting - efficient O(n log n) sorts 
• Merge sort and quicksort 

• demo of plotting/graphing sorting results using 
matplotlib/pylab 

This week 
• Greedy algorithms 
• Begin optimization and graph algorithms



Optimization and graph problems

• Many computing tasks these days involve solving optimization problems – 
finding the smallest, biggest, best, cheapest of something 

• In general, optimization problems are expressed in terms of two 
components 
– An objective function that is to be minimized/maximized (e.g. airfare, travel 

distance, travel time) 
– A set of constraints that must be met (e.g. route must include these intermediate 

cities, departure must be after 8am, arrival must be before noon) 
• Many optimization problems can be addressed as problems on graphs (the 

computer science kind, consisting of nodes/vertices and edges/
connections, not the 2D x-y plots you have been using to visualize running 
time behavior.) 

• HW 8 will focus on optimization 
and graphs. Before we get to graphs,  
a quick look at other optimization  
problems …



A simple optimization problem
Suppose you need to give someone n cents in change (given US coins – penny, 
nickel, dime, quarter).  How do you do it with the minimum number of coins? 
• “greedily” give as many large value coins as possible first, then next largest 

size, etc. That is, first as many quarters as possible, then as many dimes, … 
• E.g. for 56¢: 2 quarters, 1 nickel, 1 penny 

  
What if we replace nickel (5c) with 3 cent and 4 cent coins? Does same greedy 
approach work? 
• for 56¢ greedy approach yields 25, 25, 4, 1, 1 but 25, 25, 3, 3 is fewer coins!   

For US coins, the algorithm works. It is an example of a broad class of “greedy 
algorithms” – if you take Algorithms (CS3330), you will likely study more about 
greedy algorithms. 



Greedy algorithms

• Generally, a greedy algorithm is one that proceeds as follows: 

– At each step, choose the “locally”/”apparently”/”immediately” best 
option (e.g. the one that seems like to make the most progress toward a 
solution) 

• The idea (hope!) behind greedy algorithms is that by making many locally 
optimal choices we end up with overall optimal solution. 

• But, as we saw, doesn’t always succeed! Sometimes need to work harder. 

• Greedy algorithm for Travelling Salesperson problem? No, does not always 
yield optimal solution 

• Greedy algorithm for shortest driving route between two cities? (E.g. driving 
directions in Google maps). Yes, Dijkstra’s algorithm. 

• Greedy algorithms are very important and useful. But you need to think 
carefully about whether greedy approach indeed gives you an optimal 
solution (or, if not, a good enough one) 

• for more, see http://en.wikipedia.org/wiki/Greedy_algorithm

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Greedy_algorithm


Source: http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-
shiny/ 

http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/
http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/


See also nice short video at:http://www.youtube.com/watch?
v=SC5CX8drAtU&list=PLxH6ufuE9gKtM5-bbFMTp_1-avAN-iuiq&index=3

Source: http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-
shiny/ 

http://www.youtube.com/watch?v=SC5CX8drAtU&list=PLxH6ufuE9gKtM5-bbFMTp_1-avAN-iuiq&index=3
http://www.youtube.com/watch?v=SC5CX8drAtU&list=PLxH6ufuE9gKtM5-bbFMTp_1-avAN-iuiq&index=3
http://www.youtube.com/watch?v=SC5CX8drAtU&list=PLxH6ufuE9gKtM5-bbFMTp_1-avAN-iuiq&index=3
http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/
http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/


Egyptian fractions
3/4  -> sum of (different) fractions all with 1 as 
numerator 

E.g. 3 / 4 -> 1 / 2 + 1 / 4 

Greedy algorithm? 

Try in sequence  ½, 1/3, ¼, 1/5, … 

Implementing this will be Q1 of HW8. Note: DO NOT use 
any division – it does not work well!) 
Lots of info about this problem at: http://www.maths.surrey.ac.uk/hosted-
sites/R.Knott/Fractions/egyptian.html



If current fraction is n/d and current candidate to 
subtract is 1/c: 
• How do we know if 1/c is less than n/d? 
• How do we calculate (n/d) - (1/c)? 
both without using division? 



Another optimization problem

Burglar with a knapsack in a home full of valuable 
items 
– Objective function: fill knapsack with maximum 

value 
– Constraint: knapsack can only hold 20 pounds 

Algorithm to solve this? 

Value Weight

clock 175 10

painting 90 9

radio 20 4

vase 50 2

book 10 1

computer 200 20



Burglar filling knapsack
Value Weight Val/wt

clock 175 10 17.5

painting 90 9 10

radio 20 4 5

vase 50 2 25

book 10 1 10

computer 200 20 10

• Greedy approach says to pick “best” at each step. What rule could we use for best 
here?  
– Highest value ->  
– Lowest weight ->  
– Highest value/weight ->  

None of these criteria produce the optimal solution for this particular situation (best 
total is $275 via clock, painting, book).   
We could easily write an algorithm that always find the best by trying every subset of 
items. However, this solution is very inefficient for many knapsack-like problems. If have 
n items, how many subsets?  
At present, no known efficient algorithm for knapsack problems

computer only -> $200 total
book, vase, radio painting, -> $170 total

vase, clock, book, radio -> $255 total

Constraint: 
Knapsack 
can hold up 
to 20lbs

2^n, so exhaustive search potentially very  slow 



Graphs and optimization problems based on graphs
• Many important real-world problems can be modeled as optimization 

problems on graphs 
• A graph is: 

– A set of nodes (vertices) 
– A set of edges (arcs) representing connections between pairs of nodes 

• There are several types of graphs: 
– Directed. Edges are “one way” from source to destination) 
– Undirected. Edges have no particular direction – can travel either way, “see” 

each node from other, etc. 
– Weighted. Edges have associated numbers called weights that can be used to 

represent cost, time, flow capacity, etc. 
• See Ch. 2 of follow-up book to our text – Think Complexity  - http://

greenteapress.com/complexity/html/thinkcomplexity003.html

http://greenteapress.com/complexity/html/thinkcomplexity003.html
http://greenteapress.com/complexity/html/thinkcomplexity003.html
http://greenteapress.com/complexity/html/thinkcomplexity003.html


Directed graph 
• edges are “one way” from 

source to destination  
• Can have two  (one each 

way) between a pair of nodes 
• Node can have edge to self 
• Example relationships: 
– course prerequisite  
– hyperlink between web pages 
– street between intersections 
– Twitter follower  
– Infection spread from-to
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Undirected graph 
• Edges have no direction. Can 

“travel” either direction 
• Can have only one edge 

between a pair of nodes* 
• Node cannot have edge to self 
• Example relationships: 
– Facebook friend 
– Bordering countries/states 

*another kind of graph – multigraph – 
relaxes this rule
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Weighted graphs 
• Variant of both directed and 

undirected graphs in which each edge 
has an associate number called a 
weight or cost 

• Edge weight provides additional 
information about the relationship 
between the nodes. 

• Example relationships: 
– Airfare between two cities 
– Distance between two cities 
– Flow capacity of oil/water pipeline 

between two points 
– Network bandwidth between two ISP 

nodes
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Next week

• Graph representations 
• Graph traversals: BFS, DFS, and the HW8 word 

ladder problem 
• HW 8 second question will work with graphs


