
CS1210 Lecture 30   Nov. 1, 2021
• Quiz 3 has been graded 

       
     Median: 12 
     High: 20 (five people) 
• Grades so far: scores shown/discussed on separate pdf.  Total graded points so far: 

109. 30 from HW, 21 from DS, 58 from quizzes.  Remaining: 59. 30 from HW, 9 from 
DS, 20 from quiz 4. 32 from (optional) final. Total: 168 without final, 200 with final 

• Quiz 4: Nov. 19 
• DS8 is available, due Wednesday by  8pm. Attendance at actual Tuesday discussion 

section is optional 
• It is easy but requires you to use the pylab module. So you need to use an IDE 

that includes pylab or figure out how to install pylab in IDLE or Wing or 
whatever you use. Attend DS tomorrow to get help with that if necessary 

• HW7 will be available later today. Very different from other HW assignments. 
Involves writing some code to compare sorting algorithms and answering questions 
about the result in written form (i.e. actually writing some sentences!) 

Today 
• Start sorting: selection and insertion sort

Score 0 (most 
didn’t take)

1-3 4-6 7-9 10-12 13-15 16-18 19-20

# of people 18 3 16 21 22 29 25 14



(from last week) Asymptotic notation
Big O notation is used to give an upper bound on a 
function’s asymptotic growth or order of growth 
(growth as input size gets very large)  
• if we say f(x) is O(x3), or f(x) is in O(x3), we are 

saying that f grows no faster than x3 in an 
asymptotic sense.  

• 100 x3, .001x3, 23x3 + 14 x2, and x3 all grow at the 
same rate in the big picture – all grow like x3.  They 
are all O(x3)



Asymptotic notation
It is also very important to keep in mind that we can 
separately characterize the best, worst, and average case 
running times! 

For linearSearch: 
• Best case? O(1) 
• Worst case? O(n) 
• Average case? O(n) 

Many many students forget this distinction. O is an upper 
bound, a guarantee on growth rate of something.  Best, 
worst, average case running times are three different 
somethings about which you can make three big-O 
statements.







Important complexity classes
Some big-O cases: 
• O(1), O(log n), O(n), O(n log n), O(n2), O(n3),  O(2n), O(2n), 

O(n!), and even O(     ) 
• Try to get a feel for which are “good” (or good enough 

specifications of your particular problem)  
• Often, very useful to try to redesign algorithm to convert 

a factor of n to a log n.  O(n2) ! O(n log n) 
• Exponential algorithms are very slow except for very 

small inputs.  For any but toy problem sizes, you usually 
need a different algorithm (and sometimes need a whole 
different approach – aiming for an approximate or 
heuristic solution rather than an optimal/complete/
perfect one).

22
n



• Basic sorting methods 
• Selection sort, insertion sort 

• Introduction to plotting w matplotlib/pylab 
• more efficient sorting 
• Merge sort, quicksort

Next



This week’s discussion section assignment, DS8, and homework, HW7 
• Will use Pylab module to plot charts/graphs. Modules/packages like Pylab 

can be annoying to install. I strongly recommend you download the free 
Anaconda distribution (Python + Spyder IDE plus many pre-installed 
packages) from anaconda.com for use in these assignments.  
• https://www.anaconda.com/products/individual  

HW 7 will ask you to compare sorting methods and use Pylab to make charts/
graphs of their running time behavior 

Making meaningful graphs is often not easy 
• experiment to find good sizes for data 

– test on large enough data to clearly understand differences/similarities (for some 
sorts, need lists hundreds of thousands and/or millions long) 

• Experiment on sorted, reverse sorted, random data

https://www.anaconda.com/products/individual


Sorting ( https://www.youtube.com/watch?v=k4RRi_ntQc8 )

It’s mostly a “solved” problem – available as excellent built-in functions – so why study? 
The variety of sorting algorithms demonstrate a variety of important computer science 
algorithmic design and analysis techniques. 
Sorting has been studied for a long time. Many algorithms: selection sort, insertion 
sort, bubble sort, radix short, Shell short, quicksort, heapsort, counting sort, Timsort, 
comb sort, bucket sort, bead sort, pancake sort, spaghetti sort … (see, e.g., wikipedia: 
sorting algorithm) 

Why sort? Searching a sorted list is very fast, even for very large lists (log n is your 
friend). So if you are going to do a lot of searching, sorting is often excellent prep. 

Should you always sort? (Python makes it so easy … ) 
• We can search an unsorted list in O(n), so answer depends on how fast we can sort.  
• How fast can we sort? Certainly not faster than linear time (must look at, and maybe 

move, each item). In fact, in general we cannot sort in O(n).  Best “comparison-
based” sorting algorithms are O(n log n) 

• So, when should you sort?  If, for example, you have many searches to do. Suppose 
we have n/2 searches to do.   
– n/2 linear searches ! n/2 * O(n) ! O(n2) 
– sort, followed by n/2 binary searches ! O(n log n) + n/2 * O(log n) ! O(n log n) + O(n log 

n) ! O(n log n)  for large n, this is much faster

https://www.youtube.com/watch?v=k4RRi_ntQc8


Sorting

• Python built-in methods, functions 
– myList.sort() 
– sorted(mylist) 
– sorted(mylist, key=lambda item: item[2]) 

• first, a simple sort 
– how you would sort if given, say, a big list of numbers 

written on a page? How would you write down the 
sorted version of the list: 5 23 -2 15 100 1 8 2? 

 5 23 -2 15 100 1 8 2 !  -2 1 2 5 8 15 23 100



Idea: repeatedly find min in unsorted part and move it 
to sorted 
    5 23 -2 15 100 1 8 2 
Sorted          Not yet sorted 
          5 23 -2 15 100 1 8 2 
-2          5 23  15 100 1 8 2 
-2 1         5 23 15 100 8 2 
-2 1 2         5 23 15 100 8 
-2 1 2 5        23 15 100 8 
-2 1 2 5 8          23 15 100 
-2 1 2 5 8 15      23 100 
-2 1 2 5 8 15 23     100 
-2 1 2 5 8 15 23 100   



Sorting – selection sort

Given: 
L[0:i] sorted and in final position 
L[i:] unsorted 

How do we “grow” solution?

Sorted and in final position Unsorted

i

Find min in unsorted part and swap it with item 
currently at position i



Sorting – selection sort

def selectionSort(L): 
 for i in range(len(L)): 
  # swap min item in unsorted region with ith   
# item 

Sorted and in final position Unsorted

i

Sorted and in final position Unsorted

i



Sorting – selection sort

def selectionSort(L): 
 i = 0 
 # assume L[0:i] sorted and in final position 
 while i < len(L): 
  minIndex = findMinIndex(L, i) 
  L[i], L[minIndex] = L[minIndex], L[i] 
  # now L[0:i+1] sorted an in final position.  
  # Reestablish loop invariant before continuing. 
  i = i + 1 
  # L[0:i] sorted and in final position

Sorted and in final position Unsorted

i



# return index of min item in L[startIndex:] 
# assumes startIndex < len(L) 
# 
def findMinIndex(L, startIndex): 
 minIndex = startIndex 
 currIndex = minIndex + 1 
 while currIndex < len(L): 
  if L[currIndex] < L[minIndex]: 
   minIndex = currIndex 
  currIndex = currIndex + 1 
 return minIndex



Sorting – selection sort

• running time – Big O? 
• let n be len(L)  
• findMinIndex(L,startIndex) - number of basic 

steps?  
– n-startIndex 

• selectionSort(L) 
– calls findMinIndex(L,i) for i = 0..n-1 
– so total steps = (n-0) + (n-1) + (n-2) + … + 1 = ? 
– so, O(n2)



Sorting 

• lec30sorts.py code has sorting functions plus 
– timing functions timeSort, timeAllSorts 
– mixup function that takes a list as input and 

randomly rearranges items (note: contains 
commented out code that demonstrates incorrect 
random mixup algorithm as well)



Sorting 
• Another simple approach – insertion sort. 

Slightly different main step picture than for 
selection sort

Sorted, not yet in final position Unsorted

i
Given: 

L[0:i] sorted (but not necessarily in final position) 
L[i:] unsorted 

How do we “grow” solution?

Move L[i] into correct spot (shifting larger ones in 
L[0:i] one slot to the right



Idea: repeatedly move first item in unsorted part to 
proper place in sorted part 
    5 23 -2 15 100 1 8 2 
Sorted          Not yet sorted 
          5 23 -2 15 100 1 8 2 
5          23  -2 15 100 1 8 2 
5 23         -2 15 100 1 8 2 
-2 5 23        15 100 1 8 2 
-2 5 15 23       100 1 8 2 
-2 5 15 23 100      1 8 2 
-2 1 5 15 23 100     8 2 
-2 1 5 8 15 23 100    2 
-2 1 2 5 8 15 23 100  



Insertion sort

• running time of insertion sort? 
– best case? 
• sorted already O(n) 

– worst/average case? 
• O(n2) 



Running time of selection sort and 
insertion sort

• Selection sort 
– O(n2) always – worst, best, average case.  It always searches the entire 

unsorted portion of the list to find the next min.  No distinction 
between best/worst/average cases. 

• Insertion sort 
– In best case, while loop never executes, so O(n) 
– In worst case, while loop moves ith item all the way to L[0].  This yields 

the familiar sum,  0 + 1 + 2 + … + n, once again. Thus, O(n2). 
– Average case is also O(n2) 
– Among O(n2) sorts, insertion sort is good one to remember.  In 

practice, it works well on “almost sorted” data, which is common.  It is 
sometimes used as a “finish the job” component of hybrid sorting 
methods – use an O(n log n) sorting method until the list is “almost 
sorted, then switch to insertion sort to finish. 



def testSort(sortFunction, title= ‘’, minN = 1000, maxN=20000,     
  step=2000): 
 listSizes = list(range(minN, maxN, step)) 
 runTimes = [] 
 for listSize in listSizes: 
  listToSort = mixup(list(range(listSize))) 
  startTime = time.time() 
  sortFunction(listToSort) 
  endTime = time.time() 
  runTimes.append(endTime-startTime) 
 pylab.figure(1) 
     pylab.clf() 
  pylab.xlabel('List size')                                               lec30sorts.py 

 pylab.ylabel('Time (s)')           lec30plot.py 
 pylab.title(title) 
     pylab.plot(listSizes, runTimes, 'ro-')





• more efficient sorting: 
– merge sort 
– Quicksort 

• Many visualizations of sorting algorithms on the 
web: 
– http://www.sorting-algorithms.com, http://sorting.at, 

https://www.cs.usfca.edu/~galles/visualization/
ComparisonSort.html 

– https://www.youtube.com/watch?v=kPRA0W1kECg 
– https://www.youtube.com/watch?v=ROalU379l3U 

(dance group demonstrating sorting algorithms …)

Next time

http://www.sorting-algorithms.com/
http://sorting.at/
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=ROalU379l3U

