
CS1210 Lecture 28    Oct. 27, 2021
• HW 6 due tomorrow 
• Quiz 3 Friday in class  

• Recursion (implement a recursive function like in HW5 and DS6, 6 or 7 
points?) 

• Objects and classes (finish implementing a partial implementation of a 
class, 6 or 7 points?) 

• Big-O (1 basic question, just a few points - 2 or 3) 
• Binary search (1 question, probably completing a partial 

implementation of binary search, not many points - 4?) 
Today 
• Continue introduction to analysis of algorithms, searching, and sorting. 

Appendix B of (non-interactive version of) textbook (or Ch 21 if you have 
printed version) 

• “Big-O” notation  
• Binary search 
• Details of simple sorting algorithms



Last time discussed “RAM” model used to count steps of program execution. 
Considering again the 4 + 3n steps for foo(n)

def foo(n): 

 i = 0 

 result = 0 

 while i <= n: 

  result = result + i 
  i = i + 1 

 return answer 

• I said that we usually ignore the 4.  It turns out we are also usually happy 
to ignore the leading constant on the n.  n is what's important - the 
number of steps required grows linearly with n. 

• Throwing out those constants doesn't always make sense - at "tuning" 
time or other times, we might want/need to consider the constants. But 
in big picture comparisons, it's often helpful and valid to simplify things 
by ignoring them. 

We’ll look at two more examples before formalizing this throwing-away-stuff 
approach via Big-O notation.   



From last time - when can we search quickly?

• When the input is sorted. (old examples: dictionary, 
phone book? Stack of hw/exam papers sorted by name?) 

• Algorithm : check middle item, if item is too soon in 
sorted order, throw out first half.  If too late, throw out 
second half. Repeat. 

• This algorithm is called binary search – mentioned briefly 
earlier in the semester. 

lec27.py contains recursive and non-recursive versions. Both 
should be fairly easy to understand; the recursive version 
somewhat more natural to write. You need to understand 
them! Note that in the iterative version you need to be 
careful when updating startIndex, endIndex. See incorrect 
versions in bsearchAB.py



 Linear search vs. binary search

• We said that in worst case linearSearch of 100000000 items takes 2n+1 
or 200000001 steps. Let’s just throw out the factor of 2 and extra 1 and 
call it a hundred million. 

• How about binary search??  
– A few basic steps * number of recursive calls. How many recursive calls? 
– In the iterative version (binarySearchIterative in lec26.py), approx. 5 basic steps * 

number of loop iterations 
– Number of recursive calls/loop iterations? Can put in code to count them to help 

us get a feel … 
 Always less than 28 

• It should be clear that here, the 2 multiplier on a 100M doesn't make a 
difference in telling us which algorithm is superior. And we could do 10 
or 20 or even many more basic ops inside the binary search core.  The 
key term for linear search is the factor of n.   

• Do you know what function of n characterizes the key part of binary 
search: how many recursive calls are made, or how many loop 
iterations occur? I.e. what function relates 27 to 100000000?  
27 ~ log(100000000)) 



• Programs that run proportional to log n steps 
are generally much faster than programs that 
require linear number of steps: 

a + b*log(n)  <  c + d*n    for most a, b, c, d that    
      would appear in actual      
    programs.



Another example

Consider the following function. What part of the function dominates 
running time as n gets large? 
 def f(n): 
  ans = 0 
  for i in range(1000): 
   ans = ans + 1 
  print ‘number of additions so far’, ans 
  for i in range(n): 
   ans = ans + 1 
  print ‘number of additions so far’, ans 
  for i in range(n): 
   for j in range(n): 
    ans = ans + 1 
    ans = ans + 1 
  print ‘number of additions so far’, ans 
  return ans          lec27.py



For this example, let’s ignore basic steps other than 
additions.  What equation characterizes the number 
of additions?

Number of additions = 1000 + n + 2 n2

When n is small the constant term, 1000, dominates.  What term dominates with larger 
values of n? (At around what point does the “switch” take place?) 

• at n == 100, the first term accounts for about 4.7% of the additions, the second for 0.5% 
• at n == 1000, each of the first two accounts for about 0.05% 
• at n == 10000, the first two together account for about 0.005% 
• at n == 1000000, the first two account for 0.00005% 

Clearly, the 2 n2 term dominates when n is large … 



Asymptotic notation
• So, for this last example the double loop is the key 

component for all but small n.   
• Does the 2 in 2 n2 matter much? It depends on your needs.  

Getting rid of one addition (here easy – just change to ans 
= ans + 2) would halve the required steps for a particular 
input n. 
– If n == 1000000 required 5 hours to run, that would be cut to 2.5 

hours.  Perhaps that’ll be sufficient for your needs … 
• But you’ll also have to consider that each time you double 

n, you quadruple the number of required additions 
(whether or not that 2 is there). So, for n == 2000000, the 
requirement would be 20 hours (2 adds in inner loop) or 10 
hours (1 add in inner loop). 
– If quadrupling is a concern, the leading 2 isn’t the issue, the power 

2 of n2 is, and you might need to redesign the algorithm to try to 
achieve a “biggest term” of n log(n) or n instead of n2



Asymptotic notation – Big-Oh
This kind of thinking leads to rules of thumb for describing 
asymptotic complexity of a program: 
– if the running time is the sum of multiple terms, keep the one 

with the largest growth rate, dropping the others 
– if the remaining term is a product, drop any leading constants 
E.g. 132022 + 14 n3 + 59 n log n + 72 n2 + 238 n + 12 √n  

!14 n3 ! n3 
There is a special notation for this, commonly called “Big 
Oh” notation. We say 
– 132022 + 14 n3 + 59 n log n + 72 n2 + 238 n + 12 √n is O(n3) 
– Or in the prior example, 1000 + n + 2 n2 is O(n2)



Asymptotic notation
Big O notation is used to give an upper bound on a 
function’s asymptotic growth or order of growth 
(growth as input size gets very large)  
• if we say f(x) is O(x3), or f(x) is in O(x3), we are 

saying that f grows no faster than x3 in an 
asymptotic sense.  

• 100 x3, .001x3, 23x3 + 14 x2, and x3 all grow at the 
same rate in the big picture – all grow like x3.  They 
are all O(x3)



Asymptotic notation – some details
Note that Big O is used to give an upper bound on a growth rate – a 
guarantee that the growth rate is no larger than some value 
• Technically, while 23 n3 is O(n3), 14 n is also O(n3) because n3 is 

certainly an upper bound  on the growth of 14 n.  14 n’s growth rate 
is not larger than that of n3   

• Typically, though, we try to make “tight” statements.  If someone 
says program foo(n) runs in O(n2) steps, we generally expect that 
they mean the grow rate of the number of steps is quadratic. I.e. that 
n2 is both a lower and upper bound on the growth rate.  Computer 
science people actually have a special notation for this – Θ(n2) – but 
many people just informally use O most of the time  

• It’d still be a true statement if foo(n) always took only one step but it 
wouldn’t be very helpful or informative to tell someone it’s O(n2) in 
that situation – better to have said it runs in constant time, which is 
written O(1) in asymptotic notation.



Asymptotic notation
It is also very important to keep in mind that we can 
separately characterize the best, worst, and average case 
running times! 

For linearSearch: 
• Best case? O(1) 
• Worst case? O(n) 
• Average case? O(n) 

Many many students forget this distinction. O is an upper 
bound, a guarantee on growth rate of something.  Best, 
worst, average case running times are three different 
somethings about which you can make three big-O 
statements.



def foo1(n): 
 result = 0 
 for i in range(n): 
  for j in range(n): 
   result = result + i*j

def foo4(n): 
 result = 0 
 for i in range(n): 
  for j in range(n*n): 
   result = result + i*j 

def foo3(n): 
 result = 0 
 for i in range(n): 
  j = 1 
  while j < n: 
   temp = j * j + j + 1 
   result = result + i*temp 
   j = j * 2

def foo2(n): 
 result = 0 
 for i in range(n): 
  for j in range(i): 
   result = result + i*j 

So, for these functions from Monday, what are the Big-O 
bounds? 
foo1: O(n*n) 
foo2: O(n*n) 
foo3: O(n * log n) 
foo4: O(n^3) 



Important complexity classes
Common big-O cases: 
• O(1) denotes constant running time – a fixed number of 

steps, independent of input size. 1, 2, 20000000. 

• O(log n): logarithmic running time. E.g. binary search 
• O(n): linear time. E.g. linearSearch 
• O(n log n): this is the characteristic running time of most 

good comparison sorting algorithms, including the built-
in Python sort.   

• O(nk): polynomial time. k = 2: quadratic, k = 3: cubic, … 
E.g. some simple sorts (bubble sort, selection sort), or 
enumerating pairs of items selected from a list 

• O(cn): exponential time. 2n, 3n, … E.g. generating all 
subsets of a set, trying every possible path in a graph







Important complexity classes
Some big-O cases: 
• O(1), O(log n), O(n), O(n log n), O(n2), O(n3),  O(2n), O(2n), 

O(n!), and even O(     ) 
• Try to get a feel for which are “good” (or good enough 

specifications of your particular problem)  
• Often, very useful to try to redesign algorithm to convert 

a factor of n to a log n.  O(n2) ! O(n log n) 
• Exponential algorithms are very slow except for very 

small inputs.  For any but toy problem sizes, you usually 
need a different algorithm (and sometimes need a whole 
different approach – aiming for an approximate or 
heuristic solution rather than an optimal/complete/
perfect one).

22
n



• Basic sorting methods 
• Selection sort, insertion sort 

• Introduction to plotting w matplotlib/pylab 
• more efficient sorting 
• Merge sort, quicksort

Next week



Next week: Sorting ( https://www.youtube.com/watch?
v=k4RRi_ntQc8 )

It’s mostly a “solved” problem – available as excellent built-in functions – so why study? 
The variety of sorting algorithms demonstrate a variety of important computer science 
algorithmic design and analysis techniques. 
Sorting has been studied for a long time. Many algorithms: selection sort, insertion 
sort, bubble sort, radix short, Shell short, quicksort, heapsort, counting sort, Timsort, 
comb sort, bucket sort, bead sort, pancake sort, spaghetti sort … (see, e.g., wikipedia: 
sorting algorithm) 

Why sort? Searching a sorted list is very fast, even for very large lists (log n is your 
friend). So if you are going to do a lot of searching, sorting is often excellent prep. 

Should you always sort? (Python makes it so easy … ) 
• We can search an unsorted list in O(n), so answer depends on how fast we can sort.  
• How fast can we sort? Certainly not faster than linear time (must look at, and maybe 

move, each item). In fact, in general we cannot sort in O(n).  Best “comparison-
based” sorting algorithms are O(n log n) 

• So, when should you sort?  If, for example, you have many searches to do. Suppose 
we have n/2 searches to do.   
– n/2 linear searches ! n/2 * O(n) ! O(n2) 
– sort, followed by n/2 binary searches ! O(n log n) + n/2 * O(log n) ! O(n log n) + O(n log 

n) ! O(n log n)  for large n, this is much faster

https://www.youtube.com/watch?v=k4RRi_ntQc8
https://www.youtube.com/watch?v=k4RRi_ntQc8
https://www.youtube.com/watch?v=k4RRi_ntQc8


• Sorting algorithms 
– Basic sorts: selection and insertion sort 
– More efficient sorting methods 

• Many visualizations of sorting algorithms on the 
web: 
– http://www.sorting-algorithms.com, http://sorting.at, 

https://www.cs.usfca.edu/~galles/visualization/
ComparisonSort.html 

– https://www.youtube.com/watch?v=kPRA0W1kECg 
– https://www.youtube.com/watch?v=ROalU379l3U 

(dance group demonstrating sorting algorithms …)

Next week

http://www.sorting-algorithms.com/
http://sorting.at/
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=ROalU379l3U

