
CS1210 Lecture 27    Oct. 25, 2021
• No discussion sections or DS assignment tomorrow.  

The TAs will be available for help with HW6 
• HW 6 due Thursday 
• Quiz 3 Friday in class  
• Recursion and objects/classes 

Today and Wednesday 
• Introduction to analysis of algorithms, searching, and 

sorting 
• Counting basic steps of an algorithm 
• “Big-O” notation  
• Details of several sorting algorithms



(From last time) An problem to think 
about for fun

You want to sell your phone. 
A large line of people assembles seeking to buy it.  
Each has a random price offer (bid) in mind.  You 
want to maximize price BUT you must consider 
the bids ONE AT A TIME, in the order received, 
and REJECT OR ACCEPT EACH ONE IMMEDIATELY.   
Is there are strategy that can make it likely you 
get a good price? 
E.g. “always take first bid” – chance of getting 
best price is then 1/n. Not so good….



Selling your phone

• Think about first and second halves of the set of bids. Let’s 
say there are 100 bids. 

• The highest bid appears in the first half half of the time. 
The second largest appears in the first half half of the time.   

• One-quarter of the time: 
• Both in first half 
• Both in second half 
• Second largest in first half, largest in second half 
• Largest in first half, second largest in second half 

• So …



 Introduction to Analysis of Algorithms (or “Computational 
Complexity”)

• The first step of programming (before implementation/ typing in the 
code) should be design.  At this stage, you need to worry both about 
designing a correct solution and a solution that will be efficient 
enough (in a big picture sense) to meet your needs 

• Then, after first correctly implementing your program there can be, 
if necessary, a tuning process to increase program speed as much as 
possible. But improvements at this stage are usually much less 
substantial than those created by selecting the right solution 
approach at design time.  Sometimes, you will need to redesign and 
re-implement, using a better algorithm, if tuning doesn’t yield 
enough improvement. 

• Note that a critical first consideration is correctness. Worrying about 
details of efficiency should generally come second. 

• Over the next few lectures we’ll take a brief look at formal tools and 
techniques for thinking about “big picture” program running time 
and algorithmic efficiency.



def foo1(n): 
 result = 0 
 for i in range(n): 
  for j in range(n): 
   result = result + i*j

def foo4(n): 
 result = 0 
 for i in range(n): 
  for j in range(n*n): 
   result = result + i*j 

def foo3(n): 
 result = 0 
 for i in range(n): 
  j = n 
  while j > 1: 
   temp = j * j + j + 1 
   result = result + i*temp 
   j = j // 2

def foo2(n): 
 result = 0 
 for i in range(n): 
  for j in range(i): 
   result = result + i*j 

WANT TO HAVE FORMAL WAY TO TALK ABOUT RUNNING TIME/EFFICIENCY DIFFERENCES 
BETWEEN ALGORITHMS …  
 HOW SIMILAR/DIFFERENT ARE THE FUNCTIONS BELOW IN RUNING TIME/EFFICIENCY?



Thinking about Computational Complexity
def foo(n): 
 i = 0 
 result = 0 
 while i <= n: 
  result = result + i 
  i = i + 1 
 return result 

How do we assess how long f takes to run? 
– Time it? That can be very useful. But again, we often want to analyze 

before implementation and get a big picture sense of how the program 
will perform 

– Instead of trying to measure in actual time units - e.g. milliseconds - which 
would not hold up well on computers of different speed, etc - we will 
characterize program efficiency in terms of the number of basic steps 
executed by program 

– You don't need to know the details, but such analysis is based on a 
hypothetical computer called a Random Access Machine (RAM). Under the 
RAM model: basic step is one that takes a fixed amount of time - binding a 
value to a variable, making a simple comparison, doing arithmetic ops like 
+-*/



 Thinking about Computational Complexity

In the RAM model, a program like: 
def bar() 
 x = 3 
 y = 4 
 result = x*y 
 return result 

requires four steps to run (always). 

In many programs, however, the number of steps 
executed is affected by the input – the size of an input list, 
the value of a given number, n, etc. 
Consider foo again …



def foo(n): 

 i = 0 

 result = 0 

 while i < n  : 

  result = result * I 
   i = i + 1 

 return answer 

How do we deal with this? Count the steps … 
– 4 always – i and result initialization, condition test, return 
– Each iteration of loop: one test, two inside ops ....  

 Therefore, 3 * number of iterations. Number of iterations is n.  

So, 4 + 3n. Right? Perhaps … 
But what if the first line was, say: i = 23 * n + 14 or  
the first line in the loop was something like: result = 3 * result + (i + i + i)?  
Do we know exactly how many basic steps? 4 + 3n? 4 + 4n? 5 + 5n? 4 + 6n??? 
Not usually – depends on particular processor and compiler.   

BUT DON’T WORRY! We're interested in a BIG PICTURE sense of the running time of this program, and 
we're going to get used to throwing away "small" terms like the 3 or 4 or whatever it is.  The key term 
is c * n, for some fixed number c. For any but very small n, the number of steps that foo requires is 
approximately c * n. As n grows, the number of steps executed grow linearly. 
And when we know something grows linearly, we know things like: if I double the input size the 
program will take ??? as long? Twice as long



Another example, a little more complex: 

def linearSearch(L, x): 
 for item in L: 
  if item == x: 
   return True  
 return False 

• Can we make a simple equation like we did for foo? Hmm… 
• If L has a 100 million elements and we search for 3: 

– if we are lucky - the best case - 3 is first in the list. Function returns 
immediately after perhaps three steps (start for loop, check if, 
return) 

– if unlucky - worst case - it's not in L.  Steps? 2 * len(L) + 1. If we use 
“n” to stand for len(l), this is 2n+1 

– on avg, perhaps we find it halfway ! 2 * (1/2 * n) + 1 ! n+1

Note: what does this say about Python’s “in”? Try it! Is it a basic step? See also appendvsinsert.py 



def linearSearch(L,x): 
 for item in L: 
  if item == x: 
   return True  
 return False 

• If L has a 100 million elements and we search for 3: 
– if we are lucky - the best case - 3 is first in the list. Function returns 

immediately after perhaps three steps (start for loop, check if, return) 
– if unlucky - worst case - it's not in L.  Steps? 2 len(l) + 1. If we use “n” to 

stand for len(l) n, this is 2n+1 
– on avg, perhaps we find it halfway ! 2 (1/2 * n) + 1 ! n+1 

So, this has added some complexity to our analysis approach. Different 
characterizations for different situations. Best, worst, and average 
cases.   

Algorithm designers typically focus on worst case since that gives 
guaranteed upper bound on running time/steps (“I can promise you 
it’ll never be worse than this”)



Let’s look again at the 4 + 3n steps for foo(n)

def foo(n): 

 i = 0 

 result = 0 

 while i <= n: 

  result = result + I 
  I = I + 1 

 return answer 

• I said that we usually ignore the 4.  It turns out we are also usually happy 
to ignore the leading constant on the n.  n is what's important - the 
number of steps required grows linearly with n. 

• Throwing out those constants doesn't always make sense - at "tuning" 
time or other times, we might want/need to consider the constants. But 
in big picture comparisons, it's often helpful and valid to simplify things 
by ignoring them. 

We’ll look at two more examples before formalizing this throwing-away-stuff 
approach via Big-O notation.   



When can we search quickly?

• When the input is sorted. (old examples: dictionary, 
phone book? Stack of hw/exam papers sorted by 
name?) 

• Algorithm : check middle item, if item is too soon in 
sorted order, throw out first half.  If too late, throw out 
second half. Repeat. 

• This algorithm is called binary search – mentioned 
briefly earlier in the semester. 

Lec27.py contains recursive and non-recursive versions. 
Both should be fairly easy to understand; the recursive 
version somewhat more natural to write. You need to 
understand them!



 Linear search vs. binary search

• We said that in worst case linearSearch of 100000000 items takes 2n+1 
or 200000001 steps. Let’s just throw out the factor of 2 and extra 1 and 
call it a hundred million. 

• How about binary search??  
– A few basic steps * number of recursive calls. How many recursive calls? 
– In the iterative version (binarySearchIterative in lec26.py), approx. 5 basic steps * 

number of loop iterations 
– Number of recursive calls/loop iterations? Can put in code to count them to help 

us get a feel … 
 Always less than 28 

• It should be clear that here, the 2 multiplier on a 100M doesn't make a 
difference in telling us which algorithm is superior. And we could do 10 
or 20 or even many more basic ops inside the binary search core.  The 
key term for linear search is the factor of n.   

• Do you know what function of n characterizes the key part of binary 
search: how many recursive calls are made, or how many loop 
iterations occur? I.e. what function relates 27 to 100000000?  
27 ~ log(100000000)) 



• Programs that run proportional to log n steps 
are generally much faster than programs that 
require linear number of steps: 

a + b*log(n)  <  c + d*n    for most a, b, c, d that    
      would appear in actual      
    programs.



Next time 
•  More on the formal notation – Big-O notation 

- for characterizing running time in terms of 
inputs. 

• Details of several sorting algorithms 
• selection sort, insertion sort, merge sort , 

quicksort


