
CS1210 Lecture 27 Oct. 25, 2021
• No discussion sections or DS assignment tomorrow.

The TAs will be available for help with HW6
• HW 6 due Thursday
• Quiz 3 Friday in class
• Recursion and objects/classes

Today and Wednesday
• Introduction to analysis of algorithms, searching, and

sorting
• Counting basic steps of an algorithm
• “Big-O” notation
• Details of several sorting algorithms

(From last time) An problem to think
about for fun

You want to sell your phone.
A large line of people assembles seeking to buy it.
Each has a random price offer (bid) in mind. You
want to maximize price BUT you must consider
the bids ONE AT A TIME, in the order received,
and REJECT OR ACCEPT EACH ONE IMMEDIATELY.
Is there are strategy that can make it likely you
get a good price?
E.g. “always take first bid” – chance of getting
best price is then 1/n. Not so good….

Selling your phone

• Think about first and second halves of the set of bids. Let’s
say there are 100 bids.

• The highest bid appears in the first half half of the time.
The second largest appears in the first half half of the time.

• One-quarter of the time:
• Both in first half
• Both in second half
• Second largest in first half, largest in second half
• Largest in first half, second largest in second half

• So …

 Introduction to Analysis of Algorithms (or “Computational
Complexity”)

• The first step of programming (before implementation/ typing in the
code) should be design. At this stage, you need to worry both about
designing a correct solution and a solution that will be efficient
enough (in a big picture sense) to meet your needs

• Then, after first correctly implementing your program there can be,
if necessary, a tuning process to increase program speed as much as
possible. But improvements at this stage are usually much less
substantial than those created by selecting the right solution
approach at design time. Sometimes, you will need to redesign and
re-implement, using a better algorithm, if tuning doesn’t yield
enough improvement.

• Note that a critical first consideration is correctness. Worrying about
details of efficiency should generally come second.

• Over the next few lectures we’ll take a brief look at formal tools and
techniques for thinking about “big picture” program running time
and algorithmic efficiency.

def foo1(n):
 result = 0
 for i in range(n):
 for j in range(n):
 result = result + i*j

def foo4(n):
 result = 0
 for i in range(n):
 for j in range(n*n):
 result = result + i*j

def foo3(n):
 result = 0
 for i in range(n):
 j = n
 while j > 1:
 temp = j * j + j + 1
 result = result + i*temp
 j = j // 2

def foo2(n):
 result = 0
 for i in range(n):
 for j in range(i):
 result = result + i*j

WANT TO HAVE FORMAL WAY TO TALK ABOUT RUNNING TIME/EFFICIENCY DIFFERENCES
BETWEEN ALGORITHMS …
 HOW SIMILAR/DIFFERENT ARE THE FUNCTIONS BELOW IN RUNING TIME/EFFICIENCY?

Thinking about Computational Complexity
def foo(n):
 i = 0
 result = 0
 while i <= n:
 result = result + i
 i = i + 1
 return result

How do we assess how long f takes to run?
– Time it? That can be very useful. But again, we often want to analyze

before implementation and get a big picture sense of how the program
will perform

– Instead of trying to measure in actual time units - e.g. milliseconds - which
would not hold up well on computers of different speed, etc - we will
characterize program efficiency in terms of the number of basic steps
executed by program

– You don't need to know the details, but such analysis is based on a
hypothetical computer called a Random Access Machine (RAM). Under the
RAM model: basic step is one that takes a fixed amount of time - binding a
value to a variable, making a simple comparison, doing arithmetic ops like
+-*/

 Thinking about Computational Complexity

In the RAM model, a program like:
def bar()
 x = 3
 y = 4
 result = x*y
 return result

requires four steps to run (always).

In many programs, however, the number of steps
executed is affected by the input – the size of an input list,
the value of a given number, n, etc.
Consider foo again …

def foo(n):

 i = 0

 result = 0

 while i < n :

 result = result * I
 i = i + 1

 return answer

How do we deal with this? Count the steps …
– 4 always – i and result initialization, condition test, return
– Each iteration of loop: one test, two inside ops

 Therefore, 3 * number of iterations. Number of iterations is n.

So, 4 + 3n. Right? Perhaps …
But what if the first line was, say: i = 23 * n + 14 or
the first line in the loop was something like: result = 3 * result + (i + i + i)?
Do we know exactly how many basic steps? 4 + 3n? 4 + 4n? 5 + 5n? 4 + 6n???
Not usually – depends on particular processor and compiler.

BUT DON’T WORRY! We're interested in a BIG PICTURE sense of the running time of this program, and
we're going to get used to throwing away "small" terms like the 3 or 4 or whatever it is. The key term
is c * n, for some fixed number c. For any but very small n, the number of steps that foo requires is
approximately c * n. As n grows, the number of steps executed grow linearly.
And when we know something grows linearly, we know things like: if I double the input size the
program will take ??? as long? Twice as long

Another example, a little more complex:

def linearSearch(L, x):
 for item in L:
 if item == x:
 return True
 return False

• Can we make a simple equation like we did for foo? Hmm…
• If L has a 100 million elements and we search for 3:

– if we are lucky - the best case - 3 is first in the list. Function returns
immediately after perhaps three steps (start for loop, check if,
return)

– if unlucky - worst case - it's not in L. Steps? 2 * len(L) + 1. If we use
“n” to stand for len(l), this is 2n+1

– on avg, perhaps we find it halfway ! 2 * (1/2 * n) + 1 ! n+1

Note: what does this say about Python’s “in”? Try it! Is it a basic step? See also appendvsinsert.py

def linearSearch(L,x):
 for item in L:
 if item == x:
 return True
 return False

• If L has a 100 million elements and we search for 3:
– if we are lucky - the best case - 3 is first in the list. Function returns

immediately after perhaps three steps (start for loop, check if, return)
– if unlucky - worst case - it's not in L. Steps? 2 len(l) + 1. If we use “n” to

stand for len(l) n, this is 2n+1
– on avg, perhaps we find it halfway ! 2 (1/2 * n) + 1 ! n+1

So, this has added some complexity to our analysis approach. Different
characterizations for different situations. Best, worst, and average
cases.

Algorithm designers typically focus on worst case since that gives
guaranteed upper bound on running time/steps (“I can promise you
it’ll never be worse than this”)

Let’s look again at the 4 + 3n steps for foo(n)

def foo(n):

 i = 0

 result = 0

 while i <= n:

 result = result + I
 I = I + 1

 return answer

• I said that we usually ignore the 4. It turns out we are also usually happy
to ignore the leading constant on the n. n is what's important - the
number of steps required grows linearly with n.

• Throwing out those constants doesn't always make sense - at "tuning"
time or other times, we might want/need to consider the constants. But
in big picture comparisons, it's often helpful and valid to simplify things
by ignoring them.

We’ll look at two more examples before formalizing this throwing-away-stuff
approach via Big-O notation.

When can we search quickly?

• When the input is sorted. (old examples: dictionary,
phone book? Stack of hw/exam papers sorted by
name?)

• Algorithm : check middle item, if item is too soon in
sorted order, throw out first half. If too late, throw out
second half. Repeat.

• This algorithm is called binary search – mentioned
briefly earlier in the semester.

Lec27.py contains recursive and non-recursive versions.
Both should be fairly easy to understand; the recursive
version somewhat more natural to write. You need to
understand them!

 Linear search vs. binary search

• We said that in worst case linearSearch of 100000000 items takes 2n+1
or 200000001 steps. Let’s just throw out the factor of 2 and extra 1 and
call it a hundred million.

• How about binary search??
– A few basic steps * number of recursive calls. How many recursive calls?
– In the iterative version (binarySearchIterative in lec26.py), approx. 5 basic steps *

number of loop iterations
– Number of recursive calls/loop iterations? Can put in code to count them to help

us get a feel …
 Always less than 28

• It should be clear that here, the 2 multiplier on a 100M doesn't make a
difference in telling us which algorithm is superior. And we could do 10
or 20 or even many more basic ops inside the binary search core. The
key term for linear search is the factor of n.

• Do you know what function of n characterizes the key part of binary
search: how many recursive calls are made, or how many loop
iterations occur? I.e. what function relates 27 to 100000000?
27 ~ log(100000000))

• Programs that run proportional to log n steps
are generally much faster than programs that
require linear number of steps:

a + b*log(n) < c + d*n for most a, b, c, d that
 would appear in actual
 programs.

Next time
• More on the formal notation – Big-O notation

- for characterizing running time in terms of
inputs.

• Details of several sorting algorithms
• selection sort, insertion sort, merge sort ,

quicksort

