
CS1210 Lecture 22 Oct. 13, 2021
• A new item has been added to the “Tests” group of the ICON grades.

• Quiz1and2adjustment indicates how many additional points have been added
to your total to reflect the “replace quiz 1 score with quiz 2 score” option I
discussed after quiz 1. Thus, if you got 10 on quiz 1 and 16 on quiz 2, the
adjustment would be 4 (because 16/20 on quiz2 converts to 14/18 for quiz 1)

• Again, note the course grading scale published on the website. As DS4, 5, 6, and
HW4 get graded, you’ll start to get a good idea of where you stand. Please let me
know if you want to discuss your current score/grade outlook. I’ll say more about
this soon.

• HW 5 is due Friday
• Next quiz is Oct. 29, and will cover recursion (our current topic) and objects/

classes/inheritance

Last time
• Continued recursion - Chapter 16
Today
• A few words about CS courses after this one
• Finish recursion - Chapter 16
• A short introduction to exceptions - Chapter 13

Recursion – Ch 16
• Very important and useful concept
• Not just for programming, but math and even

everyday life, legal definitions, etc.
• Has undeserved reputation among some

people: “recursion is bad – recursive programs
are inefficient” Yes, one can write very bad
recursive programs but this is true of non-
recursive programs as well. And recursion can
be super useful.

Important rules for recursive functions
• When writing a recursive function:
– MUST have base case(s), situations when code does not

make recursive call.

– MUST ensure that recursive calls make progress toward
base cases. I.e. you need to convince yourself that
recursive call is “closer to” base case than the original
problem you are working on

– SHOULD ensure you don’t unnecessarily repeat work.
Ignoring this contributes to recursion’s bad reputation.
E.g. direct recursive implementation of Fibonacci is
extremely and unnecessarily inefficient

More recursion examples
• Given a list of numbers and a number n, determine

if there is a subset of numbers from that list that
sums to n. E.g. findSum(10, [3, -2, 1, 5, 99, 2])
should yield [3,5,2] findSum.py

• “flatten” a list lec21.py
– E.g. [[[[[3,[2,4]]], 0], [‘a’]], 23] -> [3,2,4,0,’a’, 23]

• Towers of Hanoi problem ToHcomplete.py
(These next three will be done next time)
• generate a string pattern lec21.py
• nesting depth lec21.py
• Drawing shapes

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Towers of Hanoi solution

• Rods/towers A, B, C. Goal is to move disks from
A to C, one at a time, never allowing larger disk
to be on top of smaller disk

• Algorithm:
– Move n-1 disks from A -> B (by this algorithm!)
– Move final disk from A -> C
– Move n-1 disks from B -> C (by this algorithm!)

ToHcomplete.py

Nesting depth
• Def of nestingDepth of a list

– 0 if list has no lists as elements - e.g. [1,2,3,’a’] -> 0 []-> 0
– 1 more than maximum nestingDepth among all items of the list that are lists

• Examples
– [] -> 0
– [[]] -> 1
– [[[]]] -> 2
– [[[]], 1, 2] -> 2, because [[]] is 1 so the whole list is 1 + 1 = 2
– [[[]], 1, 2, [[[100]]]] -> 3, because [[]] is 1, [[[100]]] is 2, max is 2, so whole list is 2 + 1 = 3

def nestingDepth(inList):
 # initialize a variable for max nesting level seen (among sublists)
 # iterate over items in inList
 # if item is not a list, just skip it
 # if item is a list, recursively compute its nesting level and
 # compare that item’s nesting level with max seen so far,
 # updating max if nec
 # if max has not been set in the loop (i.e. we saw no lists), return 0
 # otherwise return 1 more than max

Handling errors, raising errors,
monitoring presumptions

• try/except
• raise
• assert – good practice to ”sprinkle” asserts throughout your

code. Catch cases of presumed conditions not being met
before they result in mysterious, hard-to-track down errors

Try/except and raise covered well in basic Python
documentation

Textbook Ch 13 covers exceptions. I won’t test you on this
material but it is very useful.

exceptions.py

Next Time

• Start next topic - classes, objects, and
object-oriented programming - Chapters
17-19

