
CS1210 Lecture 14 Sep. 24, 2021
• Quiz 1 scores will take a few more days - sorry for the slow feedback
• HW3 due tonight
• HW4 will be released Monday
Last time
• Related to DS4: largest anagram set
• Finish lists

• More on aliasing
• is operator and object identify (vs ==)
• Lists as arguments to functions

• review of HW3, Q1 hints
Today
• Quick introduction to conditional expressions and list comprehensions (Ch

10.22) - very useful but you are not required to know list comprehensions
• Start dictionaries

(Last time) Advice/comments on functions
• Some functions compute something and return a

value without side effects. That is, they do any
output and don’t change the values of any objects
that exist outside of the execution of that function.

• Other functions do have side effects. They either
print something (or affect GUI elements) or change
values of objects that exist outside the function
execution. Such functions often don’t return
anything. And such functions can maybe helpfully
be thought of as commands.

Thoughts on this function?
Given a list of 1 or more numbers or strings, return the smallest
and largest items.

def getSmallestAndBiggest(listOfStuff):
 listOfStuff.sort()
 return (listOfStuff[0], listOfStuff[-1])

Functions should not modify their input unless the function
specification explicitly says to do so!

Given a list of 1 or more numbers or
strings, return the smallest and largest
items.

def getSmallestAndBiggest(listOfStuff):
 sortedCopyOfList = sorted(listOfStuff)
 return (sortedCopyOfList[0], sortedCopyOfList[-1])

Given a list of 1 or more numbers or
strings, sort the list and return the smallest and
largest items.

def sortAndGetSmallestAndBiggest(listOfStuff):
 listOfStuff.sort()
 return (listOfStuff[0], listOfStuff[-1])

Conditional expressions (common but not in text?)
not required for exams but you should understand if you see them

Can be used in place of an if/else where both return some value

 def oddEven(n):
 if n%2 == 1:
 return ‘odd’
 else:
 return ‘even’

 Is this better?
 def oddEven(n): It’s shorter but I don’t
 return ‘odd’ if n%2==1 else ‘even’ find it as readable
 They are clear and useful

 sometimes.
 lec14comprehensions.py

Chapter 10.22: list comprehensions
Python provides another shorthand - list comprehensions –
concise expressions for constructing lists.
Consider common pattern:
 result = []
 for item in someList:
 result.append(someFunc(item))

Can do this is one line with list comprehension:

 result = [someFunc(item) for item in someList]

“apply someFunc to each item in someList and gather the
results in a new list”

list comprehensions
Examples:
>>> [i * i for i in range(5)]
???
[0, 1, 4, 9, 16]
>>> [s.lower() for s in [“Hi”, “Bye”]]
???
['hi', 'bye']
Can also use an if:
>>> [num for num in [1, -2, 3, -4, 5] if num > 0]
???
[1, 3, 5]

lec14comprehensions.py

list comprehensions
Can also have more than one ‘for’ in a comprehension

>>> [(i,j) for i in range(10) for j in range(5)]
???
[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2,
4), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, 0), (5, 1), (5, 2), (5, 3),
(5, 4), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (8, 0), (8, 1), (8, 2), (8,
3), (8, 4), (9, 0), (9, 1), (9, 2), (9, 3), (9, 4)]
>>> [(i,j) for i in range(10) for j in range(i)]
???
[(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3), (5, 0), (5, 1), (5, 2),
(5, 3), (5, 4), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7,
5), (7, 6), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7), (9, 0), (9, 1), (9, 2), (9, 3),
(9, 4), (9, 5), (9, 6), (9, 7), (9, 8)]

list comprehensions
Example: matrices are common in science and engineering and are often depicted as
a table having n rows and m columns. Below is a matrix with 3 rows and 5 columns:
 1 12 3 4 5
 5 -1 4 1 1
 0 -3 4 0 9
It’s easy to represent a matrix in Python using a list of sublists, where each sublist
represents one row of the matrix. Thus the matrix above would be represented as:
[[1, 12, 3, 4, 5], [5, -1, 4, 1, 1], [0, -3, 4, 0, 9]]

If A, B are matrices CAN multiply them using list comprehension:
def matrixMult(A, B):
 return [[sum([A[i][j] * B[j][k] for j in range(len(B))]) for k in
 range(len(B[0]))] for i in range(len(A))]

def mmatrixMult2(A, B):
 # Multiply row by (transposed w/zip) col
 return([[sum([a*b for (a,b) in zip(row,col)]) for col in zip(*B)] for row in A])

I don’t do this – for me, too concise/dense to be easily readable and clear. I use
comprehensions for small simple things.

dictionary (next topic) comprehensions and generator expressions

There are also dictionary comprehensions:
 { i : i*i for i in range(4) }

And, there are things that look like comprehensions but are
called generator expressions:

>>> genSq = (i*i for i in range(4))

yields a generator object, which is an iterator, so you can use it
with next(…) like we did with zip object.

(List and dictionary comprehensions and generator expressions are not
required for this class; you don’t need to know them for exams/homework.)

Chapter 12: Dictionaries

• Python supports the extremely useful dictionary
‘dict’ type in Python

• Dictionaries are:
– collections of key – value pairs

• Similar to but importantly different from lists
– could think of lists as ordered collection of key-value

pairs, where the keys are integers 0, 1, 2, …
– with dictionaries, the collection is unordered but the

interesting thing is that the keys can be any immutable
values

– E.g. create dictionary numlegs
 >>> numlegs = { ‘frog’: 4, ‘human’: 2, ‘ant’:6, ‘dog’:4}

Ended Lecture 14 here due to
internet instability - will review

dictionaries from the beginning on
Monday, Sept. 27

Dictionaries

• create with { k1:v1, k2:v2, …}
• empty dictionary: {}
• retrieve value: dict[key]
• modify (or insert) value for key: dict[key]=value

• one important feature of dictionaries is that they provide
very fast access (we might discuss how later in term) to
values associated with keys despite being more flexible
(not restricted to integer keys, etc.) than lists (demo:
dicttest.py for speed comparison with lists)

Dictionary operations
• len(d)
• d.keys()
• d.values()
• k in d
• del d[k]
• for key in dict:
• d.get(key, defaultVal) when you don’t want

possible KeyError for d[key]

But note: no slice – d[key1:key2] doesn’t make sense

Looping over dictionaries with for

If we have a dictionary, d, of names as keys and ages as
values, we can compute averages as follows:

averageAge = 0
sumOfAges = 0
for nameKey in d:

sumOfAges += d[nameKey]
if sumOfAges != 0:

averageAge = sumOfAges / len(d)
print(“The average age is: “, averageAge)

lec14.py

A dictionary example
• Text file with info about people – name, birth year,

favorite color, weight, home city, home country
• Read and store in dictionary
– Name as key
– Subdictionary (and sub-sub-dictionary) for other properties

{‘birthyear’: 1980,
 ‘favcolor’: ‘red’,
 …,
 ‘home’: {‘city’: ‘Tokyo’, ‘country’: ‘Japan’}
}

• Add simple password handling, storing “hash” in dict
 Files: ppldata.py, people.text

Related news

• 2015 Turing Award winners: https://www.theguardian.com/science/2016/
mar/01/turing-award-whitfield-diffie-martin-hellman-online-commerce

• http://amturing.acm.org/byyear.cfm
• Remember printFirstNPrimes problem? Finding prime factors of big numbers

is super Important for cryptography. Internet security depends hugely on the
fact that there is no known way to find factors of very large numbers quickly

https://www.theguardian.com/science/2016/mar/01/turing-award-whitfield-diffie-martin-hellman-online-commerce
https://www.theguardian.com/science/2016/mar/01/turing-award-whitfield-diffie-martin-hellman-online-commerce
https://www.theguardian.com/science/2016/mar/01/turing-award-whitfield-diffie-martin-hellman-online-commerce
http://amturing.acm.org/byyear.cfm
https://en.wikipedia.org/wiki/Integer_factorization

A few little exercises

• Given a list of numbers, find the pair with greatest
difference

• Given a list of numbers find the pair with smallest
difference

• Given a list of numbers and a target number (call it k),
find two numbers (if they exist) in the list that sum to k

lec14exercises.py has solutions for first two. Has slow
(and not completely correct) solution for third one. Can
you think of a much faster solution using dictionaries?

Small variants of/questions about third
problem

4. Suppose:
– No dictionaries allowed/available
– Numbers in lists are know to have limited magnitude. E.g. all

numbers between 0 and 10000
Fast solution?

5. Modify findKPairFast to provide indices/location of found
pair in list

6. Question: if we generate a list of, say, 10,000 random
numbers between -1,000,000 and 1,000,000 how likely is
it that the list contains a pair that sums to k for any k in,
say, 0…999?

 lec14exercisesB.py
 (next time)

Next Time

• DS5 and HW4
• tuples and tuple assignment (10.26-28)
• default/optional and keyword arguments to function

