
CS1210 Lecture 13 Sep. 22, 2021
• Quiz 1 scores will take a few more days - sorry for the slow feedback
• HW3 due Friday
• DS4 is available, due 8pm tonight
Last time
• For-while conversion
• More on lists: examples, and mutability and aliasing
• + vs append
• introduction to DS4
Today
• Related to DS4: largest anagram set
• Finish lists

• More on aliasing
• is operator and object identify (vs ==)
• Lists as arguments to functions

• review of HW3, Q1 hints

Discussion section 4 example
What if we wanted to find the largest set of anagrams?
• Simple direct approach:

biggestAnagramList = []
for word in wordList:
 anagramList = findAnagramsOf(word, wordList)
 if len(anagramList) > len(biggestAnagramList):
 biggestAnagramList = anagramList

Works okay for a couple thousand words (word5.txt) but too slow
for large word sets like wordsMany.txt
• Much faster approach: we’ll look at this in detail in a couple weeks

when we discuss algorithm analysis but, for now, the idea:
1. associate a “key” with each word, the sorted version of that word. E.g. [“art”,

“art”] … [“least”, “aelst”] … [“rat”, “art”] … [“stale”, “aelst”] … [“tar”, “art”]
2. Sort this list of pairs by those “keys”. Now all anagrams are neighbors in this

sorted list and the largest set can be found via one simple scan through it. [….
[“least”, “aelst”], [“stale”, “aelst”], ..., [“art”, “art”], [“rat”, “art”], [“tar”,
“art”] ...] biggestAnagramSet.py

List mutability
>>> a = 3
>>> myList = [a, a, 5]
>>> myList[0] = 4
>>> a = 100

>>>myList
???

a

myList

3

 , ,
5

100

myList[0] = 4 does not affect a’s value!
a = 100 does not affect list!

4

What happens here? Can you draw the updates?
>>> a = 3
>>> myList = [a, a, 5]
>>> myList2 = myList
>>> myList[0] = 4
>>>myList
???
[4, 3, 5]
>>>myList2
???
[4, 3, 5]
>>> myList = []
>>> myList
[]
>>> myList2
???
[4, 3, 5]

a

myList

3

 , ,
5

myList[0] = 4
 - does not affect a’s value!
 - does affect myList2’s value

4myList2

VERY IMPORTANT! CAN
BE CONFUSING!

[]

This is called aliasing – two or more variables referring to same mutable object

list +

>>> myList = [3, 5]
>>> myList2 = [2, 6]
>>> myList3 = myList +
myList2
>>> myList3
[3, 5, 2, 6]
>>> myList2[0] = 1
>>> myList3[0] = 7
>>> myList
?
>>> myList2
?
>>> myList3
?

myList
3

 ,

5 6

myList2

 ,

2

 , , , myList3

1

7

IMPORTANT: + on lists yields a NEW list

 append and sort

>>> a = 3
>>> myList = [5, 2, 1]
>>> myList2 = myList
>>> myList.append(a)
>>> myList2.sort()
>>>myList
?
>>>myList2
???

a

myList

3

 , ,

2

5myList2

 ,

1

SUPER IMPORTANT: unlike +, which does NOT modify the lists
involved, append and sort MODIFY the list.

Consequences of list mutability

>>> myList = [3, 5]
>>> myList2 = [2, myList]
>>> myList[0] = 1
>>> myList2
?

myList

3

 ,

5

myList2
 ,

2

1

Important when we pass lists as
arguments to functions!

del

del can be used to remove
item or items from a list

>>> b = 2
>>> myList = [3, 5, b, 6]
>>> del myList[2]
>>> myList
[3, 5, 6]

3 5 62

 , , , myList , ,

b

• Can also del whole slices
• I rarely need or use del

Objects, equality, and identity
There is an operator in Python called is
>>> x is y
True if x and y refer to same object (in computer memory), False
otherwise.
 You don’t often need to use is but you should be aware of when
two variables refers to the same mutable object. This is called
aliasing.

As we’ve seen:
>>> x = [1,2,3]
>>> y = x
>>> x is y
True
>>> x[1] = 100 y and x are aliases for the same list
>>> y[1] object
?

Objects, equality, and identity
>>> x = [1, 2, 3] constructs a list containing 1, 2, 3
>>> y = [1, 2, 3] constructs a (new/different) list
>>> x is y x, y are not aliases
False they are bound to different objects
>>> x == y they are still considered equal, though,
True which is what you usually care about
>>> y[0] = 100
>>> x
???

1

x

y
 , ,

 , ,

2 3

100

Avoiding aliasing?
Often, we want to avoid aliasing. So, given a list, can we easily make a copy? YES!

>>> x = [1, 2, 3]
>>> y = x
>>> z = x[:] range[:] is “full range” so a new list
 with all the elements of the original
>>> x is y
True
>>> x is z
False
>>> x == y
True
>>> x == z
True
>>> z[0] = 100
>>> y[0] = 50
>>> x
?
>>> y
?

Objects, equality, and identity
>>> x = [1, 2, 3]
>>> y = x
>>> z = x[:]

>>> z[0] = 100
>>> x
???

1

x

z
 , ,

 , ,

2 3

100

y

Objects, equality, and identity
But, be careful!

>>> x = [1, 2, [30, 40]]
>>> y = x
>>> z = x[:]
>>> x is y
True
>>> x is z
False

>>> z[0] = 100
>>> x
?
>>> z[2][1] = 50
>>> x
?

Objects, equality, and identity
>>> x = [1, 2, [30, 40]]
>>> y = x
>>> z = x[:]

>>> z[0] = 100
>>> z[2][1] = 50
>>> x
???
>>> x
???
>>> Z[2] = 6
>>> z
???
>>>x
???

1

x

z
 , ,

 , ,

2 ,

100

y

30
40

50

[:] is a shallow copy. There are ways to do deep copy
(maybe we will discuss later in the semester)

6

Mutability and arguments to functions

>>> def foo(inList, c)
… inList[2] = 100
… c = 10
>>>
>>> b = 2
>>> myList = [3, 5, b, 6]
>>> foo(myList, b)
>>> myList
[3, 5, 100, 6]

3 5 62

 , , , myList

b

But what if body of foo is instead: inList = inList + [10]?

inList 100

c

10

Mutability and arguments to functions

>>> def foo2(inList)
… inList = inList + [100]
>>>
>>> b = 2
>>> myList = [3, 5, b, 6]
>>> foo2(myList)
>>> myList
[3, 5, 2, 6]
>>> b

3 5 62

 , , , myList

b

inList

 , , , ,

100

Advice/comments on functions
• Some functions compute something and return a

value without side effects. That is, they do any
output and don’t change the values of any objects
that exist outside of the execution of that function.

• Other functions do have side effects. They either
print something (or affect GUI elements) or change
values of objects that exist outside the function
execution. Such functions often don’t return
anything. And such functions can maybe helpfully
be thought of as commands.

return new list that is like inList
but without 1st and last elements
def middle(inList):
 return inList[1:len(inList)-1]

We use these differently.
Consider:

def bar(inList):
 …
 middle(inList)
 …
 …
What can you say about this?

And

def baz(inList):
 …
 chop(inList)
 …
 ..

And how about this?

remove the first and last
elements from inList
def chop(inList)
 del inList[0]
 del inList[len(inList)-1]

Look at the code in lec13.py and make sure you understand the
differences between bar, bar2, and baz

Problem like HW3 Q1

Suppose goal is to find second and third smallest letters, and most common letter

A two-part approach (you can do it “all at once” if you want but many people will
find separating the two easier):

find second and third smallest
 # go through string char by char updating values for
 # three simple variables:
 # smallest, secondSmallest, and thirdSmallest

find most common
 # presume you have a function howMany(c, s) that
 # returns the number of times c occurs in s
 # Using a loop simply go through string char by char,
 # calling howMany(char, s) for each char and comparing result with a #
maxOccurrencesSoFar variable, updating when appropriate

print results

howMany(c, s)
is easy to write!

Hint: consider using None for initializing variables

HW3 Q1

find second and third smallest
 # go through string char by char updating values for
 # three simple variables:
 # smallest, secondSmallest, and thirdSmallest

smallest:

secondSmallest:

thirdSmallest:

?

?

?

e

e

c

c

e

d

b

d

e

b f

d

a

a

c

c
/

/

/

/

/ /

/

/

/

/ / b

Next Time

• Start Ch 12 - dictionaries

