
CS1210 Lecture 12 Sep. 20, 2021
• HW2 and DS3 scores have been posted
• HW3 due Friday
• DS4 is available, due 8pm Wed.

• Discussion session attendance is not required but TAs will be
there to discuss assignment and demonstrate wordInfo()
function.

Last time
• Introduction to lists - Ch 10
Today
• For-while conversion
• More on lists: examples, and mutability and aliasing
• + vs append
• introduction to DS4

for -> while conversion

 for var in sequence:
 …
 …
 …

 index = 0
 while index < len(sequence):
 var = sequence[index]
 …
 …
 …
 index = index + 1

Completely mechanical. No thought needed.
Body (the … lines) does not change.

lec12forwhile.py

(last time) Ch 10: lists
• list is another Python sequence type
• In a string, each item of the sequence is a character
• In a list, each item can be a value of any type! (and can be as long as you

want)
• The most basic way to create a list is to enclose a comma-separated series of

values with brackets:

>>> [1, ‘a’, 2.4]
[1, ‘a’, 2.4]
>>> myList = [1, ‘a’, 2.4] [] operator and len()
>>> len(myList) function work on both
 3 strings and lists
>>> myList[0]
1
>>> [] empty list - length is 0
[]
>>> [1, [‘a’, 2, ‘cat’], 3.0] “nested” list in which index 1
[1, [‘a’, 2, ‘cat’], 3.0] element is a list

(last time) Ch 10: list operations
slices, +, * work similarly to how they work on strings

>>> myList = [1, 2, 3, 4, 5]
>>> myList[1:3]
[2,3]
>>> myList + myList
[1,2,3,4,5,1,2,3,4,5]
>>> myList = myList + [6]
>>> myList
[1,2,3,4,5,6]
>>> myList = myList + 6
Error
>>> myList = myList + [[6]]
>>> myList
[1,2,3,4,5,6,[6]]
>>> 2 * myList
[1,2,3,4,5,6,[6],1,2,3,4,5,6,[6]]

(last time) Ch 10: lists are mutable!
• Strings are immutable. You can’t change them.
>>> myString = ‘hello’
>>> myString[0] = ‘j’ ! Error

• But lists are mutable! You can update lists
>>> myList = [1, 2, ‘hello’, 9]

>>> myList[1] = 53 you can replace a item in a list with a
 >>> myList new value
[1, 53, ‘hello’, 9]

>>> myList.append(‘goodbye’) you can add new items to the end
>>> myList of a list
[1, 53, ‘hello’, 9, ‘goodbye’]
>>> myList = myList.append(3)

>>> myList2 = [3, 99, 1, 4] you can even sort! Note: Python’s sort rearranges
>>> myList2.sort() the items directly within the given list. It doesn’t
>>> myList2 yield a new list with same items in sorted order
[1, 3, 4, 99] (different function, sorted, yields new sorted list)

Examples: looping with lists lec12.py
• negativeListFrom(l)
• listOfBiggests(list1, list2)
• listOfBiggests2(list1, list2)
• getAverages(listOfLists)
• Write a function that takes two lists as input and returns a list of all

pairs [i1, i2] where i1 in an item from the first list and i2 is an item
from the second list pairs
– e.g. [1,2] and [3,4,5] ->
 [[1,3], [1,4], [1,5], [2,3], [2,4], [2,5]]

• Write a function that, given a list of zero or more sublists of zero or
more numbers, returns a list of numbers in which the ith number is
the sum of the numbers in the ith sublist.
– e.g [[2,3], [23], [1,1,1]] -> [5, 23, 3]

List mutability
>>> a = 3
>>> myList = [a, a, 5]
>>> myList[0] = 4
>>> a = 100

>>>myList
???

a

myList

3

 , ,
5

100

myList[0] = 4 does not affect a’s value!
a = 100 does not affect list!

4

What happens here? Can you draw the updates?
>>> a = 3
>>> myList = [a, a, 5]
>>> myList2 = myList
>>> myList[0] = 4
>>>myList
???
[4, 3, 5]
>>>myList2
???
[4, 3, 5]
>>> myList = []
>>> myList
[]
>>> myList2
???
[4, 3, 5]

a

myList

3

 , ,
5

myList[0] = 4
 - does not affect a’s value!
 - does affect myList2’s value

4myList2

VERY IMPORTANT! CAN
BE CONFUSING!

[]

This is called aliasing – two or more variables referring to same mutable object

list +

>>> myList = [3, 5]
>>> myList2 = [2, 6]
>>> myList3 = myList +
myList2
>>> myList3
[3, 5, 2, 6]
>>> myList2[0] = 1
>>> myList3[0] = 7
>>> myList
?
>>> myList2
?
>>> myList3
?

myList
3

 ,

5 6

myList2

 ,

2

 , , , myList3

1

7

IMPORTANT: + on lists yields a NEW list

 append and sort

>>> a = 3
>>> myList = [5, 2, 1]
>>> myList2 = myList
>>> myList.append(a)
>>> myList2.sort()
>>>myList
?
>>>myList2
???

a

myList

3

 , ,

2

5myList2

 ,

1

SUPER IMPORTANT: unlike +, which does NOT modify the lists
involved, append and sort MODIFY the list.

list + vs. append

result = []
for num in range(100000):
 result = result + [num*num]

result = []
for num in range(100000):
 result.append(num*num)

Is either one better?

lec12append.py

Discussion section 4

• Will work with files of many words and write code to find sets of
anagrams (words with same letters but different order). E.g. art,
rat, tar

• What if we wanted to find the largest set of anagrams?
– simple direct approach

biggestAnagramList = []
for word in wordList:
 anagramList = getAnagramsOf(word, wordList)
 if len(anagramList) > len(biggestAnagramList):
 biggestAnagramList = anagramList

– Works okay for a couple thousand words (words5.txt) but far too slow
for 100+K list like wordsMany.txt

– Problem to think about: can you efficiently find largest anagram set?

biggestAnagramSet.py

Next Time

• Finish lists
• is operator and object identify (vs ==)

• review of HW3, Q1 hints
• One more part of Ch 10 – 10.22, list comprehensions
• Start Ch 12 - dictionaries

