
CS1210 Lecture 11   Sep. 17, 2021

• HW3 available, due next Friday, 8pm 
• DS4 will be made available by Monday morning, due Tuesday 8pm 
• Quiz 1 will be graded within a few days. Don’t panic if you think you 

did poorly.  Keep working.  You can still master things if you keep 
working hard 

Last time 
• A debugging example 
• Looping with for  
• Discussion of Quiz problem types 
Today 
• A example with some programming advice 
• Discussion of HW3 Q1 
• Start Chapter 10: lists



Programming advice
Be careful with variable names: 
• Don’t use ..index.. when it’s bound to a value other an index!  
• Don’t change type of thing variable is bound to – use a different variable! 

cost1 = 23.0 
cost2 = 143. 
for index1 in string1:             <—      index1 is not an index 
 index2 = 0                       
 while index2 < len(string2): 
  if string1[index1] == string2[index2]: <—     error here 
   cost1 = “The cost is:” + str(cost1) <—     dangerous to change 
  index2 = index2 + 1       change type of  
…             object bound to var. 
…             cost1 was a number,  
print(cost1)           now a string 
if (cost1 < cost2):        
 print(“Option 1 is the better one!”)    oops, error. Forgot 

              cost1 now a string



Problem like HW3 Q1

Suppose goal is to find second and third smallest letters, and most common letter 

A two-part approach (you can do it “all at once” if you want but many people will 
find separating the two easier): 

# find second and third smallest 
 # go through string char by char updating values for  
 # three simple variables:  
 #   smallest, secondSmallest, and thirdSmallest 

# find most common 
 # presume you have a function howMany(c, s) that  
 #        returns the number of times c occurs in s       
 # Using a loop simply go through string char by char,  
 #       calling howMany(char, s) for each char and comparing result with a  
 #       maxOccurrencesSoFar variable, updating when appropriate 

# print results

howMany(c, s) 
is easy to write!

Hint: consider using None for initializing variables



HW3 Q1

# find second and third smallest 
 # go through string char by char updating values for  
 # three simple variables:  
 #    smallest, secondSmallest, and thirdSmallest

smallest: 

secondSmallest: 

thirdSmallest: 

?

?

?

e

e

c

c

e

d

b

d

e

b f

d

a

a

c

c
/

/

/

/

/ /

/

/

/

/ / b



Ch 10: lists   
• list is another Python sequence type 
• In a string, each item of the sequence is a character 
• In a list, each item can be a value of any type! (and can be as long 

as you want) 
• The most basic way to create a list is to enclose a comma-

separated series of values with brackets: 

>>> [1, ‘a’, 2.4] 
[1, ‘a’, 2.4] 

>>> myList = [1, ‘a’, 2.4]   [] operator and len() 
>>> len(myList)      function work on both 
 3          strings and lists 
>>> myList[0] 
1



Ch 10: lists   
I said the items in a list be any type. So, can lists be 
elements of lists? YES!  
  
>>> myList = [1, 2, [‘a’, 3]]    we call this a  
>>> len(myList)            “nested list” 
3 
>>> myList[2] 
[‘a’, 3] 
>>> myList[2][1] 
3 
>>> myList[1][2] 
Error



Ch 10: lists   
A list can have no elements! 
  
>>> myList = []        we call this an  
>>> len(myList)        “empty list” 
0 
>>> myList[0] 
Error



Ch 10: list operations   
slices, +, * work similarly to how they work on strings 

>>> myList = [1, 2, 3, 4, 5] 
>>> myList[1:3] 
[2,3] 
>>> myList + myList 
[1,2,3,4,5,1,2,3,4,5] 
>>> myList = myList + [6] 
>>> myList 
[1,2,3,4,5,6] 
>>> myList = myList + 6 
Error 
>>> myList = myList + [[6]] 
>>> myList 
[1,2,3,4,5,6,[6]] 
>>> 2 * myList 
[1,2,3,4,5,6,[6],1,2,3,4,5,6,[6]]



Ch 10: traversing lists   
Just like we often want to iterate through the characters of a 
string, we often want to “traverse” lists, doing some computation 
on each list item in turn. Like they are for string, for loops are 
again concise and useful 

 for element in [‘a’, 2, ‘word’, [‘1,2’, 3]]: 
   if type(element) == list: 
    print(‘list of length:‘, len(element)) 
   else: 
     print(element) 
yields: 
 a 
 2 
 word 
 list of length: 2                                                lec11.py



Traversing lists with for

for number in l: 
 if number < 0: 
  print(“negative”) 
  else: 
  print(“not negative”) 

      
             



Last time: the range  function 
Python’s range function is very useful.  There is no one clear 
place in the text where it is presented. It is first mentioned in 4.7 
of the Turtle chapter, and then used in examples in Ch 9 and 10.   

The range function produces values of a range type 
The range type is another sequence type, like list and string. 

range(9) is a sequence of the integers 0, 1, …, 8 
range(2,6) is sequence 2, 3, 4, 5 
range(2,13,3) is sequence 2, 5, 8, 11 

Since range is a sequence type, (most of) the standard sequence 
operations apply (not nicely specified anywhere in text – go to 
Python sequence docs on-line)

https://docs.python.org/3/library/stdtypes.html


range – standard sequence ops
>>> 5 in range(9)        
True 
>>> 5 in range(2,10,2) 
? 
>>> len(range(2,10,2)) 
? 
>>> myRange = range(2,20,2) 
>>> myRange[3:6] 
? 
>>> range(5) + range(5) 
?



Ch 10: range – Python 3 vs Python 2
In Python 2, range is just a function that produces a list: 
>>> range(9) 
[0, 1, 2, 3, 4, 5, 6, 7, 8] 

In Python3, range(9) is an object that represents the same 
sequence of numbers, but it not a list. 
>>> range(9) 
range(9) 

Note: in Python 3, you can still use range to build an ordered 
list of numbers: 
>>> list(range(9)) 
[0, 1, 2, 3, 4, 5, 6, 7, 8]             



Ch 10: lists are mutable!   
• Strings are immutable. You can’t change them. 
>>> myString = ‘hello’ 
>>> myString[0] = ‘j’  ! Error 

• But lists are mutable! You can update lists 
>>> myList = [1, 2, ‘hello’, 9] 

>>> myList[1] = 53   you can replace a item in a list with a 
 >>> myList      new value 
[1, 53, ‘hello’, 9] 

>>> myList.append(‘goodbye’)    you can add new items to the end  
>>> myList       of a list 
[1, 53, ‘hello’, 9, ‘goodbye’] 

>>> myList2 = [3, 99, 1, 4]   you can even sort! Note: Python’s sort rearranges 
>>> myList2.sort()    the items directly within the given list. It doesn’t 
>>> myList2      yield a new list with same items in sorted order 
[1, 3, 4, 99]             (different function, sorted, yields new sorted list)



Next Time 

for-while loop conversion 

More Chapter 10 
• more on list mutability 
• + vs append 
• “aliasing” 
• Is operator and object identity (vs ==)  

• lists as arguments to functions 


