
CS1210 Lecture 8 Sep. 10, 2021
• HW2 due next Tuesday

• Note: Assignment says “You may not use any string methods except for
lower()”. But the len() function and “in” operator are allowed. It is not a
string method.

• DS3 will be posted today, due Tuesday 8pm. Basic loop and string practice.
Attendance again not required but TAs will this time spend about 10 minutes
walking through the beginning examples in the ds3.py assignment

• Quiz 1 next Wednesday in class
• HW1 will be graded by Sunday night
Last time
• Strings (Ch 9) and while loop examples
Today
• More while loops

• collatz example. Can we always know whether loops terminate or not?
• charExamples.py, relevant to HW2 Q3
• for loops, an alternative way to iterate

While loop termination again Ch 8.5
• We (usually, but not always) want loops to terminate.

People sometimes work to formally prove that a loop
terminates

• But sometimes we’re we’re
we’re not sure! Consider:

• This is known as the Collatz or 3n+1 problem (https://
en.wikipedia.org/wiki/Collatz_conjecture) No one has been able
to prove that this will terminate for all positive n! collatz.py

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

A looping example helpful for Q3 of HW2
• Q3 asks you to write a function that takes four inputs:

• a string, inputString, of lower case characters
• a string, minLetter
• a string, lettersToIgnore
• a string, specialLetter

and returns 1) the “smallest” character in inputString that is both
greater than minLetter and not in lettersToIgnore, 2) the highest index at
which that letter occurs, and 3) True if specialLetter occurs an odd
number of times in inputString

• Study the three functions in charExamples.py to help you get started.
They use simple loops and no string operations other than “in”. It’s
good to practice this kind of loop pattern: iterating through a string
maintaining one or more variables related to a “best” or “minimum” or
“largest”

We seen looping over strings with while
Using [] and len, you can write while loops that do things
with each character in a string:

 currentIndex = 0
 while currentIndex < len(myString):
 currentChar = myString[currentIndex]
 ….
 …. (loop body – typically does something
 …. with character, currentChar)
 ….
 currentIndex = currentIndex + 1

We’ll continue to practice this over the next couple of weeks; it is very
important that you understand this general pattern of stepping through a
string (or, later, other sequence) by using a loop and incrementing an index

 for loops and strings
Python provides an alternative, more concise way to iterate over strings

 for currentChar in myString:
 ….
 …. (loop body – typically does something
 …. with character, currentChar)
 ….

The body of the for loop gets executed once for each character in the
string, myString. On the first iteration, currentChar is bound to the first
(i.e. index 0) character of myString. On the second iteration,
currentChar is bound to the second (i.e. index 1) character, etc. This
loop and the one on the previous page are equivalent! You need to be
able to convert for loops to equivalent while loop! It’s a simple
“robotic” process (and I almost always test this on the second quiz)
lec8loopchars.py

Looping on strings with for
def findChar(charToFind, stringToSearch):
 for char in stringToSearch: lec8findChar.py
 if char == charToFind:
 print(‘found it’)
 return <— leaves function immediately

But what if specification is instead to return the
index of character if found, and length of given
string if not?

Looping on strings with for

def findChar(charToFind, stringToSearch):
 indexOfCharSought = len(stringToSearch) lec8findChar.py
 currentIndex = 0
 for char in stringToSearch:
 if char == charToFind:
 indexOfCharSought = currentIndex
 <— exits loop immediately*
 currentIndex = currentIndex + 1
 return indexOfCharSought
What is different if we remove break Is the result different/still
correct?

* Be careful; if not used well break can yield confusing code

Ch 9.13: string in operator

• ‘a’ in myString returns True if ‘a’ is in
 myString, False otherwise

Write function inBoth(string1, string2) that prints all
characters that appear in both:

 def inBoth(string1, string2):
 for c in string1:
 if c in string2:
 print(c)

Demo/exercises

• lec8exercises.py debugging exercises involving
for and strings

Next time: printFirstNPrimes
• A prime number is an integer greater than one

that has no divisors other than 1 and itself.
– 2, 3, 5, etc.

• Goal: implement function printFirstNPrimes(n)
that takes integer n as input and prints the first n
prime numbers.
>>> printFirstNPrimes(4)
2
3
5
7

Top-down design of printFirstNPrimes
Express algorithm in comments, like an outline.
Incrementally refine and implement steps.

def printFirstNPrimes(n):
 # starting at 2, count upwards, testing
 # candidate integers for primeness,
 # printing those that are prime
 # and stopping after n
 # have been printed

Next time

• Development of printFirstNPrimes
• Review and examples for Quiz 1

