
CS1210 Lecture 6 Sep. 3, 2021
• HW1 was due 2pm. Will be graded by Wednesday
• DS assignment 2 (due Thurs. 9am!) will be available soon after class today.

Again, you may do this on your own or attend Tuesday discussion sections in
person or on Zoom to get help from your TA

• HW2 (due Tues, Sep 14) will be posted tomorrow
• Quiz 1 in class 12 days from now, Wed, Sep 15
• Last time

• More on functions Ch6 - variables and parameters are local, stack frames,
return vs print

• Introduction to if/else, Ch7
• HW1 advice / hints

• Today
• A little more on functions, local variables, stack frames
• More Ch 7 - if/elif/else, nested conditionals
• 8.3 iteration with while

(last time)Ch 6: Variables and parameters are local

• A function’s parameters are local variables. That is, they exist only
during the execution of that function.

• Other variables that are assigned-to within a function body are
also local (note: we’ll see exception to this later)

• Top-level variables (not within defs) are called global

 def foo(a, b): >>> foo(3, 4)
 c = (a + b) * 2 14
 return(c) >>> a
 Error
 >>> c
 IMPORTANT! Error

(last time) Ch6: local/global variables

• Another way to say this is that each function has its own
scope or namespace

>>> def f(x):
 y = 1
 x = x + y
 print(x)
 return x

>>> x = 3
>>> y = 2
>>> z = f(x)
4
>>> x
?
>>> y
?
>>> z
?

Function f’s variable x. A local
variable that exists only
within scope of definition of f

“Top-level” or global
variable x

Two completely
different variables!

Hint:
think of
them as,
e.g., xf
and
xglobal

3

2

4

 (last time) Ch6: Stack frames
• At top level (the interpreter/shell) a “symbol table”

keeps track of all variables (and values bound to
them) defined at that level

• When a function is called, a new symbol table , or
stack frame, is created to keep track of variables
defined in the function and the values associated
with those names. This includes (1) the function’s
parameters and (2) any other variables assigned to
within the function
– When the function finishes, the stack frame goes away.

• Note: this isn’t just one level, of course. As functions
call other functions that call other functions, the
stack (of stack frames) grows deeper …

(last time) Ch6: Stack frames
>>> def f(x):
 y = 1
 x = x + y
 print(x)
 return x

>>> x = 3
>>> y = 2
>>> z = f(x)

>>> x

>>> y

>>> z

main:

f x 3
 y

4

X 4

1

y 2
x 3

Demo - more complex example, #2, in lec6localvars.py.
Understand it by drawing stack frames!

z

4

3

2

4

Ch7: Condition execution – if (last time)
The most basic conditional statement is if

 if (Boolean expression):
 …
 … lines of code that execute when Boolean
 … expression evaluates to True
 …
 … more lines of code. These execute whether or
 … not Boolean expression evaluated to True
 …

Ch7: if-else

 if (Boolean expression):
 …
 … code that executes when Boolean expr
 … evaluates to True
 else:
 …
 … code that executes when Boolean not true
 …
 …
 … code that executes after if-else statement, whether
 … Boolean expression was True or not
 …

if (a < b):
 print(‘a is smaller’)
else:
 if (a == b):
 print(‘a and b are equal’)
 else:
 print(‘a is larger’)

One
statement

One
statement

Ch7: nested conditionals

But there’s an alternative in this particular situation …

(book calls this “chained conditionals)

if (a < b):
 print(‘a is smaller’)
elif (a == b):
 print(‘a and b are equal’)
else:
 print(‘a is larger’)

One
statement

Ch7: if-elif-else

demo: lec6ifs.py

Ch 8: Iteration
• Recall again, five key components of

programming, independent of particular
programming language.
– Expressions
– Variables and assignment
– Functions
– Conditional execution (if-else)
– Iteration

We’ve covered the first four. Chapter 8 introduces
the last one – iteration/repetition.

Reminder from Ch2: Reassignment and Updating Variables

Reassignment: Sometimes programs reassign variables to new values. E.g.
 >>> a = 3
 >>> b = a + 2
 >>> a = 2
As mentioned in earlier lectures, this should not cause confusion. Remember,
assignment statements are not algebraic constraints. They have an immediate,
perhaps temporary, effect. When evaluating an assignment statement, think in two
steps:
 1) [Ignore left hand side for the moment] Evaluate expression on right
 hand side of ‘=‘ using current values of variables.
 2) associate variable name of left hand side with value obtained in step 1

Thus, in b = a + 2, associates b with the value 5, not with the variable a
And then a = 2 changes the associate of a from 3 to 2, and does not affect b’s
association (with 5) at all

Reassignment and Updating Variables
Updating: Often programs reassign a variable to a new value in terms of its own
current value.
 >>> x = 3
 >>> y = 4
 >>> x = x + y
If you think via the two-step process, this is not mysterious/confusing.
 1) [Ignore left hand side for the moment] Evaluate expression on right
hand side of ‘=‘ using current values of variables.
 2) associate variable name of left hand side with value obtained in 1

Thus, after the first two lines, x has value 3, y has value 4.
To evaluate the third line,
 1) evaluate x + y, yielding 7
 2) associate x with 7

It’s only mysterious/confusing when thought of as an algebraic equality/constraint.

Ch 8.3: Iteration – the while statement
• Ch 8 actually starts with for which is also introduced briefly in

Ch4 (which we might not cover). We will start with more general
iteration form: while

• Many computations involve repetition, doing the same (or nearly
the same) things repeatedly (perhaps a few times, perhaps
billions of times)

• You can already write a program to, say, print out the first 1000
integers
 def printFirstThousand():
 print(1)
 print(2)
 …
 print(1000)

• But Python (and other languages) provide statements to
conveniently describe and control repetitive computations.

Ch 8 – the while statement
The while statement provides a very
general mechanism for describing
repetitive tasks.
 …
 … (B1: code before while)
 …
 while boolean expression:
 …
 … (B2: code in while body)
 …
 …
 … (B3: code after while)
 …

What happens?
1. Execute B1 code
2. Evaluate boolean expr
3. If True, do
 3a. eval B2 code.
 3b. jump to step 2
again
 If False, ignore B2 code and
simply continue with step 4
4. Execute B3 code

Ch 8: the while statement

Using while, how can we write concise
printFirstThousand()?

and
sumFirstThousand()
sumFirstN(number)

demo: lec6while.py

Next time (Wednesday! Sep 8)
• For next time:
• Read/do exercises in Ch 8 - Iteration

• In next lecture:
• Several more while examples
• Another iteration construct: for
• Some parts of Ch 9 on strings

