
CS1210 Lecture 3 Aug. 27, 2021
ANNOUNCEMENTS
• DS 1 assignment posted, due Aug 31, 8pm. You don’t have to attend

the Tuesday DS sections if you don’t want to.
• Homework 1 due Friday, Sep 3, 2pm

IMPORTANT THINGS TO DO
• Read the textbook, Ch 1 and Ch2
• Install Python on your computer
• Practice basic expressions in the Python interpreter
• Make sure you can access Piazza (discussion forum) through the ICON
FOR MONDAY
• Reading and do exercises in Chapter 6 (Functions) - necessary for

DS1 and HW1 assignments!

LAST TIME
• Course overview

–Chapter 1 of text
–Executing Python, intro to evaluating simple expressions
–expressions yield values
–every value has a type

• IC Arrest blotter demo program

TODAY
• Chapter 2

–More detail on expressions
–Variables and assignment statements
–Strings and expressions

• DS1 assignment overview
• Initial intro to functions - Ch 6

Key components of programming, independent of particular programming language.
Expressions
Variables and assignment
if-then-else (decision making/branching)
Iteration
Functions

Essentially all programming languages are built around these components. Once you
understand how to describe computations using them, you can program. Learn these
basics well! Changing programming languages is usually just a matter of looking up details
of how to “say” a particular standard thing in the different language.

Chapter 1 of text says it differently: input, output, math, conditional execution, repetition.
I/O is important but, to me, not key or interesting at the beginning. “math” is too vague.
Assignment and variables, in the programming sense, don’t fit well under everyday use of
word “math.” And while functions can be thought of as math, in programming functions
(often called procedures when used slightly differently) play a very important role beyond
just "being part of math." They help organize programs into understandable components,
etc.

(from last time) Ch 1: Programs

(from last time) Ch 1: expressions, arithmetic, types
• You can use the Python interpreter like a calculator. Type

mathematical and other expressions and see immediate results
>>> print(“hello”)
Hello
>>> 3 + 2
5
>>> (3 > 2)
True

• Expressions yield values. Every value has a type.
–3’s type in int (for integer)

–3.5’s type is float (for floating point number)
(What about 3.0? 3.0’s type is float. It is not the exact same thing as 3 in Python but
(fortunately) it is “equal” to 3. More on this later.)

–“hello”’s type is string

–You can ask Python for a value’s type
>>> type(3.5)
<class 'float'>

Ch 2 - Expressions
Generally, an expression is a combination of literals (things like
numbers, strings, Booleans) and operators (+, -, …) that, when
evaluated by Python, yield a value
• mathematical expressions

yield numbers, objects of type int or float

 3 * (200 / 1.5)
 abs(-4) + 2
 (2 * (5 // 2)) + (5 % 2)

Several mathematical operators are discussed Sec 2.7
• logical expressions

yield True or False, objects of type bool
3 > 2
(len(“hello”) > 3) or (5 < a)

Logical expressions
Some logical operators (see Ch 7.1 and 7.2):
 and, or, not, >, <, ==

Example expressions:
>>> (1 < 3) and (0 > 2)
False
>>> abs(-1) == 2
False
>>> (5 == (2 + 3)) or True
True

Important notes:
== is not a statement of equality! It’s a question – are the two
sides equal? True or False question!
True and False are NOT strings. They are basic Python values
different than “True” and “False”. Many students forget this

Order of operations
The textbook has a section (2.9) on order of operations, so
that you can figure out how to calculate the value of
something like:

>>> 3 + 1 or 3 + 2 ** 2 + -14 / 2.0 == 0
???

This has a legal value but I wouldn’t be able to tell you
without looking things up. I always parenthesize fully to
make expression clear.
E.g. ((3 * x) + (4.2 * (z ** 1.2))) - y
Code should be written so that you and others can read and
understand it without working too hard!

Variables (2.4) and Assignment statements
Expressions yield values and we often want to give names to those
values so we can use them in further calculations. A variable is a
name associated with a value.

The statement
>>> x = 10
>>>
creates the variable x and associates it with value 10.
‘x = 10’ is a statement not an expression. It doesn’t have or produce
a value. BUT it does have an important effect - it associates x with
the value 10 and subsequently x can be used in expressions!
>>> x + 3
13

Variables and Assignment Statements
In general, you write:

>>> var_name = expression

where var_name is a legal variable name (see book/Python reference to
know what’s legal) and expression is any expression

>>> zxy1213 = 14.3 + (3 * math.sin(math.pi/2))
>>> zxy1213
 17.3

And since zxy1213 is a variable, thus a legal expression, we can write:
>>> sillyVarName = zxy1213 – 1.0
>>> sillyVarName
16.3

Variables and Assignment Statements

Only variable names, not expressions, can appear on
to the left of an = sign (unlike ==, the equality
“question”)

>>> x = 3 + 4 OKAY
>>> x + 3 = 4 NOT OKAY (crashes, yields syntax error.)
>>> 3 = x + 4 NOT OKAY (crashes, yields syntax error.)
>>> x + 3 == 4 OK (will return True or False, or give
 error if x has not been assigned a value)

Variables and Assignment Statements

>>> x = 3
>>> y = 4 * x
>>> result = x + y

x

y

result

3

12

15

One of the most important things to
know all semester

To process an assignment statement
 result = 3.4 * x - math.sqrt(f(y*y)) - math.sin(g(z/4.1))
1) Evaluate right hand side (ignore left for a moment!)

yielding a value (no variables involved in result – it’s
simply a number, string, boolean or other value)

2) Associate variable name on left hand side with the
resulting value

Variables and Assignment Statements
>>> x = 3
>>> y = 4 * x
>>> result = x + y

x

y

result

3

12

15

Rule (very important to remember):
1) Evaluate right hand side (ignore

left for a moment!) yielding a
value (no variable involved in
result)

2) Associate variable name on left
hand side with resulting value

>>> x = 100
>>> y
?
>>>result
?

100

y and result are not changed!
Don’t think of assignments as constraints or lasting
algebraic equalities. They make (perhaps temporary)
associations between names and values.

Ch2.2’s information on strings
There’s a whole chapter (9) on strings but we want to use them
much sooner (for one thing, we need them to print nice output!)

Use quotes (single, double, even triple!) to make strings:
 “abc” == ‘abc’

But “abc’ is not a legal string.
The quotes at the ends are not part of the string. “abc123” has
6 characters in it, not 8.
Strings can contain quote characters E.g. “abc’def” is a 7
character string containing a, b, c, d, e, f, and a single-quote
character
Strings in Python are powerful and can get complicated. Can
represent full Unicode, emoji, chars from many languages, …

>>> myString = “🤙👀🐥”

Strings
Again, we’ll talk more about strings later but for now you should at
least know you can use + operator (see 9.2) on them

 >>> name = “Jim”
 >>> sentence = “Hi “ + name + “!”
 >>> sentence
 ‘Hi Jim!’
 >>> print(sentence)
 Hi Jim!

Also it’s easy and useful to be able to convert numbers to strings
using the built-in str function

 >>> "August has " + 31 + " days."
TypeError: can only concatenate str (not "int") to str

 >>> "August has " + str(31) + " days."
'August has 31 days.'

Ch 2.8 presents the “input” function that can
be used to prompt users for values. It’s worth
knowing but not key to most of the homework
you’ll do. We will only use it a couple of times
in special situations. Unless it’s clearly
specified as part of a given homework or
discussion assignment, you should not use the
input function in your code for this class.

DS1 Assignment and introduction to
Functions (Ch 6)

https://homepage.cs.uiowa.edu/~cremer/courses/cs1210/
ds/ds1.py

• As with all assignments, you must implement functions
–Textbook: “In Python, a function is a named sequence of

statements that belong together. Their primary purpose is to
help us organize programs into computational chunks that
match how we think about the solution to a problem.”

• We’ll do a super quick introduction to functions today. More Monday
• In DS1, the three Part 3 functions are all closely related to work you

have to do for HW1

https://homepage.cs.uiowa.edu/~cremer/courses/cs1210/ds/ds1.py
https://homepage.cs.uiowa.edu/~cremer/courses/cs1210/ds/ds1.py

Ch 6: Function definition and function calls
A function call is an expression. We say a function takes N argument
values, executes the statements in the function definition, and returns a
computed value, returned_value

>>> fn_name(arg1, arg2, …, argN)
returned_value

Function call examples.
>>> abs(-3) ! function call
3 ! value returned from function call
>>> min(17, 4) ! function call
4 ! value returned

abs and min are “built-in” functions, provided for us by Python.
A super important key component of programming is defining NEW
functions of your own design via Python’s “def” statement

Ch 6: Defining New Functions
Super important to understand this! (You will do a lot of
this in this course!)

Again, a function call, f(a,b,c) is an expression with a
value, just like other Python expressions. Like in math, a
function takes some “input” arguments, computes
something, and returns an answer

def enables you to define your own functions

Ch 6: Defining New Functions
def functionName (param1, param2, …, paramN):
 ….
 …. (body of function, can be many lines,
 …. computes result value in terms of parameter
 …. variables bound to input values)
 ….
 return result_value

Make sure you understand:
• A primary use of functions is to define a general procedure:

–Compute the square root of any non-negative number
–Compute the minimum of a pair of number
–Convert from a temperature in Celsius to Fahrenheit

• Computation in the function’s body is specified in terms of the parameter
variables (param1, …, paramN). The parameter variables will be bound to
argument values when the function is called. (We’ll take much more on this over
the next few days)

Ch6: Defining functions
def myMin (a,b):
 if (a < b):
 return a
 else:
 return b

>>> myMin(5,7)
5

a, b = 5, 7
if (a < b):
 return a
else:
 return b

 5

think of evaluating
myMin(5,7) as
executing:

Super important: Parameter variables a and b are
only defined during the execution of myMin

>>> a
ERROR: a not defined

Ch 6: Defining functions

def myMin (a,b):
 if (a < b):
 return a
 else:
 return b

>> x, y = 12, 10
>> myMin(x,y)

a, b = 12, 10
if (a < b):
 return a
else:
 return b

myMin(12,10)

>> 10

Ch 6: Defining New Functions
def foo(a, b, c):
 temp = a * b
 result = temp + c
 return result
 IMPORTANT
When executing a function call:
 1) first, the function’s parameter variables are bound to the values of
the function call’s arguments
 2) second, the body of the function is executed

>>> x = 3
>>> foo(x * x, x + 1, 3) ! foo will be executed with variable
 a bound to 9
 b bound to 4
 c bound to 3
 foo “knows” nothing about x. x *isn’t*
 passed in. 9, 4, and 3 are passed into foo.

Next time
More on:
– variables
– assignment
– functions (Ch 6)

For next time: read and do exercises in Ch6

