
• First homework will be published just after lecture today, due Friday, Sep 3

• I will post first Discussion Section Assignment, DS1, tomorrow, due Tuesday afternoon. Posting it
early because it’s a great first step for HW1. Don’t work on HW1 until you do DS1 Assignment.
We won’t cover the material about functions needed for DS1 until Fri and Mon. So, you can wait
until DS on Tuesday to do it but then you won’t have as much lot time left for HW1.

• Office hours for me and TAs are on the main course website

• Given the on-line nature of the course, I want to be as available for help as possible

• Don’t hesitate to send questions and comments to me and TA by email. BUT, when you
send email to a TA, always also include me.

• DO NOT sent multiple messages (one to a TA, one to me). This often wastes people’s time
and makes a mess!

• For homework-related email: ALWAYS attach file of your current code (UI does not
allow .py attachments) Put .py file in a folder, zip it, and attach .zip file to email. DO NOT
copy/paste code into message body!

• Also, USE Piazza. We’ll answer questions quickly there as well (so far only some of you
have “joined” the Piazza “course”)

IMPORTANT THINGS TO DO THIS WEEK
• Read the textbook, Ch 1 and Ch2
• Install Python on your computer
• Practice basic expressions in the Python interpreter
• Make sure you can access Piazza (discussion forum) through the ICON

CS1210 Lecture 2 Aug. 25, 2021

Today
• Course overview
• Chapter 1 of text, and a bit of Ch 2
– Programs
– Python
– Evaluating simple expressions
– Types
– Natural vs formal languages
– Debugging

• Example GUI/web program demo you’ll soon be
able to create

Course overview
• The first seven weeks: basic python programming

– Expressions, types, variables, conditions, functions, iteration
– Use of sequence and dictionary data types
Quizzes 1 and 2 will focus on these basics

• Additional topics (approx. one week each)
– Classes and object oriented programming
– Recursion
– Comprehensions and other more powerful Python language tools
– Program design and debugging
– Algorithmic efficiency
– Searching and sorting
– GUIs
– Graphing, plotting
– Accessing web data
– Machine learning or other advanced topics

Ch 1.2 and 1.5: Algorithms and programs

It is useful to distinguish between the words “algorithm” and
“program.”

dictionary.com: An algorithm is a “finite set of unambiguous
instructions performed in a prescribed sequence to achieve a goal.”
 (non-computing examples?)

Programming is the process of expressing an algorithm in a
programming language (so you can execute it on a computer)

Or, I like to say:
 program = algorithm + programming language

Key components of programming, independent of particular
programming language.
• Expressions
• Variables and assignment
• if-then-else (decision making/branching)
• Iteration
• Functions

Essentially all programming languages are built around these
components. Once you understand how to describe computations
using them, you can program. Learn these basics well! Changing
programming languages is usually just a matter of looking up details of
how to “say” a particular standard thing in the different language.

(In 1.5, the textbook also includes input and output in this list and
lumps expressions, variables, and assignment under ‘math and logic’)

Ch 1: Programs

Ch 1: Python
There are many many programming languages!
Why Python?

https://xkcd.com/353/

• Clean syntax, powerful
constructs enable
beginners to more quickly
get computer to do
interesting things

• Interactive mode
encourages
experimentation

• Extensive standard and
third party libraries for web
programming, scientific
computation, data analysis,
etc.

https://en.wikipedia.org/wiki/List_of_programming_languages
https://xkcd.com/353/

Ch 1: Using Python
• When working with Python, we use a Python

interpreter, which is a program that reads
Python code and executes it.

• Demo: Python interpreter from Mac terminal
• Demo (the most common way I will do things

and recommended approach for students):
Python interpreter plus IDLE IDE.

• Demo: Anaconda’s Spyder IDE
• Demo: you can use Python directly within the

on-line textbook (sec 1.4)

Expressions, arithmetic, types (from Ch 2 – we’ll cover more
on Friday)

• You can use the Python interpreter like a calculator, typing in
many different mathematical (and other) expressions and seeing
immediate results
– print(“hello”)
– 3 + 2
– 2**128
– 5/2+1

• Expressions yield values. Every value has a type.
– 3’s type in int (for integer)
– 3.5’s type is float (for floating point number)

• (What about 3.0? 3.0’s type is float. It is not the exact same thing as 3 in
Python but (fortunately) it is “equal” to 3. More on this later.)

– “hello”’s type is string
– You can ask Python for a value’s type

>>> type(3.5)
(Note: don’t use commas in big numbers: 1,000,000 is not million in
Python!)

• Expressions
• Variables and assignment
• if-then-else (decision making/branching)
• Iteration
• Functions

Expression: 3 + (2 * b)

Assignment: counter = 1
 counter = counter + 2

Decision making: if counter > 0:
 print(“counter is positive”)
 else:
 print(“counter is not positive”)

Iteration: while (counter > 0):
 print(counter * counter)
 counter = counter – 1

Function: def plus5(number):
 return number + 5

Again … basic programming components, independent of
particular programming language.

1.6-1.9 Debugging and programming errors
• ”Debugging” is the process of finding and correcting

errors in programs. It is a critically important skill. It DOES
not require special tools (debuggers). Many people do
most of their debugging using a combination of carefully-
placed “print” statements and careful critical reading of
their code.

• Error types:
– Syntax error: improperly formed Python

• E.g. 3 = x Python won’t even let you try to execute this
– Runtime error:

• E.g. 3/x when x has value 0 Python generates an error
 while executing the program

– Semantic error:
• Errors where the output does not meet your specification. The

program has no syntax errors, and executes without encountering a
runtime error, but does not compute what was required. Python
doesn’t detect this kind of error! You need to carefully assess whether
your code is computing the correct thing in all required cases!

Ch 1.11: natural vs formal languages
One major difference: formal programming languages are
unambiguous.

Natural languages are ambiguous, which can be annoying and
confusing but also enables playfulness and creativity (jokes, poetry,
etc.)
Natural languages have lots of redundancy – many ways to express
the same thing. Programming languages also redundant but less so.

Programming languages are dense but they can be directly and
unambiguously translated into basic machine-level operations
 Computer systems read them quickly but humans need to read them
too. STRONG RECOMMENDATION: get in the habit of reading programs
slowly, carefully, and critically. Make sure you understand what they really
say rather than what you believe or hope they say)

• IC Arrest Blotter
• Demo: blotter.py

By the end of the semester you should be able to
create this and similar programs.

https://www.iowa-city.org/IcgovApps/Police/ArrestBlotter

Next time - very important basics
• CH 2: values, expressions, types, variables, and

assignment
• For next time, read and do practice work in Ch2

