Designing Effective and Practical Interventions to Contain Epidemics

Prathyush Sambaturu¹, Bijaya Adhikari², B. Aditya Prakash³, Srinivasan Venkatramanan⁴, Anil Vullikanti^{1 4}

 1 University of Virginia 2 Virginia Tech $^{-3}$ Georgia Institute of Technology 4 Biocomplexity Institute at University of Virginia

Sambaturu et al.

Designing Interventions to Contain Epidemics

Introduction

- Preliminaries
- Problem Statement

Algorithm

- SAAROUND Algorithm
- Approximation Guarantees
- Extensions and Improvements

3 Experiments

- Performance Guarantees
- Two stage Intervention

Designing Interventions to Contain Epidemics

- Vaccination is a standard public health intervention
- Limited Supply of vaccines, and are produced over time
- We study the problem EPICONTROL of designing vaccination strategies, within available budget constraints, to minimize the spread of an outbreak
- Challenging stochastic optimization problem
- Bi-criteria approximation algorithm
- Techniques: Linear programming (LP) based rounding and the sample average approximation (SAA)

- G = (V, E) denotes a contact graph where V is the set of nodes and e = (u, v) ∈ E if nodes u, v ∈ V come into direct contact.
- SIR model of disease spread on networks, in which each node is in one of the following states: susceptible (S), infectious (I) or recovered (R).

• *s_v* is the probability that *v* is initially infected; **s** denotes the initial infection vector.

- x_{vt} is an indicator variable, which is 1 if node v gets vaccinated at time t; let $\mathbf{X}_t = \{v : x_{vt} = 1, v \in V\}$, and let B_t denote the number of vaccines available for use at time t.
- Single stage: EInf(G, s, X₀) denotes the expected number of infections when the intervention is done for set X₀ at time t = 0.
- Two stage: EInf(G, s, X₀, X_T) denotes the expected number of infections if the interventions are done on sets X₀ and X_T at times 0 and T, respectively.

Example

Figure: Contact network G = (V, E) where $V = \{A, B, C, D, E, F\}$. Node *A* is initially infected, and node *C* is vaccinated. The subgraphs $H_1^{(sir)}, H_2^{(sir)}, H_3^{(sir)}, H_4^{(sir)}$ are possible stochastic outcomes in the SIR model, which occur with probabilities 1 - p, p(1 - p), $p^2(1 - p)$, and p^3 , respectively. Suppose, $x_{C0} = 1$, and $X_0 = \{C\}$. We have

$$ext{EInf}(G, \mathbf{s}, \mathbf{X}_0) = (1-p) + 2p(1-p) + 3p^2(1-p) + 4p^3$$

Given a contact network G = (V, E), and an initial infection vector **s**, we consider the following problems

- Single stage vaccination problem (1sEpiControl): given budget B_0 , choose X_0 such that $|X_0| \leq B_0$ and $\text{EInf}(G, \mathbf{s}, \mathbf{X}_0)$ is minimized.
- Two stage vaccination problem (2sEpiControl): given budget B_0, B_T , choose X_0, X_T such that $|X_0| \le B_0$, $|X_T| \le B_T$, and $\text{EInf}(G, \mathbf{s}, \mathbf{X}_0, \mathbf{X}_T)$ is minimized.

- Design SAAROUND for 1sEpiControl and show rigorous worst case guarantees on its performance.
- We show that SAAROUND is a good heuristic for the multi-stage problem.
- Scaling SAAROUND to large networks.
- Evaluate of our algorithm on diverse real and random networks and comparison to baselines.

Introduction

- Preliminaries
- Problem Statement

2 Algorithm

- SAAROUND Algorithm
- Approximation Guarantees
- Extensions and Improvements

B Experiments

- Performance Guarantees
- Two stage Intervention

Steps in SAAROUND

Variables y_{vj} are indicators for node v getting infected in sample H_j (i.e., there is a path from $src(H_j)$ to v with no node on it vaccinated).

- Construct M sampled outcomes: H_j = (V, E_j), for j = 1,..., M. The idea is that it suffices to get a solution which minimizes the average number of infections in a set of M sampled outcomes, in order to minimize EInf(·).
- **2** Solve the following linear program (LP_{saa})

$$(LP_{saa})$$
 min $\frac{1}{M} \sum_{j} \sum_{v} y_{vj}$ (1)

$$\forall j, \forall u \in V : y_{uj} \leq 1 - x_{u0} \tag{2}$$

$$\forall j, \forall u \in V, (w, u) \in E_j : y_{uj} \geq y_{wj} - x_{u0}$$
(3)

$$\forall j, \forall s \in src(H_j): y_{sj} = 1 - x_{s0} \tag{4}$$

$$x_{u0} \leq B_0 \tag{5}$$

All variables $\in [0,1]$ (6

 $u \in V$

- Let x, y be the optimal fractional solution to (LP). We round it to an integral solution X, Y in the following manner
 - If y_{vj} is binary. Set $Y_{vj} = y_{vj}$. Similarly, for x_{v0} .
 - Round $Y_{vj} = 1$ for each (v, j) if $y_{vj} \ge \frac{1}{2}$, otherwise set $Y_{vj} = 0$.
 - For each v, set $X_{v0} = 1$ with probability min $\{1, 2x_{v0} \log(4nMN)\}$, where N is the maximum number of paths from src(H_j) to any node v in H_j .
 - $X_0 = \{v : X_{v0} = 1\}$ is the set of nodes vaccinated.

• return X_0 .

・ 回 ト ・ ヨ ト ・ ヨ ト ・

Theorem

Let X_0 denote the vaccination set computed by algorithm SAAROUND and $M \ge 24n^2 \log n$. Then, with probability at least 1/2, we have $EInf(X_0) \le 6EInf(X_{opt})$, and $|X_0| \le 12 \log(4nMN)B_0$.

where,

n=|V|,

M is the number of sampled subgraphs considered,

N is the number of paths from sources to any node in H_j

To improve the scaling of SAAROUND, we use the following methods.

- **Reduced number of samples**: In practice, we find that fewer samples are needed.
- Reducing the number of variables We can set x_{vt} = 0 for nodes with vulnerability (probability that it gets infected) at most γ.

Introduction

- Preliminaries
- Problem Statement

Algorithm

- SAAROUND Algorithm
- Approximation Guarantees
- Extensions and Improvements

3 Experiments

- Performance Guarantees
- Two stage Intervention

Dataset	Nodes	Edges
Montgomery	70729	198138
Portland	1409197	8307767
CA-GrQc	5242	14496
Small World (SW)	2500	14833
Preferential1 (PA1)	1000	1996
Preferential2 (PA2)	100000	199996

Table: Description of datasets

3

イロト イヨト イヨト イヨト

Impact of Pruning

Figure: Comparison of runtimes of Linear Programs with (LP-P) and without pruning (LP).

Comparison to Baselines

Figure: Objective value (y-axis) vs budget (x-axis) for SAAROUND, and the degree and eigenscore baselines for four networks.

æ

э

< 行

Two Stage Intervention

Introduction

- Preliminaries
- Problem Statement

Algorithm

- SAAROUND Algorithm
- Approximation Guarantees
- Extensions and Improvements

3 Experiments

- Performance Guarantees
- Two stage Intervention

- LP based rounding and the sample average approximation technique provide good approximation guarantees in practice.
- Our results are the first to examine multi-stage interventions, and we find that the temporal dimension leads to significant changes in the solution quality and structure.
- Improving the approximation guarantees by better rounding techniques is an important open problem.
- Our methods can help in public health policy planning and response to large outbreaks.