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Asymptomatic cases drives outbreak

Asymptomatic, Symptomatic, SARS-CoV-2—positive
SARS-CoV-2—positive 1.9%
13.5%

SARS-CoV-2—negative
84.6%

[11 Asymptomatic cases are common

uchicago news fo

At least 50% of COVID-19 infections

come from people who arent showing

symptoms, study finds

[2]

They contribute to the outbreak

3]

C. Difficile is another example
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[2] Subramanian, Rahul, Qixin He, and Mercedes Pascual. "Quantifying asy mptomatic infection and transmission of COVID-19 in New York City using observed cases, serology, and testing

capacity." Proceedings of the National Academy of Sciences 118.9 (2021): e2019716118.
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[3] Ziakas, Panayiotis D., et al. "Asymptomatic carriers of toxigenic C. difficile in longterm care facilities: a meta-analysis of prevalence and risk factors." PloS one 10.2 (2015): e0117195.



Challenges in Detecting Asymptomatic Cases
*Challenge 1: Data Scarcity

Most data don’t include symptomatic information
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Challenges in Detecting Asymptomatic Cases

*Challenge 2: Bias on Risk Factors

The risk factors for symptomatic infections differ from those
of asymptomatic infections.

L

THE m

UNIVERSITY
OF lowa

3/13



Challenges in Detecting Asymptomatic Cases
*Challenge 3: Systematic Bias

Severe cases get more attention when it comes to testing
when capacity is limited.
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Scope of This Paper

*Goal

Given interactions between people and some positive cases,
infer the asymptomatic cases.

But ...

Such interactions do not exist for most scenarios.

Health Care Facilities

Well-documented
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Outline

*Problem Formulation
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Construct Graph from Interactions

=Health care facilities

Interactions between patients and HCPs.
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Construct Graph from Interactions

=Health care facilities

Interactions between patients and HCPs.
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Construct Graph from Interactions

=Health care facilities

Interactions between patients and HCPs.
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Construct Graph from Interactions

=Health care facilities

Interactions between patients and HCPs.
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If we have more interactions ...

*Build snapshot upon previous ones

- B

% / > @%’L Positive

8 | / g

. & - &

o

Directed Edge

[

Snapshot 1 Snapshot 2

L

THE m

UNIVERSITY
OF lowa

5/13



If we have more interactions ...

*Build snapshot upon previous ones

Directed Edge %
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Still have more interactions ...

*Build snapshot upon previous ones

Directed Edge
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Snapshot 1 Snapshot 2 Snapshot ...

| Such network also called time-expanded network |
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Problem Formulation

0 Take 2 snapshots as an example. We are focusing the
following problem.

Directed Edge

/ | AN AN
% / > @%@ Simplify
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Problem Formulation
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0 Take 2 snapshots as an example. We are focusing the
following problem.
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Edge Weight: Probability of
transmission

Node Prize: Probability of being
asymptomatic

Goal: Cover positive nodes by a
tree, and maximize the weight
and prize
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One Solution

Obj=0.7+05+1.0+1.0+0.2=3.4

Directed Edge

1.0
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Edge Weight: Probability of
transmission

Node Prize: Probability of being
asymptomatic

Goal: Cover positive nodes by a
tree, and maximize the weight
and prize
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Another Solution

0.7

®

0.8

Obj = 0.

0.6

7+05+1.0+1.0+0.6=3.8>34

should be asymptomatic!

Directed Edge ]
> Edge Weight: Probability of

I \ . \ transmission

0.5 @ . Node Prize: Probability of being

?

] @ asymptomatic

[ *
P @

@ Goal: Cover positive nodes by a

@ \
>

tree, and maximize the weight
@ > @ and prize
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Directed Prize-collecting Steiner Tree

O Given
 Time-expanded Network
* Positive Cases

0 Output
e Steiner Tree, and satisfies

T" = arg

Node Prize of
1 - Edge Weight excluded nodes

Challenge 1: Estimate the Probability
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*Problem Formulation
*Our Method
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Related Works

0 MCA [Jangetal. ]

0 TopolSTM [Wang et al. ]

e Cascade

* Ignore risk-factors

Prize-collecting Steiner Tree
Fixed prize, sub-optimal

0 CulT [Rozenshtein et al. ]
Steiner Tree
Assume S| model, ignore risk-factors

Methods

Cascade

Steiner Tree

Risk Factors

End-to-end

TopolLSTM

X

X

CulT

Main contribution:
jointly optimize for
estimating and
constructing.

MCA

Ours
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[1] Jang, Hankyu, et al. "Risk-aware temporal cascade reconstruction to detect asymptomatic cases: For the cdc mind healthcare network." 2021 IEEE Intemational Conference on Data Mining (ICDM). IEEE, 2021.
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Estimate Probability

O Graph Autoencoder

/ Input Graph \

Q Observed Infections
Q other nodes
l Node features

o

/

\ \ Graph Auto-encoder . /

Hidden Layer Hidden Layer

= The prize is used in constructing tree

= Latent embeddings receive gradient

o -
= e =R =
/

Reconstructed \
Graph and Feature

BEEOEE

Prize Estimation Network

Hidden Layer Hidden Layer Readout Layer
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Construct the Tree - Reinforcement Learning

[0 State:

® The state space is all the possible Trees. The starting state is {r} for some
random node.

[0 Action:

® The action is to select edge (u,v) and u € §;,v € S;. Then, the state will

transit to S; U {v} with probability 1. We include one more node for each
step.

O Reward: af(F,) — Z W(u, v)

u€eSt
l Sum up all steps

e Z flv) — Z W(u,v) Exactly the objective! L
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Jointly Optimization

Input Graph 7 _ Sy / \
/ I : I\ J \ Graph Auto-encoder | Reconstructed
2 g 12 Q

Hidden Layer Hidden Layer : Graph and Feature

AN ——
Q Observed Infections i i a5 2
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Experiment

0 Data

University of lowa Hospitals and Clinics (UIHC)
Interactions between patients and healthcare workers
500 (UIHC1), 2000 (UIHC2), and 5000(UIHC3)

O Tasks

Simulated CDI Outbreak
Real CDI Qutbreak
Simulated Covid-19 Outbreak

No asymptomatic ground truth
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Simulated CDI Outbreak - Setup

= Use Biased-SIS model to generate symptomatic and
asymptomatic infections.

= The model used known risk factors for C. Difficle

=On 500 (UIHC1), 2000 (UIHC2), and 5000 (UIHC3)

= Based on symptomatic cases, infer the asymptomatic
= Use micro-F1 and macro-F1 to evaluate

= Run 5 time and report the mean.
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Simulated CDI Outbreak - Result

~30%
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Joint optimization enables us to
avoid the limitations of MCA and
achieve greater accuracy.
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Real CDI Outbreak - Setup

= Sample one month of interactions from UIHC to construct graph.
= 68 positive cases.

= 80% training

= Each method infers the asymptomatic cases based on training set

= Based on the prediction, we compute the asymptomatic pressure.
(i.e., a normalized metric computing interaction frequency with
asymptomatic cases)

= Use the asymptomatic pressure as extra features, we train a MLP
to predict the rest positive cases.
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Real CDI Outbreak

Results

0.74-

Cult

CulT is unable to improve
upon the Risk-factors-only
baseline

Risk Factors Only
TopolLSTM

MCA

Ours

Inferred asymptomatic cases by our
method are more accurate
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Simulated Covid-19 Outbreak - Setup

= CovaSim model

= Generate symptomatic and asymptomatic infections.

=0n 500 (UIHC1), 2000 (UIHC2)

= Based on symptomatic, models infer the asymptomatic cases.

= Use micro-F1 and macro-F1 to evaluate
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Simulated Covid-19 Outbreak - Result
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Outline

=Conclusion & Future Work
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Conclusion & Future Work

= Qur results on synthetic outbreaks show that the proposed
approach is able to identify asymptomatic infection with
high accuracy while the baseline approaches are less
accurate.

= The tree affect the probability.

T*:argmjin Z W (Vg, 1) + Z f(Fy.)

(Va,vp)ET veEV\T l

f(Fy:T)
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THANKS
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