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e One of the most significant challenges in combating
against the spread of infectious diseases

e For example, large number of COVID-19 infections
were unreported

o Lack of testing
o Asymptomatic infections

* Seattle
Chicago

San Francisco
New York

Inability in estimating the unreported infections allowed

them to drive up disease spread in the U.S. and worldwide.
N
Only 23 reported infections in 5 It was estimated that there were already
major U.S. cities by March 1, 2020. more than 28000 infections. °




Reported rate

e Epidemiologists use reported rate (areported) t0

capture total infections (i.e., both reported and
unreported)

e Definition:
reported infections

a = - .
reported total infections
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Reported rate in epi models & estimation

e Many epi models have reported rate as a parameter

e Example: s .
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Reported rate in epi models & estimation

e Many epi models have reported rate as a parameter

e Example: s .
TG
w - Py—YE
{ 5 = treporteatE — 01,
4 = (1 — reporcea)VE — 61,
=50y + 1)

States for reported
(I,) and unreported
cases (I,,)

e Calibration: Fit . to reported cases to estimate the
unknown parameters (including reported rate)
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Sub-optimal calibration

e Parameter tuning is hard
o Example: COVID-19 cases in Florida in 2020

. x10° _ Model: SAPHIRE

Blue: reported rate=0.06
|Red: reported rate=0.02;
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Sub-optimal calibration

e Parameter tuning is hard
o Example: COVID-19 cases in Florida in 2020

; Xx10° Model: SAPHIRE 5 X10° Model: SAPHIRE
| |
Blue: reported rate=0.06 Blue: report rate=0.06 | .
Red: reported rate=0.02] Red: report rate=0.02 | #
4 i 4 : :
_ if
o 3 #

Apr1 Mayl Junl Jull Aprl Mayl Junl Jull
But their performance for forecasting

are significantly different K




Our goal

e Therefore, our goal is to estimate an accurate
reported rate
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Intuition

o We already know reported cases D;cported

e Imagine we are also given accurate values of total
cases D

o Then calibrating the model to (D, Dy¢porrea) Will lead to
better fit of D;.cporteq
o We can also learn better parameters including

areported

e Hence, our problem can be stated as finding the D*
that fits the Dyepprreq DESH

19



Outline

e Two-part MDL: Sender-receiver framework
e MDLINFER: Information-theory based approach
e EXxperiment results

e Conclusions
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Two-part MDL: Sender-receiver framework

e Two hypothetical actors: Sender S and Receiver R
o Sender S wants to send the “DATA” to Receiver R using
a good “ MODEL”
o To measure the “good fit”, use the number of bits to
encode DATA: L(DATA|MODEL) + L(MODEL)
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Two-part MDL: Sender-receiver framework

e Two hypothetical actors: Sender S and Receiver R
o Sender S wants to send the “DATA” to Receiver R using
a good “ MODEL”
o To measure the “good fit”, use the number of bits to

encode DATA: L(DATA|MODEL) + L(MODEL)
A good MODEL makes
description easier!

Sender S searches for the best possible MODEL, which

minimizes the overall cost of encoding and transmitting
both the MODEL and the DATA given the MODEL.

Describe it L(DATA) = L(MODEL) + L(DATA|MODEL)
directly is hard!

23



Outline

e MDLINFER: Information-theory based approach
e EXxperiment results

e Conclusions
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MDLINFER: MODEL and DATA

e Recall that our problem can be stated as finding the
D* that fits the D;.cporteq DEST

e We also have
Dreported — areportedXD

e Hence, we intuitively use
© Dreportea @S DATA
o D and @reporteda @S MODEL

25



MDLINFER: Problem formulation

e Problem formulation

e Here, L(-) denotes the number of bits for encoding

/|

D, Dreportea '/

u Ao SN

Sender Receiver (MDLPARAM)
\ A
o [
The latent variable D* helps
Use MDL Sender-Receiver framework to help find find more accurate 6* for the

the latent variable D* that explains D,..;o,¢eq best. epidemiological model. %



MDLINFER: Problem formulation

e Problem formulation

e Here, L(-) denotes the number of bits for encoding

—

A_ oo —>_

Receiver (MDLPARAM)

?

D1 Dreported

Sender

Intuitively, by trying different D, we le D* helps

do fine-grain search in the search space. g*lf"f the
] : . noael.



Outline

e Experiment results

e Conclusions
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Results

e More accurate estimation of total cases
o Black: ground-truth total cases by serological studies [1]
o Red for us, blue for current estimation methods

’l." 29
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o Black: ground-truth total cases by serological studies [1]
o Red for us, blue for current estimation methods
Minneapolis-Spring 2020 Philadelphia-Spring 2020
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We show our performance on Our method (red) always fit

two different ODE models the serological studies well
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More results for other
locations in the paper

Results

e More accurate estimation of total cases
o Black: ground-truth total cases by serological studies [!
o Red for us, blue for current estimation methods
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We show our performance on Our method (red) always fit

two different ODE models the serological studies well
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Che

New Jork
Times

Results

e Better fit of reported cases
o Black for ground-truth reported cases by NY Times 1]
o Red for us, blue for current estimation methods

[1] https://www.nytimes.com/interactive/2021/us/covid-cases.html
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Results

e Better fit of reported cases
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Results

e Better fit of reported cases
o Black for ground-truth reported cases by NY Times [1]
o Red for us, blue for current estimation methods
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Results

e Better fit of reported cases
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Results

e Better estimate for symptomatic rate trends
o> Black for symptom trends by Facebook’s survey 1]
o Red for us, blue for current estimation methods
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Results

e Better estimate for symptomatic rate trends
o> Black for symptom trends by Facebook’s survey 1]
o Red for us, blue for current estimation methods
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Results

e Better estimate for symptomatic rate trends

o> Black for symptom trends by Facebook’s survey 1]
o Red for us, blue for current estimation methods
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More results for other
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Results

e Better estimate for symptomatic rate trends

o> Black for symptom trends by Facebook’s survey 1]
o Red for us, blue for current estimation methods
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Two-part MDL: Sender-receiver framework
MDLINFER: Information-theory based approach
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Conclusions M

e We propose MDLINFER, a

data-driven method to identify o 4

reported rate

e Leverage the information
theory-based MDL framework

e Better performance in

identifying total infections and
forecasting future infections

L(DATA)

-~ L(MODEL) + L(DATA|MODEL)

x10°  Model: SAPHIRE

Apr1 Mayl Junl Jull
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