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● One of the most significant challenges in combating 
against the spread of infectious diseases

● For example, large number of COVID-19 infections 
were unreported

○ Lack of testing
○ Asymptomatic infections

Only 23 reported infections in 5 
major U.S. cities by March 1, 2020.

It was estimated that there were already 
more than 28000 infections.

Inability in estimating the unreported infections allowed 
them to drive up disease spread in the U.S. and worldwide.
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● Epidemiologists use reported rate (𝛼!"#$!%"&) to 
capture total infections (i.e., both reported and 
unreported)

● Definition:

𝛼!"#$!%"& =
reported infections
total infections
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● Many epi models have reported rate as a parameter
● Example:

● Calibration: Fit 𝐼' to reported cases to estimate the 
unknown parameters (including reported rate)
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Sub-optimal calibration
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● Parameter tuning is hard
○ Example: COVID-19 cases in Florida in 2020

Blue: report rate=0.06
Red: report rate=0.02

Blue: reported rate=0.06
Red: reported rate=0.02

But their performance for forecasting 
are significantly different
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● Therefore, our goal is to estimate an accurate
reported rate
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● We already know reported cases 𝐷'()*'+(,
● Imagine we are also given accurate values of total 

cases 𝐷
○ Then calibrating the model to 𝐷,𝐷!"#$!%"& will lead to 

better fit of 𝐷!"#$!%"&
○ We can also learn better parameters including 
𝛼!"#$!%"&

● Hence, our problem can be stated as finding the 𝐷∗

that fits the 𝐷'()*'+(, best
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● Introduction

● Two-part MDL: Sender-receiver framework

● MDLINFER: Information-theory based approach

● Experiment results

● Conclusions
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● Two hypothetical actors: Sender 𝑆 and Receiver 𝑅
○ Sender 𝑆 wants to send the “DATA” to Receiver 𝑅 using 

a good “ MODEL”
○ To measure the “good fit”, use the number of bits to 

encode DATA: L(DATA|MODEL) + L(MODEL)

= -

L(DATA) =      L(MODEL) +  L(DATA|MODEL)Describe it 
directly is hard!

A good MODEL makes 
description easier!

Sender 𝑆 searches for the best possible MODEL, which 
minimizes the overall cost of encoding and transmitting 
both the MODEL and the DATA given the MODEL.
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25

● Recall that our problem can be stated as finding the 
𝐷∗ that fits the 𝐷'()*'+(, best

● We also have
𝐷!"#$!%"& = 𝛼!"#$!%"&×𝐷

● Hence, we intuitively use
○ 𝐷'()*'+(, as DATA
○ 𝐷 and 𝛼'()*'+(, as MODEL
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● Problem formulation

● Here, 𝐿(7) denotes the number of bits for encoding

𝐷∗ = argmin
.

𝐿 𝐷'()*'+(, 𝐷, 𝛼!"#$!%"& + 𝐿(𝐷, 𝛼!"#$!%"&)
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● Problem formulation

● Here, 𝐿(7) denotes the number of bits for encoding

Intuitively, by trying different D, we 
do fine-grain search in the search space. 

𝐷∗ = argmin
.

𝐿 𝐷'()*'+(, 𝐷, 𝛼!"#$!%"& + 𝐿(𝐷, 𝛼!"#$!%"&)
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● More accurate estimation of total cases
○ Black: ground-truth total cases by serological studies [.]

○ Red for us, blue for current estimation methods

[1] https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/commercial-lab-surveys.html
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Minneapolis-Spring 2020 Philadelphia-Spring 2020

Our method (red) always fit 
the serological studies well

We show our performance on 
two different ODE models

More results for other 
locations in the paper
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● Better fit of reported cases
○ Black for ground-truth reported cases by NY Times [.]

○ Red for us, blue for current estimation methods

[1] https://www.nytimes.com/interactive/2021/us/covid-cases.html
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● Better fit of reported cases
○ Black for ground-truth reported cases by NY Times [.]

○ Red for us, blue for current estimation methods

Minneapolis-Spring 2020 Philadelphia-Spring 2020

Grey dash line divides observed period 
(left) and forecast period (right). Good performance 

in predicting future!
[1] https://www.nytimes.com/interactive/2021/us/covid-cases.html
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[1] Reinhart, Alex, et al. An open repository of real-time COVID-19 indicators. PNAS 2021.
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● Better estimate for symptomatic rate trends
○ Black for symptom trends by Facebook’s survey [.]

○ Red for us, blue for current estimation methods

Minneapolis-Spring/Fall 2020 South Florida-Spring/Fall 2020

[1] Reinhart, Alex, et al. An open repository of real-time COVID-19 indicators. PNAS 2021.
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● Better estimate for symptomatic rate trends
○ Black for symptom trends by Facebook’s survey [.]

○ Red for us, blue for current estimation methods

Minneapolis-Spring/Fall 2020 South Florida-Spring/Fall 2020

Black points and shadow are the 
point estimate and standard error Good performance in capturing 

symptomatic rate trends
[1] Reinhart, Alex, et al. An open repository of real-time COVID-19 indicators. PNAS 2021.
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Conclusions

● We propose MDLINFER, a 
data-driven method to identify 
reported rate

● Leverage the information 
theory-based MDL framework

● Better performance in 
identifying total infections and 
forecasting future infections 

42



Authors

43

Jiaming Cui

Anil Vullikanti B. Aditya Prakash

Bijaya Adhikari Arash Haddadan

Jilles Vreeken

A S M Ahsan-Ul Haque



Thank you
● Code & papers available at: 

people.cs.vt.edu/jiamingcui/
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