

Accurately Estimating Unreported Infections using Information Theory

*Jiaming Cui*¹, Bijaya Adhikari², Arash Haddadan³, A S M Ahsan-Ul Haque³, Jilles Vreeken⁴, Anil Vullikanti³, B. Aditya Prakash¹

> ¹Georgia Institute of Technology ²University of Iowa ³University of Virginia ⁴CISPA Helmholtz Center for Information Security

May 3, 2025 @ SDM'25

• One of the most significant challenges in combating against the spread of infectious diseases

- One of the most significant challenges in combating against the spread of infectious diseases
- For example, large number of COVID-19 infections were unreported
 - Lack of testing
 - Asymptomatic infections

- One of the most significant challenges in combating against the spread of infectious diseases
- For example, large number of COVID-19 infections were unreported
 - Lack of testing
 - Asymptomatic infections

Only 23 reported infections in 5 major U.S. cities by March 1, 2020.

- One of the most significant challenges in combating against the spread of infectious diseases
- For example, large number of COVID-19 infections were unreported
 Boston
 - Lack of testing
 - Asymptomatic infections

Only 23 reported infections in 5 major U.S. cities by March 1, 2020.

It was estimated that there were already more than 28000 infections. ⁵

- Seattle
- Chicago
- San Francisco
- New York

- One of the most significant challenges in combating against the spread of infectious diseases
- For example, large number of COVID-19 infections were unreported
 Boston
 - Lack of testing
 - Asymptomatic infections

- Seattle
- Chicago
- San Francisco
- New York

Inability in estimating the unreported infections allowed them to drive up disease spread in the U.S. and worldwide.

Only 23 reported infections in 5 It was estimated that there were already major U.S. cities by March 1, 2020. more than 28000 infections. ⁶

Reported rate

- Epidemiologists use reported rate (α_{reported}) to capture total infections (i.e., both reported and unreported)
- Definition:

 $\alpha_{\text{reported}} = \frac{\text{reported infections}}{\text{total infections}}$

Reported rate estimation methods

- Serological studies: Prevalence of antibiotics
 - Accurate, but expensive and have unavoidable delays
- Influenza surveillance systems

- Suffer from ad-hoc corrections between COVID-19 and influenza
- Epidemiological models

Reported rate estimation methods

- Serological studies: Prevalence of antibiotics
 - Accurate, but expensive and have unavoidable delays
- Influenza surveillance systems

- Suffer from ad-hoc corrections between COVID-19 and influenza
- Epidemiological models

- Many epi models have reported rate as a parameter
- Example:

$$\begin{aligned} \frac{dS}{dt} &= -\beta \frac{SI}{N} \\ \frac{dE}{dt} &= \beta \frac{SI}{N} - \gamma E \\ \frac{dI_r}{dt} &= \alpha_{reported} \gamma E - \delta I_r \\ \frac{dI_u}{dt} &= (1 - \alpha_{reported}) \gamma E - \delta I_u \\ \frac{dR}{dt} &= \delta (I_r + I_u) \end{aligned}$$

- Many epi models have reported rate as a parameter
- Example:

States for reported (I_r) and unreported

cases (I₁₁)

$$\begin{aligned} \frac{dS}{dt} &= -\beta \frac{SI}{N} \\ \frac{dE}{dt} &= \beta \frac{SI}{N} - \gamma E \\ \frac{dI_r}{dt} &= \alpha_{reported} \gamma E - \delta I_r \\ \frac{dI_u}{dt} &= (1 - \alpha_{reported}) \gamma E - \delta I_u \\ \frac{dR}{dt} &= \delta (I_r + I_u) \end{aligned}$$

- Many epi models have reported rate as a parameter
- Example:

States for reported

 (I_r) and unreported

cases (I₁₁)

$$\begin{aligned} \frac{dS}{dt} &= -\beta \frac{SI}{N} \\ \frac{dE}{dt} &= \beta \frac{SI}{N} - \gamma E \\ \frac{dI_r}{dt} &= \alpha_{reported} \gamma E - \delta I_r \\ \frac{dI_u}{dt} &= (1 - \alpha_{reported}) \gamma E - \delta I_u \\ \frac{dR}{dt} &= \delta (I_r + I_u) \end{aligned}$$

 $\alpha_{reported}$: reported rate

• Many epi models have reported rate as a parameter

• Calibration: Fit I_r to reported cases to estimate the unknown parameters (including reported rate)

• Parameter tuning is hard

Example: COVID-19 cases in Florida in 2020

• Parameter tuning is hard

• Example: COVID-19 cases in Florida in 2020

• Parameter tuning is hard

Example: COVID-19 cases in Florida in 2020

• Parameter tuning is hard

Example: COVID-19 cases in Florida in 2020

Our goal

• Therefore, our goal is to estimate an **accurate** reported rate

Intuition

- We already know reported cases D_{reported}
- Imagine we are also given accurate values of total cases D
 - Then calibrating the model to $(D, D_{reported})$ will lead to better fit of $D_{reported}$
 - We can also learn better parameters including $\alpha_{reported}$
- Hence, our problem can be stated as finding the *D** that fits the *D_{reported}* best

Outline

- Introduction
- Two-part MDL: Sender-receiver framework
- MDLINFER: Information-theory based approach
- Experiment results
- Conclusions

Two-part MDL: Sender-receiver framework

- Two hypothetical actors: Sender *S* and Receiver *R*
 - Sender *S* wants to send the "DATA" to Receiver *R* using a good "MODEL"
 - To measure the "good fit", use the number of bits to encode DATA: L(DATA|MODEL) + L(MODEL)

Two-part MDL: Sender-receiver framework

- Two hypothetical actors: Sender *S* and Receiver *R*
 - Sender S wants to send the "DATA" to Receiver R using a good "MODEL"
 - To measure the "good fit", use the number of bits to encode DATA: L(DATA|MODEL) + L(MODEL)

Two-part MDL: Sender-receiver framework

- Two hypothetical actors: Sender *S* and Receiver *R*
 - Sender S wants to send the "DATA" to Receiver R using a good "MODEL"
 - To measure the "good fit", use the number of bits to encode DATA: L(DATA|MODEL) + L(MODEL)

A good MODEL makes description easier!

Sender *S* searches for the best possible MODEL, which minimizes the overall cost of encoding and transmitting both the MODEL and the DATA given the MODEL.

Describe it L(DATA) = L(MODEL) + L(DATA|MODEL)directly is hard!

Outline

- Introduction
- Two-part MDL: Sender-receiver framework
- MDLINFER: Information-theory based approach
- Experiment results
- Conclusions

MDLINFER: MODEL and DATA

- Recall that our problem can be stated as finding the D* that fits the D_{reported} best
- We also have

 $D_{\text{reported}} = \alpha_{\text{reported}} \times D$

- Hence, we intuitively use
 - \circ *D*_{reported} as DATA
 - \circ *D* and $\alpha_{reported}$ as MODEL

MDLINFER: Problem formulation

Problem formulation

$$D^* = \underset{D}{\operatorname{argmin}} L(D_{reported} | D, \alpha_{reported}) + L(D, \alpha_{reported})$$

• Here, $L(\cdot)$ denotes the number of bits for encoding

Use MDL Sender-Receiver framework to help find the latent variable D^* that explains $D_{reported}$ best. The latent variable D^* helps find more accurate θ^* for the epidemiological model.

MDLINFER: Problem formulation

Problem formulation

$$D^* = \underset{D}{\operatorname{argmin}} L(D_{reported} | D, \alpha_{reported}) + L(D, \alpha_{reported})$$

• Here, $L(\cdot)$ denotes the number of bits for encoding

Outline

- Introduction
- Two-part MDL: Sender-receiver framework
- MDLINFER: Information-theory based approach
- Experiment results
- Conclusions

- More accurate estimation of total cases
 - Black: ground-truth total cases by serological studies ^[1]
 - Red for us, blue for current estimation methods

29

- More accurate estimation of total cases
 - Black: ground-truth total cases by serological studies ^[1]
 - Red for us, blue for current estimation methods

- More accurate estimation of total cases
 - Black: ground-truth total cases by serological studies ^[1] Ο
 - Red for us, blue for current estimation methods

[1] https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/commercial-lab-surveys.html

More results for other locations in the paper

Results

- More accurate estimation of total cases
 - Black: ground-truth total cases by serological studies ^[1]
 - Red for us, blue for current estimation methods

CDC

[1] https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/commercial-lab-surveys.html

- Better fit of reported cases
 - Black for ground-truth reported cases by NY Times ^[1]
 - Red for us, blue for current estimation methods

- Better fit of reported cases
 - Black for ground-truth reported cases by NY Times ^[1]
 - Red for us, blue for current estimation methods

Շի։ ^{Ջշավի տե} Ծimes [1] https://www.nytimes.com/interactive/2021/us/covid-cases.html

- Better fit of reported cases
 - Black for ground-truth reported cases by NY Times ^[1]
 - Red for us, blue for current estimation methods

More results for other locations in the paper

Results

- Better fit of reported cases
 - Black for ground-truth reported cases by NY Times ^[1]
 - Red for us, blue for current estimation methods

- Better estimate for symptomatic rate trends
 - Black for symptom trends by Facebook's survey ^[1]
 - Red for us, blue for current estimation methods

37

- Better estimate for symptomatic rate trends
 - Black for symptom trends by Facebook's survey ^[1]
 - Red for us, blue for current estimation methods

38

- Better estimate for symptomatic rate trends
 - Black for symptom trends by Facebook's survey ^[1]
 - Red for us, blue for current estimation methods

[1] Reinhart, Alex, et al. An open repository of real-time COVID-19 indicators. PNAS 2021.

More results for other locations in the paper

Results

- Better estimate for symptomatic rate trends
 - Black for symptom trends by Facebook's survey ^[1]
 - Red for us, blue for current estimation methods

[1] Reinhart, Alex, et al. An open repository of real-time COVID-19 indicators. PNAS 2021.

Outline

- Introduction
- Two-part MDL: Sender-receiver framework
- MDLINFER: Information-theory based approach
- Experiment results
- Conclusions

Conclusions

- We propose MDLINFER, a data-driven method to identify reported rate
- Leverage the information theory-based MDL framework
- Better performance in identifying total infections and forecasting future infections

$$\begin{array}{c} O & O \\ O & O \\ \end{array} = \begin{array}{c} O & O \\ - \begin{array}{c} O & O \\ O \\ \end{array} \\ L(DATA) &= L(MODEL) + L(DATA|MODEL) \end{array}$$

Authors

Jiaming Cui

Bijaya Adhikari

Arash Haddadan A S M Ahsan-Ul Haque

Jilles Vreeken

Anil Vullikanti

B. Aditya Prakash

Thank you

 Code & papers available at: people.cs.vt.edu/jiamingcui/

Acknowledgements: NSF (Expeditions CCF-1918770 and CCF-1918656, CAREER IIS-2028586, RAPID IIS- 2027862, Medium IIS-1955883, Medium IIS-2106961, IIS-2403240, IIS-1931628, IIS-1955797, IIS- 2027848, IIS-2331315, PIPP CCF-2200269), NIH 2R01GM109718, CDC MInD program 44 U01CK000589, ORNL, Dolby faculty research award, UVA GIDI, Georgia Tech.