Implicit Subgraph Neural Network

Yongjian Zhong, Liao Zhu, Hieu Vu, Bijaya Adhikari

University of Iowa

ICML 2025

Content

Background & Challenges

- Our Method
- Experiments

Subgraph Representation Learning

- 1. Zhang, Xingyi, et al. "Constrained social community recommendation." Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining. 2023.
- 2. Luo, Yuan. "Shine: Subhypergraph inductive neural network." Advances in Neural Information Processing Systems 35 (2022): 18779-18792.
- 3. Hamidi Rad, Radin, et al. "Subgraph representation learning for team mining." Proceedings of the 14th ACM Web Science Conference 2022. 2022.

Challenges: Incorporating Subgraph Info

 S_1 and S_3 are $\frac{n}{2}$ away in base graph but close in subgraph-level graph.

Subgraph relation can help!

Challenges: Long-range Dependencies

□ Subgraph can be disconnected.

D Subgraph can have large diameter.

Existing Works

□ SubGNN¹

- Hand-crafted subgraph channels (Neighbor, Structure, Position)
- X Poor performance

GLASS²

- Node labeling
- X Ignore subgraph-level structure

□ SSNP³

- Random walk sampling
- X Ignore subgraph-level structure

How to incorporate subgraph information to improve on existing approaches?

^{1.} Alsentzer, Emily, et al. "Subgraph neural networks." Advances in Neural Information Processing Systems 33 (2020): 8017-8029...

^{2.} Wang, Xiyuan, and Muhan Zhang. "GLASS: GNN with labeling tricks for subgraph representation learning." International conference on learning representations. 2021.

^{3.} Jacob, Shweta Ann, Paul Louis, and Amirali Salehi-Abari. "Stochastic subgraph neighborhood pooling for subgraph classification." Proceedings of the 32nd ACM international conference on information and knowledge management. 2023.

To This End ...

Goal

- Incorporate subgraph information
- Capture long-range dependencies

Our Contributions

- Label-aware hybrid graph
- Implicit subgraph model
- Efficient bilevel optimization for training

Background: Graph Implicit Models

Content

Background & Challenges

Our Method

Experiments

Problem Setup

Given

- A Base Graph G
- Indices of subgraphs $\{S_i\}_{i=1}^N$

D Do

• Subgraph Classification

Subgraph-level Graph

We construct a subgraph channel that can help the model to distinguish subgraphs.

 S_1 and S_3 should have the same embeddings considering unit feature.

Even with labeling trick, we cannot distinguish them

Idea: Add an asymmetric edge at the subgraph level

Hybrid Graph Construction

- □ Get subgraph embeddings through pretraining
- **Connect subgraph nodes using embeddings and labels**

Implicit Subgraph Neural Network

□ Implicit Models aim to find the fixed-point embeddings

• A straightforward way: directly using implicit models on the hybrid graph.

However, this approach is unstable.

Bilevel Formulation

Objective under bilevel optimization perspective

where f is the implicit model from EIGNN¹, which has form

$$f(\mathbf{Z}, \hat{G}; \xi, \mathbf{W}) = \alpha \mathbf{A} \mathbf{Z} h(\mathbf{W}) + \psi_{\xi}(\hat{\mathbf{X}})$$
$$h(\mathbf{W}) = \frac{\mathbf{W}^{T} \mathbf{W}}{\|\mathbf{W}\| \|\mathbf{W}\| + e_{h}}$$

We propose a bilevel optimization algorithm that solve this objective *efficiently*.

1. Liu J, Kawaguchi K, Hooi B, et al. Eignn: Efficient infinite-depth graph neural networks[J]. Advances in Neural Information Processing Systems, 2021, 34: 18762-18773.

OF IOWA

Bilevel Optimization Algorithm

D The first-order bilevel algorithm for implicit models

The algorithm has smaller gradient oracle calls and provable convergence guarantee.

Outline

- Background & Challenges
- Problem Formulation
- Experiments

Setup

Data

Dataset	#Nodes	#Edges	#Subgraphs	#Labels/Classes
PPI-BP	17,080	316,591	1,591	6
HPO-METAB	14,587	3,238,174	2,400	6
HPO-NEURO	14,587	3,238,174	4,000	10
EM-USER	57,333	4,573,417	324	2

D Tasks

• Subgraph classification

D Evaluation

- <u>AUROC</u>
- <u>Micro-F1</u>

Result in Micro-F1

Method	PPI-BP	HPO-METAB	HPO-NEURO	EM-USER
MLP	0.297±0.027	0.443 ± 0.063	0.490 ± 0.059	0.808 ± 0.138
GCN-plain	0.398 ± 0.058	0.452 ± 0.025	$0.535{\scriptstyle\pm0.032}$	0.561 ± 0.021
Sub2Vec	0.309 ± 0.023	0.114 ± 0.021	0.206 ± 0.073	0.522 ± 0.043
GLASS	0.618 ± 0.006	$\underline{0.598 {\scriptstyle \pm 0.014}}$	$0.675{\scriptstyle\pm0.007}$	0.884 ± 0.008
SubGNN	0.598 ± 0.032	0.531 ± 0.015	0.644 ± 0.009	0.815 ± 0.054
SSNP	$0.636{\scriptstyle\pm0.007}$	$0.587{\scriptstyle\pm0.010}$	$\underline{0.682 {\pm} 0.004}$	$0.888{\scriptstyle\pm0.005}$
IGNN-plain	0.389±0.025	0.284 ± 0.021	0.215 ± 0.002	0.579 ± 0.008
EIGNN-plain	0.425 ± 0.050	0.252 ± 0.009	0.312 ± 0.017	0.591 ± 0.006
SoftIGNN	0.594 ± 0.006	0.520 ± 0.002	$0.653{\scriptstyle\pm0.005}$	0.820 ± 0.008
SoftEIGNN	0.592 ± 0.006	$0.522 {\pm} 0.002$	$0.658 {\pm} 0.004$	0.829 ± 0.010
ISNN	$0.731{\scriptstyle\pm0.026}$	$0.646{\scriptstyle \pm 0.014}$	$0.688{\scriptstyle \pm 0.004}$	0.914 ± 0.009

10% higher than the second best

Our method outperforms other baselines

Result in AUROC

Method	PPI-BP	НРО-МЕТАВ	HPO-NEURO	EM-USER
MLP	0.498±0.009	0.814 ± 0.032	0.764 ± 0.104	0.896 ± 0.143
GCN-plain	0.663 ± 0.044	0.772 ± 0.018	$0.773 {\pm 0.027}$	$0.525{\scriptstyle\pm0.065}$
Sub2Vec	0.544 ± 0.011	0.496 ± 0.010	0.504 ± 0.015	$0.518{\scriptstyle\pm0.048}$
GLASS	$\underline{0.835{\scriptstyle\pm0.002}}$	$0.891{\scriptstyle\pm0.002}$	0.852 ± 0.001	$0.960{\scriptstyle\pm0.004}$
SubGNN	0.816 ± 0.012	$0.862{\scriptstyle\pm0.005}$	0.843 ± 0.014	$0.911 {\pm} 0.042$
SSNP	0.831 ± 0.008	0.883 ± 0.007	$0.867{\scriptstyle\pm0.004}$	$0.952{\scriptstyle\pm0.011}$
IGNN-plain	0.514±0.046	0.496 ± 0.063	0.709 ± 0.065	0.541±0.089
EIGNN-plain	0.630 ± 0.189	$0.579{\scriptstyle \pm 0.092}$	0.601 ± 0.121	$0.553{\scriptstyle\pm0.072}$
SoftIGNN	$0.797 {\pm} 0.005$	$0.818 {\pm} 0.001$	$\underline{0.868{\scriptstyle\pm0.004}}$	$0.932{\scriptstyle\pm0.005}$
SoftEIGNN	0.798 ± 0.008	$0.821{\scriptstyle\pm0.001}$	0.868 ± 0.002	$0.927{\scriptstyle\pm0.006}$
ISNN	0.924±0.012	$0.919{\scriptstyle \pm 0.002}$	0.896±0.002	$\underline{0.959{\scriptstyle\pm0.005}}$

Our method outperforms other baselines expect on EM-USER.

Ablation Study: Hybrid Graph

Hand-crafted subgraph channels can be as bad as random.

More results in the paper

Efficiency

		Method	PPI-BP	HPO-NEURO	HPO-METAB	EM-USER
SOTA <		SSNPIGNN-plainEIGNN-plain	$\begin{array}{c} 130.47 {\scriptstyle \pm 4.120} \\ 439.29 {\scriptstyle \pm 58.74} \\ 114.35 {\scriptstyle \pm 0.237} \end{array}$	204.15±25.78 1629.86±89.14 275.48±1.489	162.34±19.45 1142.88±97.42 185.82±0.775	$\begin{array}{c} 158.29 {\pm} 28.33 \\ 1386.28 {\pm} 85.90 \\ 176.99 {\pm} 5.405 \end{array}$
Using implicit		ISNN	$104.66{\scriptstyle\pm28.14}$	$128.26{\scriptstyle\pm4.571}$	$160.83{\scriptstyle \pm 19.37}$	135.29±35.70
models on base graph	_					

Our method is efficient.

THANKS

