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Subgraph Representation Learning
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 Given
• A Base Graph 𝑮

• Subgraphs 𝑺𝒊 𝒊=𝟏
𝑵  of 𝑮 

 Output

• Embeddings of subgraphs 𝒛𝒊 𝒊=𝟏
𝑵

Community Detection1 Gene Networks2 Collaboration Networks3

1. Zhang, Xingyi, e t al. "Constrained social community recommendation." Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining. 2023.

2. Luo, Yuan. "Shine: Subhypergraph inductive neural network." Advances in Neural Information Processing Systems 35 (2022): 18779-18792.

3. Hamidi Rad, Radin, e t al. "Subgraph representation learning for team mining." Proceedings of the 14th ACM Web Science Conference 2022. 2022.



Challenges: Incorporating Subgraph Info 
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𝑺𝟏 and 𝑺𝟑 are 
𝒏

𝟐
 away in base graph but close in subgraph-level graph. 

Subgraph relation can help!



Challenges: Long-range Dependencies
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 Subgraph can be disconnected.

One subgraph

 Subgraph can have large diameter.

Need long-range 
dependencies!



Existing Works
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 SubGNN1

• Hand-crafted subgraph channels (Neighbor, Structure, 
Position)

 GLASS2

• Node labeling

 SSNP3

• Random walk sampling

1. Alsentzer, Emily, e t al. "Subgraph neural networks." Advances in Neural Information Processing Systems 33 (2020): 8017-8029..

2. Wang, Xiyuan, and Muhan Zhang. "GLASS: GNN with labeling tricks for  subgraph representation learning." In ternational conference on learning representations. 2021.

3. Jacob, Shweta Ann, Paul Louis, and Amirali Salehi-Abari. "Stochastic subgraph neighborhood pooling for  subgraph classification." Proceedings of the 32nd ACM international conference on 

information and knowledge management. 2023.

• Poor performance 

• Ignore subgraph-level structure 

• Ignore subgraph-level structure 

How to incorporate 
subgraph information to 

improve on existing 
approaches?



▪Goal

▪Our Contributions

To This End …
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• Incorporate subgraph information
• Capture long-range dependencies

• Label-aware hybrid graph
• Implicit subgraph model
• Efficient bilevel optimization for training



Background: Graph Implicit Models

Apply weight-sharing GNN

 infinite times

Obtain all info

𝑍𝑡+1 = 𝜎(𝑊𝑍𝑡𝐴 + 𝑉𝑋)
𝑡 → ∞

𝑍∗ = 𝜎(𝑊𝑍∗𝐴 + 𝑉𝑋)
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Problem Setup

 Do
• Subgraph Classification

10

 Given
• A Base Graph 𝑮

• Indices of subgraphs 𝑺𝒊 𝒊=𝟏
𝑵

Class 1

Class 1

Class 2

Class 2

Class



Subgraph-level Graph 

 We construct a subgraph channel that can help the 
model to distinguish subgraphs.
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𝑺𝟏 and 𝑺𝟑 should have the same embeddings considering unit feature. 

Even with labeling trick, we cannot distinguish them

Idea: Add an asymmetric edge at 
the subgraph level 



Hybrid Graph Construction

 Get subgraph embeddings through pretraining
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 Connect subgraph nodes using embeddings and labels

Idea: For each class, we connect 𝒌 pairs of the most distant subgraph nodes.

Inter-subgraphs edge

Intra-subgraph edge



Implicit Subgraph Neural Network

 Implicit Models aim to find the fixed-point embeddings
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• A straightforward way: directly using implicit models on 
the hybrid graph. 

Weight-shared 
infinite layers

Implicit Models

However, this approach is unstable.



Bilevel Formulation

 Objective under bilevel optimization perspective

ClassifierClassification loss 
function

Embedding of 𝒊-
th subgraph

Fixed point 
minimizes this 
problem. 
Denoted as 𝒈(. )

We propose a bilevel optimization 
algorithm that solve this objective

efficiently.

where 𝒇 is the implicit model from EIGNN1, which has form
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Details in the paper.

1. Liu J, Kawaguchi K, Hooi B, et al. Eignn: Efficient infinite-depth graph neural networks[J]. Advances in Neural Information Processing Systems, 2021, 34: 18762-18773.



Bilevel Optimization Algorithm

 The first-order bilevel algorithm for implicit models
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Fixed-point iteration

Proxy gradient for 
penalty term

The algorithm has smaller gradient oracle 
calls and provable convergence guarantee.

Details in the paper.
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Setup

 Data

 Tasks
• Subgraph classification

 Evaluation 
• AUROC
• Micro-F1
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Result in Micro-F1

Our method outperforms other baselines
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10% higher than the 
second best



Result in AUROC

Our method outperforms other baselines expect 
on EM-USER.
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Ablation Study: Hybrid Graph

Construct the hybrid graph 
using hand-crafted channels

Hand-crafted subgraph channels can 
be as bad as random.
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Construct the hybrid graph by 
adding subgraph-level edges 
randomly



Efficiency

Our method is efficient.
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SOTA

Using implicit 
models on base 
graph

More results in 
the paper
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