
Efficient and Effective Implicit
Dynamic Graph Neural Network

Yongjian Zhong1, Hieu Vu1, Tianbao Yang2, Bijaya Adhikari1

1University of Iowa
2Texas A&M University

SIGKDD, Barcelona
August 28, 2024

Outline

▪Background & Challenges

▪Problem Formulation

▪Our Method

▪Experiment

▪Conclusion & Future Work

2

Graph Neural Networks

GNN GNN

Obtain 1-hop info Obtain 2-hop info

Stack multiple layers of GNN to reach information which are topologically far

But stacking hurts performance [Li+ 2018, AAAI]

3

Capturing Long-range Dependency

Apply weight-sharing GNN

 infinite times

Obtain all info

Key Idea behind Implicit Graph Neural Networks
[Gu+ 2020, NeurIPS; Liu+ 2021, NeurIPS]

Once converged

𝑍𝑡+1 = 𝜎(𝑊𝑍𝑡𝐴 + 𝑉𝑋)
𝑡 → ∞

𝑍∗ = 𝜎(𝑊𝑍∗𝐴 + 𝑉𝑋)

4

Discrete-time Temporal Graphs

Time 1 Time 2 Time 3

• Imagine in time 1 and in time 3 have a strong dependency.
• Need to fetch information across Topology and Time.
• Which requires more GCNs stacking.

5

How to capture long-range dependency w/o
sacrificing performance?

Outline

▪Background & Challenges

▪Problem Formulation

▪Our Method

▪Experiment

▪Conclusion & Future Work

7

Problem Setup

 Given
• Discrete-time Dynamic Networks
• Labels of nodes

Time 1 Time 2 Time 3

 Do
• Node Classification at the Last Snapshot

8

Overview

 Our model

i-th dynamic graph, j-th node

9

Convergent Embeddings

 The convergent embeddings must satisfy…

GCN
Feature
Injection

Depends on previous and
current time information

Let’s express this in the matrix form.

Element-wise non-expansive function, e.g.
ReLU, Sigmoid …

10

Convergent Embeddings

 The matrix form

where , , is the Kronecker product.

Ensuring Convergence: by the Banach's fixed point theorem, the matrix in red needs to
be non-expansive, which can be enforced by ensuring the following

Non-expansive
Need to be non-expansive

11

Outline

▪Background & Challenges

▪Problem Formulation

▪Our Method

▪Experiment

▪Conclusion & Future Work

12

Our Method

 Summary of our model

• One layer per snapshot
• Feature injected GCN
• Constrained Weight
• GCN-only framework

13

Training

 The classic way: differentiate through fixed point.

Fixed-point
embedding of
snapshot 𝒕.

Weight of 𝒂-th
GCN layer.

Each column is

Element-wise
multiplication

Indicator function

𝒕 − 𝟏 if 𝒕 ∈ [𝟐, 𝑻],
𝑻 if 𝒕 = 𝟏.

Solving these equations are extremely inefficient.

14

More details

in the paper

Bilevel Optimization

 Objective under bilevel optimization perspective

ClassifierClassification loss
function

Label of 𝒊-th
dynamic graph

Implicit condition

Convergence
conditions

We propose a bilevel optimization algorithm that
solve this objective efficiently.

where 𝝓 is a nested function

15

Algorithm

 The key is to estimate the Hyper-gradient

The optimal result of
lower-level problem

Inverse Hessian

Both are expensive to compute.

16

Algorithm

 The stochastic bilevel algorithm

Replaced by
inexact result

We use a Hessian-vector product to approximate

Min batch

Approximation

Inexact result using only one fixed
point iteration

Note: use Hessian-vector product to

compute to avoid expensive
computation [Hu+ NeurIPS, 2022].

17

More details

in the paper

Content

▪Background & Challenges

▪Prize-collecting Steiner Tree

▪Our Method

▪Experiment

▪Conclusion & Future Work

18

Experiment

 Data

 Tasks
• Node-level classification and regression
• For regression, there are transductive and inductive cases.

 Evaluation
• AUROC for classification
• MAPE for regression

19

Classification

Our method outperforms other
baselines except on DBLP5

Sparse graph. Long-range
dependency is not a
major bottleneck.

20

Regression

Our method outperforms other baselines

21

Runtime & Memory

Second fast

As low as
EvolveGCN

Our method is fast
and efficient

22

SGD vs. Bilevel

1600x speed-up

Similar performance

Bilevel algorithm achieves similar performance
as exact SGD, but is much faster

23

Outline

▪Background & Challenges

▪Problem Formulation

▪Our Method

▪Experiment

▪Conclusion & Future Work

25

Conclusion & Future Work

▪ We proposed a novel implicit graph neural network for
dynamic graphs. As far as we know, this is the first implicit
model on dynamic graphs.

▪ We would like to develop an optimization algorithm with
convergence guarantee for the bilevel algorithm.

▪ Global optimization framework for implicit models.

26

Questions?

27

	Slide 1: Efficient and Effective Implicit Dynamic Graph Neural Network
	Slide 2: Outline
	Slide 3: Graph Neural Networks
	Slide 4: Capturing Long-range Dependency
	Slide 5: Discrete-time Temporal Graphs
	Slide 7: Outline
	Slide 8: Problem Setup
	Slide 9: Overview
	Slide 10: Convergent Embeddings
	Slide 11: Convergent Embeddings
	Slide 12: Outline
	Slide 13: Our Method
	Slide 14: Training
	Slide 15: Bilevel Optimization
	Slide 16: Algorithm
	Slide 17: Algorithm
	Slide 18: Content
	Slide 19: Experiment
	Slide 20: Classification
	Slide 21: Regression
	Slide 22: Runtime & Memory
	Slide 23: SGD vs. Bilevel
	Slide 25: Outline
	Slide 26: Conclusion & Future Work
	Slide 27: Questions?

