
Efficient and Effective Implicit 
Dynamic Graph Neural Network

Yongjian Zhong1, Hieu Vu1, Tianbao Yang2, Bijaya Adhikari1

1University of Iowa
2Texas A&M University

SIGKDD, Barcelona
August 28, 2024



Outline

▪Background & Challenges

▪Problem Formulation

▪Our Method

▪Experiment

▪Conclusion & Future Work

2



Graph Neural Networks

GNN GNN

Obtain 1-hop info Obtain 2-hop info

Stack multiple layers of GNN to reach information which are topologically far

But stacking hurts performance [Li+ 2018, AAAI]
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Capturing Long-range Dependency

Apply weight-sharing GNN

 infinite times

Obtain all info

Key Idea behind Implicit Graph Neural Networks 
[Gu+ 2020, NeurIPS; Liu+ 2021, NeurIPS]

Once converged

𝑍𝑡+1 = 𝜎(𝑊𝑍𝑡𝐴 + 𝑉𝑋)
𝑡 → ∞

𝑍∗ = 𝜎(𝑊𝑍∗𝐴 + 𝑉𝑋)
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Discrete-time Temporal Graphs

Time 1 Time 2 Time 3

• Imagine    in time 1 and    in time 3 have a strong dependency. 
• Need to fetch information across Topology and Time.
• Which requires more GCNs stacking. 
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How to capture long-range dependency w/o 
sacrificing performance?
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Problem Setup

 Given
• Discrete-time Dynamic Networks
• Labels of nodes

Time 1 Time 2 Time 3

 Do
• Node Classification at the Last Snapshot
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Overview

 Our model

i-th dynamic graph, j-th node
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Convergent Embeddings

 The convergent embeddings must satisfy…

GCN
Feature 
Injection

Depends on previous and 
current time information

Let’s express this in the matrix form.

Element-wise non-expansive function, e.g. 
ReLU, Sigmoid …
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Convergent Embeddings

 The matrix form

where                           ,                                             ,        is the Kronecker product.

Ensuring Convergence: by the Banach's fixed point theorem, the matrix in red needs to 
be non-expansive, which can be enforced by ensuring the following

Non-expansive
Need to be non-expansive
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Our Method

 Summary of our model

• One layer per snapshot
• Feature injected GCN
• Constrained Weight
• GCN-only framework
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Training

 The classic way: differentiate through fixed point.

Fixed-point 
embedding of 
snapshot 𝒕.

Weight of 𝒂-th 
GCN layer.

Each column is  

Element-wise 
multiplication

Indicator function

𝒕 − 𝟏 if 𝒕 ∈ [𝟐, 𝑻],
𝑻 if 𝒕 = 𝟏.

Solving these equations are extremely inefficient.
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More details 

in the paper



Bilevel Optimization

 Objective under bilevel optimization perspective

ClassifierClassification loss 
function

Label of 𝒊-th 
dynamic graph

Implicit condition

Convergence 
conditions

We propose a bilevel optimization algorithm that 
solve this objective efficiently.

where 𝝓 is a nested function 
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Algorithm

 The key is to estimate the Hyper-gradient

The optimal result of 
lower-level problem

Inverse Hessian

Both are expensive to compute.
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Algorithm

 The stochastic bilevel algorithm

Replaced by 
inexact result 

We use a Hessian-vector product to approximate

Min batch

Approximation

Inexact result using only one fixed 
point iteration 

Note: use Hessian-vector product to 

compute to avoid expensive 
computation [Hu+ NeurIPS, 2022].
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More details 

in the paper
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Experiment

 Data

 Tasks
• Node-level classification and regression
• For regression, there are transductive and inductive cases. 

 Evaluation 
• AUROC for classification
• MAPE for regression
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Classification

Our method outperforms other 
baselines except on DBLP5

Sparse graph. Long-range 
dependency is not a 
major bottleneck. 
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Regression

Our method outperforms other baselines
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Runtime & Memory

Second fast

As low as 
EvolveGCN

Our method is fast 
and efficient
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SGD vs. Bilevel

1600x speed-up

Similar performance

Bilevel algorithm achieves similar performance 
as exact SGD, but is much faster
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Conclusion & Future Work

▪ We proposed a novel implicit graph neural network for 
dynamic graphs. As far as we know, this is the first implicit 
model on dynamic graphs.

▪ We would like to develop an optimization algorithm with 
convergence guarantee for the bilevel algorithm.

▪ Global optimization framework for implicit models.
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Questions?
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