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Patient Risks in Hospitals

* In 2022, there were 6,120 hospitals in the US
with 33,679,935 admissions!™

» Patients admitted to hospitals have several
risks:

* Risk of getting Healthcare Associated Infections
(HAIs)

* Risk of Medication/ diagnosis errors

* Risk of worsening physical health leading to
admission in critical care units

* This risks sometimes even lead to death!
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[1] https://iwww.aha .org/statistics/fast-facts-us-hospitals



How big are the costs?

 Patient risks are costly:

* About 4% of patients in the US are diagnosed
with an infection during their hospitalization!]

 |ICU costs per day in 2010 were estimated to be
$4300, a 61% increase since the 2000 cost per
day of $2669/2!

* In the 2021 annual report published by CDCI],
acute care hospitals in USA have:
* 14% increase in MRSA cases
* 12% increase in ventilator-associated events

* 11% increase in surgical site infections following
abdominal hysterectomy

» Forecasting these risks before they take place
is crucial to prevent them
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[1] Magill, Shelley S., et al. "Multistate point-prevalence survey of health care—associated infections." New England Joumal of Medicine 370.13 (2014): 1198-1208.

[2] https://sccm.org/communications/critical-care-statistics

[3] https://lwww.aha.org/news/headline/2022-11-11-cdc-reports-increase-certain-health-care-associated-infections-2021
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Interactions are helpful for Risk Estimation
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Incorporating Domain Knowledge
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Problem Formulation
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A loss function is minimized:
* Across all labeled patients

* Across training timestamps
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Challenges

* Missing Data
* Interaction data is granular
* Need for robust method

 Alignment to domain knowledge

« Temporal dependencies
 Patient risk evolves over time

* The effects of certain interactions are visible later
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Existing Works

* Clinical Literature:
* Do not account for high-order interactions!]

« Do not use contact-based interactions [2:3]

« ML Methods:[“

* Randomly deletes interaction patterns for contrastive augmentations

* Introduces harmful noise
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[1] Oh, Jeeheh, et al. "A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers." infection control &
hospital epidemiology 39.4 (2018): 425-433.

[2] Xu, Ran, et al. "Hypergraph transformers for ehr-based clinical predictions." AMIA Summits on Translational Science Proceedings2023 (2023): 582.

[3] Xu, Ran, et al. "Counterfactual and factual reasoning over hypergraphs for interpretable clinical predictions on ehr." Machine Leaming for Health. PMLR, 2022.

[4] Ma, Tianyi, et al. "Hypergraph contrastive learning for drug trafficking community detection." 2023 IEEE Intemational Conference on Data Mining (ICDM). |IEEE, 2023.
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Our Ideas

» Domain-Knowledge Infused Augmentations

« Temporal Aggregation of Risk
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Our Approach: Overview

High-order interactions
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Domain Graph Construction

» Doctor Graph:
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» Medication Graph:
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Contrastive Augmentations

Homologous Augmentation
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Temporal Aggregation
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Training

After obtaining temporal embedding for each patient, predicted label y is
obtained by passing it through a Feed-Forward Layer

For each binary prediction label, the loss is:
Lirea = —[yp10g(yy,) + (1 — y,,) log(1 — 7,)]

The overall objective function to be minimized over training timestamps t
is:

L= (Lo + (1 —7)Lhea)

ter

We used Adaptive Moment Estimation Optimization (ADAM) algorithm for
optimization
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Data

» Hospital Operations Data was obtained from:

* The University of lowa Hospitals and Clinics (UIHC)

 Beth Israel Deaconess Medical Center (MIMIC-IV)

* The resultant patient-hospital interaction data statistics are:

Interaction Type UIHC MIMIC-IV
Patient-Doctor/[HCW 23,085 8,046
Patient- Medication 349,345 34,857
Patient-Room/Unit 16,771 3,334

 Tasks:
* CDI Incidence Prediction

 MICU Transfer Prediction
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CDI Incidence Prediction

 Clostridioides difficile infection (CDI) —
is a common HAI, increasing the
mortality risk of patients with weakened
immune systems

 Binary Classification Problem:

* Instance: Patient at time t and features at that
time

* Label: Binar¥ indicator of getting infection in
next 3 days!

* Evaluation Metric:
« ROC-AUC Score
* AUPRC Score

» Averaged across 3 independent runs
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[1] M. Monsalve, S. Pemmaraju, S. Johnson, and P. M. Polgreen, “Improving risk prediction of clostridium difficile infection using temporal event-pairs,” in IEEE ICHI, 19
2015



Results: CDI Incidence Prediction
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MICU Transfer Prediction

Forecast whether a patient is at risk of

transfer to a Medical Intensive Care
Unit (MICU)

Binary Classification Problem:

* Instance: Patient at time t and features
at that time

* Label: Binary indicator of MICU transfer
in the next k days

Evaluation Metric:
* ROC-AUC Score
* AUPRC Score

Averaged across 3 independent runs
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MICU Transfer: UIHC

* 1- day ahead

« 2- day ahead
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MICU Transfer: MIMIC-IV

* 1- day ahead
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Conclusion

» Leveraging high-order spatio-temporal mobility interactions is an effective way to
estimate patient risk when prior visit information is unavailable. We use:

» Patient-HCW/Doctor interaction
» Patient-Medication interaction

» Patient-Room interaction

* To exploit the domain information and account for missing interaction data, we
propose a new hypergraph contrastive augmentation strategy that is aligned with
domain information

» We evaluate the performance of the learned embeddings over the predictive
tasks:
» CDI Incidence Prediction

» Short and Long Term MICU Transfer Prediction

» Our proposed model outperforms state-of-the-art baselines across both tasks
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