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Patient Risks in Hospitals

• In 2022, there were 6,120 hospitals in the US 
with 33,679,935 admissions[1]

• Patients admitted to hospitals have several 
risks:

• Risk of getting Healthcare Associated Infections 
(HAIs)

• Risk of Medication/ diagnosis errors

• Risk of worsening physical health leading to 
admission in critical care units

• This risks sometimes even lead to death!
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[1] https://www.aha.org/statistics/fast-facts-us-hospitals



How big are the costs? 

• Patient risks are costly: 

• About 4% of patients in the US are diagnosed 
with an infection during their hospitalization[1]

• ICU costs per day in 2010 were estimated to be 
$4300, a 61% increase since the 2000 cost per 
day of $2669[2]

• In the 2021 annual report published by CDC[3], 
acute care hospitals in USA have:

• 14% increase in MRSA cases

• 12% increase in ventilator-associated events 

• 11% increase in surgical site infections following 
abdominal hysterectomy

• Forecasting these risks before they take place 
is crucial to prevent them

3[1] Magill, Shelley S., et al. "Multistate point-prevalence survey of health care–associated infections." New England Journal of Medicine 370.13 (2014): 1198-1208.

[2] https://sccm.org/communications/critical-care-statistics

[3] https://www.aha.org/news/headline/2022-11-11-cdc-reports-increase-certain-health-care-associated-infections-2021



Interactions are helpful for Risk Estimation
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Incorporating Domain Knowledge

5



Overview

• Motivation

• Problem Formulation

• Our Approach

• Experiments

• Conclusion

6



Problem Formulation
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Challenges

• Missing Data

• Interaction data is granular

• Need for robust method

• Alignment to domain knowledge

• Temporal dependencies

• Patient risk evolves over time

• The effects of certain interactions are visible later
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Existing Works

• Clinical Literature:

• Do not account for high-order interactions[1]

• Do not use contact-based interactions [2,3] 

• ML Methods:[4]

• Randomly deletes interaction patterns for contrastive augmentations

• Introduces harmful noise 
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[1] Oh, Jeeheh, et al. "A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers." infection control & 

hospital epidemiology 39.4 (2018): 425-433.

[2] Xu, Ran, et al. "Hypergraph transformers for ehr-based clinical predictions." AMIA Summits on Translational Science Proceedings2023 (2023): 582.

[3] Xu, Ran, et al. "Counterfactual and factual reasoning over hypergraphs for interpretable clinical predictions on ehr." Machine Learning for Health. PMLR, 2022.

[4] Ma, Tianyi, et al. "Hypergraph contrastive learning for drug trafficking community detection." 2023 IEEE International Conference on Data Mining (ICDM). IEEE, 2023.
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Our Ideas

• Domain-Knowledge Infused Augmentations

• Temporal Aggregation of Risk 
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Our Approach: Overview
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High-order interactions

Domain-knowledge Infused Augmentations

Temporal Risk Aggregation



Domain Graph Construction

• Doctor Graph:

• Medication Graph:
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Contrastive Augmentations
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Temporal Aggregation
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Training

• After obtaining temporal embedding for each patient, predicted label ො𝑦 is 
obtained by passing it through a Feed-Forward Layer

• For each binary prediction label, the loss is:

• The overall objective function to be minimized over training timestamps 𝜏 
is:

• We used Adaptive Moment Estimation Optimization (ADAM) algorithm for 
optimization
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Data

• Hospital Operations Data was obtained from:

• The University of Iowa Hospitals and Clinics (UIHC)

• Beth Israel Deaconess Medical Center (MIMIC-IV)

• The resultant patient-hospital interaction data statistics are:

• Tasks:

• CDI Incidence Prediction

• MICU Transfer Prediction
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Interaction Type UIHC MIMIC-IV

Patient-Doctor/HCW 23,085 8,046

Patient- Medication 349,345 34,857

Patient-Room/Unit 16,771 3,334



CDI Incidence Prediction

• Clostridioides difficile infection (CDI) 
is a common HAI, increasing the 
mortality risk of patients with weakened 
immune systems

• Binary Classification Problem:

• Instance: Patient at time 𝑡 and features at that 
time

• Label: Binary indicator of getting infection in 
next 3 days[1]

• Evaluation Metric: 

• ROC-AUC Score 

• AUPRC Score

• Averaged across 3 independent runs
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[1] M. Monsalve, S. Pemmaraju, S. Johnson, and P. M. Polgreen, “Improving risk prediction of clostridium difficile infection using temporal event-pairs,” in IEEE ICHI, 

2015



Results: CDI Incidence Prediction
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• UIHC:

AUROC

AUPRC

• MIMIC-IV:

AUROC
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Our Method Outperforms all baselines across all metrics



MICU Transfer Prediction

• Forecast whether a patient is at risk of 
transfer to a Medical Intensive Care 
Unit (MICU)

• Binary Classification Problem:

• Instance: Patient at time 𝑡 and features 
at that time

• Label: Binary indicator of MICU transfer 
in the next k days

• Evaluation Metric: 

• ROC-AUC Score 

• AUPRC Score

• Averaged across 3 independent runs
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MICU Transfer: UIHC

• 1- day ahead
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AUROC
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• 2- day ahead • 3- day ahead

Our Method Outperforms all baselines across all metrics



MICU Transfer: MIMIC-IV

• 1- day ahead
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Conclusion

• Leveraging high-order spatio-temporal mobility interactions is an effective way to 
estimate patient risk when prior visit information is unavailable. We use:

• Patient-HCW/Doctor interaction

• Patient-Medication interaction

• Patient-Room interaction

• To exploit the domain information and account for missing interaction data, we 
propose a new hypergraph contrastive augmentation strategy that is aligned with 
domain information

• We evaluate the performance of the learned embeddings over the predictive 
tasks:

• CDI Incidence Prediction

• Short and Long Term MICU Transfer Prediction

• Our proposed model outperforms state-of-the-art baselines across both tasks
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Thank You

Akash Choudhuri Hieu Vu Kishlay Jha Bijaya Adhikari

Contact:
akash-choudhuri@uiowa.edu

Code: https://github.com/Soothysay/HyperHAI

More Results in the Paper!

mailto:akash-choudhuri@uiowa.edu
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