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CONTACT NETWORKS IN HOSPITALS

Temporally dynamic bipartite people-location
networks
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PATHOGEN SPREAD IN HOSPITALS

Hospital Acquired Infections
(HAI) spread in hospitals

to /from healthcare workers
and patients

Examples: C. Diff, MRSA etc

A maijor financial and health
burden

Bacterial load accumulates
on surfaces

Infects individuals
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INFORMAL PROBLEM STATEMENT

Given: a sequence of
mobility graphs

Determine: top-k
nodes/edges to remove
Node removal: quarantine

Edge removal: contact
prevention

Such that: the resulting
graph is less vulnerable
to outbreak
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FORMULATION CHALLENGES

Formulation challenge 1: How to define
vulnerability?
How to characterize the disease spread?

How to quantify ‘vulnerability’?

Formulation challenge 2: How to formalize
node /edge removals?

Node edges repeat over time

How to handle that?
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FC1: DISEASE SPREAD MODEL

University of lowa

SI MODEL

“Infected” nodes infect
“Susceptible” neighbors

With probability given by edge-
weight

Once a node is infected, it
remains infected

Nodes get multiple chances to
infect

IC MODEL

Nodes get single chance to infect

Nodes get cured in the next time-
step

Never become infected again
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FC1: DISEASE SPREAD MODEL

Extended S| model for HAI
Day 1

Day 2
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FCT:QUANTIFYING VULNERABILITY

Scenario 1

Use the calibrated S Room 1 TR 4
model and the mobility Room 2 l(IJ\ﬁ/
log to produce possible Room 3 Mm 4 \"

outbreak scenarios
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IDEA: LOOK FOR ASYMPTOTIC BEHAVIORS

We are given a sequence of 8 ]
_ : size |P| (number of
g N {Gl’ GQ’ Y GT} gerhS pt | | people nodes in the
Imagine a vector p; which - reet)
captures probability of infections _
Easy to see that py depends on
pt—l and Gt
p. |-l = f( Gt |,|[Pe-1)
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EVOLUTION OF P - e

: :

f(.) can be viewed as a discrete time NLDS

Probability that it is

Pe[t] = pe—[o](1 —0) ~ T
‘ L P
N\ N\ T .
Probability that + IBPIBZ >4 >4 Bt_l [l’ U]Bt—l [Z’ U] pt_]- [U]
node v is infected =1 p=1
at time t ‘

Probability that v is infected by a location
| which was infected by node v at t-1
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STABILITY OF A NLDS

THEOREM 3.1. (HIRSCH AND SMALE [1]) The system
given by a NDLS p: = g(pt—1) is asymptotically stable
at an equilibrium point p* (in our case the zero vector),

if the eigenvalues of the Jacobian J = Vg(pi_1) are less
than 1 in absolute value, where,

apz’,t

m lptzp*

Jij =Vg(Pi-1)i; =

—Q

(A) Unstable (B) Stable (C) Neutral (at threshold)
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EPIDEMIC THRESHOLD OF G

Jacobian of f() atp; =0

=
H I + IBPBlBt (t mod 7)+1
=l \
Disease Parameters Adjacency matrices
Therefore,

THEOREM 3.1. If A\s < 1, then p: s asymptotically
stable at 0.
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EPIDEMIC THRESHOLD VALIDATION
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Infection dies out when A¢ < 1, survives for few time-
stamps when A¢ = 1, and continues on when A¢ > 1
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FORMULATION CHALLENGES

4 Formulation challenge 1: How to define
vulnerability?
How to characterize the disease spread?

How to quantify ‘vulnerability’?

Formulation challenge 2: How to formalize
node /edge removals?

Node edges repeat over time

How to handle that?
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FC2: EDGE REMOVAL

When we remove an edge from G = g1, 9> ---, 9z,
we remove it from all time-stamps

Time: 10:00 Time: 11:00

People People

Location Location
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FC2: NODE REMOVAL

When we remove a node from G = g4, 9> .-, 97
we remove it from all time-stamps

Time: 10:00 Time: 11:00
People People
Location Location
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FORMAL PROBLEM DEFINITION

Given: A temporal bipartite
network G ={Gi,Gy,...,Gr}
and @& € (0, 1]

Find: A smaller graph
g* :{G?G;v?G;?}

Such that: 1 — ap edges
are removed at maximum
and G* = argrrcl;in As/
/
University of lowa
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HOW TO SOLVE THE PROBLEM

afa

OOOOOOO

Time: 11:00

For each edge in the graph g E;

Remove it

Compute A-scores = the drop in the largest

eigenvalue of S l
Sort the edges in decreasing order of A-
scores e
Until the graph i1s small enough do 6}50 %0

Delete the best possible edge

Time: 11:00

oooooooo

University of lowa

comp\epl 18

computational epidemiology research



PROBLEM WITH THE NAIVE APPROACH

Expensive to compute S

N N

Sg

Expensive to repeatedly compute largest eigenvalue

X u — )\x [u
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HOW TO AVOID COMPUTING S AND A

First create a static graph F from G

Day 1

n Day 3
2/ @
& "
fe/
[c] /8]
e
le]
niversity of lowa
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WHAT IS SO SPECIAL ABOUT F?

Turns out the number of closed walks in F and the
sum of eigenvalues of S are very closely related.

k/2T
Z nodes(w (5 Bl e Z (S10)) /

weW (F)

| | |

Sum of unique Hyper and Sum of
nodes in each disease eigenvalues
closed walks in F parameters
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A NEAR OPTIMAL ALGORITHM

Temporal Edge Cover
I. Compute F from G

2. While not enough edges are removed
Compute the number of closed walks each
edge participates in '
Remove the edge that 1s in the most number
of closed walks
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PERFORMANCE: EDGE DELETION
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PERFORMANCE: NODE DELETION
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INFECTION CONTROL: BSIS
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Qur approach leads to
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