
Distributed Representations of Subgraphs
Bijaya Adhikari Yao Zhang Naren Ramakrishnan B. Aditya Prakash

Department of Computer Science, Virginia Tech
Email: {bijaya, yaozhang, naren, badityap}@cs.vt.edu

Abstract—There has been a surge in research interest in
learning feature representation of networks in recent times.
Researchers, motivated by the recent successes of embeddings in
natural language processing and advances in deep learning, have
explored various means for network embedding. Network em-
bedding is useful as it can exploit off-the-shelf machine learning
algorithms for network mining tasks like node classification and
link prediction. However, most recent works focus on learning
feature representation of nodes, which are ill-suited to tasks such
as community detection which are intuitively dependent on sub-
graphs. In this work, we formulate a novel subgraph embedding
problem based on an intuitive property of subgraphs and propose
SubVec, an unsupervised scalable algorithm to learn feature
representations of arbitrary subgraphs. We demonstrate usability
of features learned by SubVec by leveraging them for community
detection problem, where SubVec significantly outperforms non-
trivial baselines. We also conduct case-studies in two distinct
domains to demonstrate wide applicability of SubVec.

I. INTRODUCTION

Graphs are useful as they provide a natural means for
representing relational data from various domains such as
social networks, co-authorship networks, the World Wide
Web, and so on. Some of the common mining tasks on
graphs include classification [1], link prediction [2], detecting
communities (clustering) [3], [4], and so on. For other data
types, these tasks can be solved using various machine learning
algorithms. However, we cannot directly apply off-the-shelf
machine learning algorithms on graph data, due to their
high dimensionality and structural nature. Hence, learning
discriminative feature representation of subgraphs can help to
leverage existing machine learning algorithms more widely on
graph data.

Recent works in network embedding [5], [6] have ex-
ploited relationships to vector representations in NLP like
word2vec [7] to learn feature representation of nodes in
networks. However, application of such methods are limited
to node level tasks such as node classification. These methods
seem to be unsuitable for subgraph level tasks like community
detection as they result in in loss of information of the sub-
graph structure. Embeddings of subgraphs or neighborhoods
themselves seem to be better suited for these tasks. Surpris-
ingly, learning feature representation of networks themselves
(subgraphs and graphs) has not gained much attention thus far.

To address this issue, we study the problem of learning
distributed representations of subgraphs in a low dimensional
continuous vector space in this work. Such representations can
be very useful in downstream network mining tasks like com-
munity detection, anomaly detection, subgraph classification
and so on. Figure 1(a-c) gives an illustration of our framework.

Given a set of subgraphs (Figure 1 (b)) of a graph G (Figure 1
(a)), we learn a low-dimensional feature representation of each
subgraph (Figure 1(c)).

As shown later, the embeddings of the subgraphs enable us
to apply off-the-shelf machine learning algorithms directly to
solve subgraph mining tasks. For example, to group subgraphs
together, we can apply clustering algorithms like K-Means
directly. Figure 2(a-c) shows a visualization of ground-truth
communities in a network (a), communities found by using
just node embeddings (b), and those found by our method
SubVec (c). Clearly our result matches the ground-truth well
while the other does not. Our contributions are:

1) We formulate novel subgraph embedding problem based
on the intuitive Neighborhood property of subgraphs.

2) We propose SubVec, a scalable subgraph embedding
method to learn features for arbitrary subgraphs that
maintains the Neighborhood property.

3) We conduct multiple experiments over large diverse real
datasets to show correctness and utility of features learnt
by SubVec in the community detection task, where we
get up to a gain of 123.5% compared to the closest
baseline.

The rest of the paper is organized in the usual way. We first
formulate and motivate our problem in Section II, and then
we present SubVec in Section III. We discuss experiments in
Section IV, followed by the related works. Finally, we present
discussion and conclusions.

II. PROBLEM FORMULATION

We begin with the setting of our problem. We are given
a graph G(V,E) where V is the vertex set, and E is the
associated edge-set (we assume unweighted undirected graphs
here, but our framework can be easily extended to weighted
and/or directed graphs as well). We define gi(vi, ei) as a
subgraph of G, where vi ⊆ V and ei ⊆ E. For simplicity, we
write gi(vi, ei) as gi. As input we require a set of subgraphs
S = {g1, g2, . . . , gn}. Our goal is to embed subgraphs in S
into d-dimensional feature space Rd, where d << |V |.
Main Idea: Intuitively, our goal is to learn a feature repre-
sentation of each subgraph gi ∈ S such that the likelihood of
preserving a property of each subgraph, defined in the network
setting, is maximized in the latent feature space. In this work,
we provide a framework to preserve a natural property —
namely Neighborhood property—of subgraphs.
Neighborhood Property: Intuitively, the Neighborhood prop-
erty of a subgraph captures the neighborhood information
within the subgraph itself for each node in it. For illustration

(a) A network G (b) A set, S, of subgraphs of G (c) embedding learned for each subgraph (d) Intermediate samples of
paths on each subgraph

Figure 1: An overview of our SubVec. Our input is a set of subgraphs S drawn from a network G. We obtain d
dimensional embedding of subgraphs such that Neighborhood and Structural properties of subgraphs are preserved.

(a) Ground Truth (b) Result of Node2Vec (c) Result of SubVec

Figure 2: Communities in HighSchool network (different colors represent different communities). Layout is kept
constant to highlight the results. Communities based on SubVec embeddings matches the ground truth, while the
densely connected communities get merged for Node2Vec.

Figure 3: A toy network

consider an example. In Figure 3, let g1 be the subgraph
induced by nodes {a, e, c, d}. The Neighborhood property of
g1 should be able to capture the information that the nodes
a, c are in the neighborhood of node e, that nodes d, e are
in the neighborhood of node c and so on. To capture the
neighborhood information of all the nodes in a given subgraph,
we consider paths annotated by ids of the nodes. We refer
to such paths as the Id-paths and define the Neighborhood
property of a subgraph gi as the set of all Id-paths in gi.

The Id-paths capture the neighborhood information in sub-
graphs and each succession of nodes in Id-paths reveals how
the neighborhood in the subgraph is evolving. For example
in g1 described above, the id-path a → c → d shows that
nodes a and c are neighbors of each other. Moreover, this
path along with a → e → d correctly indicate that nodes a
and d are in neighborhood of each other (despite not being
direct neighbors). Hence, the set of all Id-paths will capture

important connectivity information of the subgraph.
Our Problem: Having defined the Neighborhood property of
subgraphs, we want to learn vector representations in Rd, such
that the likelihood of preserving the property in the feature
space is maximized. Formally, our Subgraph Embedding prob-
lem is:

Problem 1: Given a graph G(V,E), d and set of S sub-
graphs (of G) S = {g1, g2, . . . , gn}, learn an embedding
function f : gi → yi ∈ Rd such that the Neighborhood
property of each gi ∈ S is preserved.

III. LEARNING FEATURE REPRESENTATIONS

A common framework leveraged by most prior works in
network embedding is to exploit Word2vec [7] to learn feature
representation of nodes in the network. Word2vec learns
similar feature representations for words which co-appear
frequently in the same context. Network embedding methods,
such as DeepWalk [5] and Node2vec [6], generate ‘context’
around each node based on random walks and embed nodes
using Word2vec. These embeddings are known to preserve
various node properties. However, such methods lack the
global view of subgraphs, hence they are inherently unable to
preserve the properties of entire subgraphs and fail in solving
our problem.

A. Overview

A major challenge in solving our problems is to design
an architecture which has global view of subgraphs and
is able to capture similarities and differences between the
properties of entire subgraphs. Our idea to overcome this
challenge is to leverage the Paragraph2vec models for our sub-
graph embedding problems. Paragraph2vec [8] models learn
latent representation of entire paragraphs while maximizing
similarity between paragraphs which have similar word co-
occurrences. Note that these models have the global view
of entire paragraphs. Intuitively, such a model is suitable
for solving Problem 1. Thus, we extend Paragraph2vec to
learn subgraph embedding while preserving distance between
subgraphs that have similar ‘node co-occurrences’. We extend
both Paragraph2vec models (PV-DBOW and PV-DM). We call
our models Distributed Bag of Nodes version of Subgraph
Vector (SubVec-DBON) and Distributed Memory version
of Subgraph Vector (SubVec-DM) respectively. We discuss
SubVec-DM and SubVec-DBON in detail in Subsections
III-C and III-D.

In addition, another challenge is to generate meaningful
context of ‘node co-occurrences’ which preserves the Neigh-
borhood property of subgraphs. We tackle this challenge
by relying on our Id-paths. As discussed earlier, Id-paths
preserves the Neighborhood property by capturing important
connectivity information. We discuss more on efficiently gen-
erating samples of Id-paths in the next section.

B. Subgraph Truncated Random Walks

The Neighborhood property of subgraphs requires us to
enlist paths in the subgraph (i.e, Id-paths). Since there are
an unbounded number of paths, it is not feasible to enumerate
all of them. Hence, we resort to random walks to generate
meaningful samples of the paths efficiently. Next we describe
the random walks to generate samples of Id-paths. Note that
the random walks are performed inside each subgraph gi
separately, and not on the entire graph G.
Random Walk for Id-paths: Our random walk for Id-paths
in subgraph gi(vi, ei) starts from a node n1 ∈ vi chosen
uniformly at random. We choose a neighbor of n1 uniformly
at random as the next node to visit in the random walk.
Specifically, if ith node in the random walk is ni, then the jth
node in the random walk is a node nj , such that (ni, nj) ∈ ei,
chosen uniformly at random among such nodes.

We generate random walk of fixed length l for each sub-
graph gi in the input set of subgraphs S = {g1, g2, . . . , gn}.
At the end of process, for each subgraph gi ∈ S, we obtain
a random walk of length l, annotated by the ids of the nodes.
Figure 1 (d), shows an example.

C. SubVec-DM

In the SubVec-DM model, we seek to predict a node-id u
that appears in an Id-path, given other node-ids that co-occur
with u in the path, and the subgraph that u belongs to. By
co-occurrence, we mean that two ids co-appear in a sliding
window of a fixed length w, i.e, they appear within distance

w of each other. Consider a subgraph g1 (a subgraph induced
by nodes {a, b, c, e}) in Figure 3. Suppose the random walk
simulation of Id-paths in g1 returns a → b → c, and we
consider w = 3, then the model asks to predict node-id c
given subgraph g1, and the node’s 2 predecessors (ids a and
b), i.e., Pr(c|g1, {a, b}).

Here we give a formal formulation of SubVec-DM. Let
V =

⋃
i vi be the union of node-set of all the subgraphs. Let

W1 be a |S| × d matrix, where each row W1(i) represents
the embedding of a subgraph gi ∈ S. Similarly, let W2 be
a |V | × d matrix, where each column W2(n) is the vector
representation of node n ∈ V ′. Let the set of node-ids that
appear within distance w of a node a be θa.

In SubVec-DM, we predict a node-id a given θa and the
subgraph gi, from which a and θa are drawn. Formally, the
objective of SubVec-DM is to maximize:

max
f

∑
gi∈S

∑
n∈gi

log(Pr(a|W2(θa),W1(i))),

where Pr(a|W2(θa),W1(i))) is the probability of predict-
ing node a given the vector representations of θa and gi.
Pr(a|W2(θa),W1(i)) is defined using the softmax function:

Pr(a|m(θa), f(gi)) =
eW3(a)·h(W2(θa),W1(i))∑

v∈V e
W3(v)·h(W2(θa),W1(gi))

(1)

where matrix W3 is a softmax parameter and h(x,y) is
average or concatenation of vectors x and y [8]. In practice, to
compute Equation 1, we use negative sampling or hierarchical
softmax [7].

D. SubVec-DBON
In the SubVec-DBON model, we want to predict a set θ of

co-occurring node-ids in an Id-path sampled from subgraph gi,
given only the sugraph gi. Note that SubVec-DBON does not
explicitly rely on the embeddings of node-ids as in SubVec-
DM. As shown in Section III-C, the ‘co-occurrence’ means
that two ids co-appear in a sliding window of a fixed length w.
For example, consider the same example as in Section III-C:
the subgraph g1 in Figure 3, and the node sequence a→ b→
c generated by random walks. Now in the SubVec-DBON
model, for w = 3, the goal is to predict the set {a, b, c} given
the subgraph g1. This model is parallel to the popular skip-
gram model. The matrices W1 and W2 are the same as in
Section III-C.

Formally, given a subgraph gi, and the θ drawn from gi, the
objective of SubVec-DBON is the following:

max
f

∑
gi∈S

∑
θ∈gi

log(Pr(θ|W1(i)), (2)

where Pr(θ|W1(i)) is a softmax function, i.e.,

Pr(θ|W1(i)) =
eW2(θ).W1(i)∑

θ′∈G e
W2(θ′).W1(i)

,

Since computing Equation 2 involves summation over all
possible sets of co-occurring nodes, we use approximation
techniques such as negative sampling [7].

E. Algorithm

Algorithm 1 SubVec

Require: Graph G, subgraph set S = {g1, g2, . . . , gn}, length of
the context window w, dimension d

1: walkSet = {}
2: for each gi in s do
3: walk = RandomWalk (gi)
4: walkSet[gi] = walk
5: end for
6: f = StochasticGradientDescent(walkSet, d, w)
7: return f

Our algorithm SubVec works as follows: we first generate
the samples of Id-paths in each subgraph by running random
walks. Then we optimize the SV-DBON/ SV-DM objectives
using the stochastic gradient descent (SGD) method [9] by
leveraging the random walks. We used the Gensim package for
implementation [10]. The complete pseudocode is presented in
Algorithm 1.

IV. EXPERIMENTS

We leverage SubVec1 to solve the well-known community
detection problem. We also conduct case studies on two
datasets from distinct domains. All experiments are conducted
using a 4 Xeon E7-4850 CPU with 512GB 1066Mhz RAM.
We set the length of the random walk as 1000 and following
literature [6], we set dimension of the embedding as 128 unless
mentioned otherwise for both parameters.

A. Community Detection

Setup. Here we show how to leverage SubVec for the well-
known community detection problem [3], [4]. A community
in a network is a coherent group of nodes which are densely
connected among themselves and sparsely connected with the
rest of the network. Hence we expect many nodes within the
same community to have similar neighborhoods. Hence, we
can use SubVec to embed subgraphs while preserving the
Neighborhood property and cluster the embeddings to detect
communities.
Approach. We propose to use SubVec for community de-
tection by embedding the surrounding neighborhood of each
node. First, we extract the neighborhood Cv of each node
v ∈ V from the input graph G(V,E). Then we run SubVec
on S = {Cv|v ∈ V } to learn feature representation of f(Cv)
for all Cv ∈ S. We then use any clustering algorithm (K-
Means) to cluster the feature vectors f(Cv). For datasets with
overlapping communities (like Youtube), we use the Neo-
Kmeans algorithm [11] to obtain overlapping clusters. Cluster
membership of f(Cv) determines the community membership
of node v. The complete pseudocode is in Algorithm 2.

In Algorithm 2, we define the neighborhood of each node
to be its ego-network for dense networks (HighSchool and
WorkPlace) and its 2-hop ego-network for sparse networks.
The ego-network of a node is the subgraph induced by the

1Code in Python available at http://people.cs.vt.edu/∼bijaya/codes/SubVec

Algorithm 2 Community Detection using SubVec

Require: A network G(V,E), SubVec parameters, k number
of communities

1: neighborhoodSet = {}
2: for each v in V do
3: neighborhoodSet = neighborhoodSet ∪ neighbordhood

of v in G.
4: end for
5: vecs = SubVec (neighborhoodSet, w, d)
6: clusters = Clustering(vecs, k)
7: return clusters

Table I: Information on Datasets for Community Detection.

Dataset |V | |E| # Communities Domain
WorkPlace [12] 92 757 5 contact
Cornell [13] 195 304 5 web

HighSchool [14] 182 2221 5 contact
Texas [13] 187 328 5 web

Washington [13] 230 446 5 web
Wisconsin [13] 265 530 5 web
PolBlogs [15] 1490 16783 2 web
Youtube [16] 1.13M 2.97M 5000 social

node and its neighbors. The 2-hop ego-network is the subgraph
induced by the node, its neighbors, and neighbors’ neighbors.
Datasets. We use multiple real world datasets from mul-
tiple domains like social-interactions, co-authorship, social
networks and so on of varying sizes (largest containing ∼3M
edges). See Table I.
1) WorkPlace is a publicly available social contact network
between employees of a company with five departments2.
Edges indicate that two people were in proximity of each other.
Each department is a ground truth community.
2) HighSchool is a social contact network2. Nodes are high
school students belonging to one of five different sections and
edges indicate that two students were in vicinity of each other.
Each section is a ground truth community.
3) Texas, Cornell, Washington, Wisconsin are net-
works from the WebKB dataset3. These are networks of
webpages and hyperlinks. Each webpage belongs to one of
five classes: course, faculty, student, project, and staff, which
serve as ground-truth.
4) PolBlogs is a directed network of hyperlinks between
weblogs on US politics, recorded in 2005. We take conserva-
tive and liberal blogs as ground-truth communities.
5) Youtube is a social network, where edges indicate friend-
ship between two users. Ground truth communities are defined
by the different user-created groups.
Baselines. We compare SubVec with various traditional com-
munity detection algorithms and network embedding based
methods. Newman [3] is a well-known community detection
algorithm based on betweenness. Louvian [4] is a popular
greedy optimization method. DeepWalk and Node2Vec
are recent network embedding methods which learn feature

2http://www.sociopatterns.org/
3http://linqs.cs.umd.edu/projects/projects/lbc/

representations of nodes in the network which we then cluster
(in the same way as us) to obtain communities.
Results. We measure the performance of all the algorithms by
computing the Average F1 score [16] against the ground-truth.

See Table II. Both versions of SubVec significantly and
consistently outperform all the baselines We achieve a signifi-
cant gain of 123.5 % over the closest competitor (Node2Vec)
for Youtube. We do better than Node2Vec and DeepWalk
because intuitively, we learn the feature vector of the neigh-
borhood of each node for the community detection task; while
they just do random probes of the neighborhood. Performance
of Newman and Louvian is considerably poor in Youtube
as these methods output non-overlapping communities. Perfor-
mance of Node2Vec is satisfactory in sparse networks like
Washington and Texas. Node2Vec does slightly better
(∼ 1%) than SubVec in PolBlogs—the network consists
of homogeneous neighborhoods, which favors it. However, the
performance of Node2Vec is significantly worse for dense
networks like WorkPlace and HighSchool. On the other
hand, performance of SubVec is even more impressive in
these dense networks (where the task is more challenging).
SubVec-DM vs SubVec-DBON. In Table II, we observe that
SubVec-DM outperforms SubVec-DBON. Recall that the
SubVec-DM optimization relies on finding the embeddings
of the nodes as well as subgraphs. We conjecture that since
SubVec-DM relies on node embedding, based on Id-paths
which captures the Neighborhood property, it perfroms well
for the community detection task. Since, SubVec-DBON
learns the features of subgraps directly, without relying on
node embeddings, intuitively it should be more useful on very
large dense networks, where the node embeddings might not
be discriminative enough.

B. Scalability

(a) No of Subgraphs (b) Size of Subgraphs

Figure 4: Scalability w.r.t. number of subgraphs on
Youtube and w.r.t size of subgraphs on Astro-PH
datasets.

Here we show the scalability of SubVec with respect to
the number and the size of subgraphs. We extract connected
subgraphs of Youtube dataset induced by varying percentage
of nodes. We then run SubVec on the set of ego-nets in each
resulting network. As shown in Figure 4 (a), SubVec is linear
w.r.t number of subgraphs. In Figure 4 (b), we run SubVec
on 1 to 3 hops ego-nets of Astro-PH dataset. We see a
significant jump in the running time when the hop increases
from 2 to 3. This is due to the fact that as the hop of ego-net

increases, the size of the subgraph increases exponentially due
to the low diameter of real world networks.

C. Case Studies

We perform case-studies on MemeTracker4 and DBLP
to investigate if the embeddings returned by SubVec are
interpretable. MemeTracker consists of a series of cascades
caused by memes spreading on the network of linked web
pages. Each meme-cascade induces a subgraph in the underly-
ing network. We first embed these subgraphs in a continuous
vector space by leveraging SubVec. We then cluster these
vectors to explore what kind of meme cascade-graphs are
grouped together, what characteristics of memes determine
their similarity and distance to each other and so on. For
this case-study, we pick the top 1000 memes by volume, and
cluster them into 10 clusters using K-Means.

We find coherent clusters which are meaningful groupings
of memes based on topics. For example we find cluster
of memes related to different topics such as entertainment,
politics, religion, technology and so on. Visualization of these
clusters is presented in Figure 5. In the entertainment cluster,
we find memes which are names of popular songs and movies
such as “sweet home alabama”,“somewhere over the rainbow”,
“Madagascar 2” and so on. Similarly, we also find a cluster of
religious memes. These memes are quotes from the Bible. We
also find memes related to politics and religion in the same
cluster such as “separation of church and state”’. In politics
cluster, we find popular quotes from the 2008 presidential
election season e.g. Barack Obama’s popular slogan “yes we
can” along with his controversial quotes like “you can put
lipstick on a pig” in the cluster. We also find Sarah Palin’s
quote like “the chant is drill baby drill”. Similarly, we also find
different clusters of technology/video games related memes
and memes in Spanish language.

For DBLP, we follow the methodology in [17], and extract
subgraphs of the coauthorship network based on the keywords
contained in the title of the papers. We include keywords such
as ‘classification’, ‘clustering’, ‘xml’, and so on. Once we
extract the subgraphs, we run SubVec to learn embedding
of these subgraphs. We then project the embeddings down to
2-dimensions using t-SNE [18]. See Figure 6. We see that the
related keywords such as ‘graphs’, ‘pagerank’, ‘crawling’, and
‘clustering’ appear together. Classification related keywords
such as ‘boosting’, ‘svm’, and ‘classification’ are grouped
together. These meaningful groups of keywords highlight the
fact that SubVec results in meaningful embeddings.

V. RELATED WORK

Network Embedding. The network embedding problem has
been well studied. Most of work seeks to generate low
dimensional feature representation of nodes. Earliest work in
dimensionality redcutuon includes Laplacian Eigenmap [19],
IsoMap [20], locally linear embedding [21], and spectral
techniques [22], [23], [24]. However, these methods are slow

4snap.stanford.edu

Table II: SubVec easily out-performs all baselines in all datasets. Average F-1 score is shown for each method. Winners
have been bolded for each dataset.

Method WorkPlace HighSchool PolBlogs Texas Cornell Washington Wisconsin Youtube
Newman 0.32 0.34 0.58 0.17 0.33 0.21 0.16 0.04
Louvian 0.25 0.31 0.50 0.20 0.20 0.13 0.19 0.01
DeepWalk 0.40 0.48 0.80 0.25 0.32 0.29 0.29 0.15
Node2Vec 0.64 0.79 0.86 0.27 0.33 0.28 0.30 0.17
SubVec-DM 0.77 0.93 0.85 0.35 0.36 0.38 0.32 0.38

SubVec-DBON 0.65 0.57 0.82 0.35 0.34 0.37 0.32 0.36
Gain of SubVec [%] 20.3 17.7 -1.2 29.6 9.1 31.0 6.6 123.5

(a) Politics Cluster (b) Religion Cluster (c) Spanish Cluster

(d) Entertainment Cluster (e) Technology Cluster

Figure 5: Different Clusters of Memes for the MemeTracker dataset.

Figure 6: 2D projection of feature vectors learnt by SubVec
of subgraphs of DBLP induced by different keywords.

and do not scale to large networks. Recently, several deep
learning based network embeddings algorithms were proposed
to learn feature representations of nodes [5], [25], [26], [6].
Perozzi et. al [5] proposed DeepWalk, which extends skip-
Gram model [7] to networks and learns feature representation
based on contexts generated by random walks. Grover et.
al. proposed a more general method, Node2Vec [6], which
generalizes random walks to generate various contexts. SDNE
[25] and LINE [26] learn feature representation of nodes while

preserving first and second order proximity. Node2vec was
shown to outperform DeepWalk and LINE in link prediction.
However, all of them learn low dimensional feature vector of
nodes, while our goal is to embed subgraphs.

Some of the closely related works in literature include [27],
[28], [29]. Risen and Bunke propose to learn vector represen-
tations of graphs based on edit distance to a set of pre-defined
prototype graphs [27]. Yanardag et. al. [28] and Narayanan
et al. [29] learn vector representation of the subgraphs using
the Word2Vec [7] by generating ”corpus” of subgraphs where
each subgraph is treated as a word. The above work focuses on
some specific subgraphs like graphlets and rooted subgraphs.
None of them embed subgraphs with arbitrary structure. In
addition, we interpret subgraphs as paragraphs, and leverage
the PV-DBOW/DM models [8].
Other Subgraph Problems. There has been a lot of work on
subgraph related problems like subgraph discovery. Finding
the largest clique is a well-known NP-complete problem [30].
Lee et al. surveyed dense subgraph discovery algorithms for
several subgraphs including clique, K-core, K-club, etc [31].
Perozzi et al. studied the attributed graph anomaly detection
by exploring the neighborhood subgraph of a nodes [32].
Different from the above works, we seek to find feature
representations of subgraphs.

VI. DISCUSSION AND CONCLUSION

In this paper, we formulated novel subgraph embedding
problem which seeks to preserve Neighborhood property of
subgraphs. We propose scalable SubVec algorithm, which

learns feature representation of subgraphs based on samples
of local connectivity information, to solve the problem. We
demonstrate that SubVec gives meaningful interpretable em-
beddings of arbitrary subgraphs by leveraging it to solve the
community detection problem. We show via our experiments
that SubVec outperforms traditional algorithms as well as
node-level embedding algorithms for extracting communities
from networks. Similarly, we also demonstrate usability of
SubVec by conducting case studies on two datasets from
different domains.

Embedding subgraphs while preserving other properties are
of great interest as well. One such property is based on the
structure of subgraphs. For example, in Figure 3, subgraphs
induced by nodes {a, b, c, e} and {h, i, j, k} have the same
structural property as both are cliques of size four. Embedding
subgraphs while preserving structure based property could be
leveraged for tasks like graph classification, graph isomor-
phism detection and so on. We leave the task of embedding
subgraphs based on the structure induced properties of sub-
graphs and leveraging them for graph mining as future work.

Acknowledgements This paper is based on work partially
supported by the National Science Foundation (IIS-1353346,
DGE-1545362, and IIS-1633363), the National Endowment
for the Humanities (HG-229283-15), ORNL (Task Order
4000143330) and from the Maryland Procurement Office
(H98230-14-C-0127), and a Facebook faculty gift. Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the respective funding agencies.

REFERENCES

[1] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social network data analytics. Springer, 2011, pp.
115–148.

[2] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” journal of the Association for Information Science and
Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[3] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[5] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[6] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 855–864.

[7] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[8] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents.” in ICML, vol. 14, 2014, pp. 1188–1196.

[9] O. Bousquet and L. Bottou, “The tradeoffs of large scale learning,” in
Advances in neural information processing systems, 2008, pp. 161–168.

[10] R. Rehurek and P. Sojka, “Software framework for topic modelling with
large corpora,” in In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Citeseer, 2010.

[11] J. J. Whang, I. S. Dhillon, and D. F. Gleich, “Non-exhaustive, over-
lapping k-means,” in Proceedings of the 2015 SIAM International
Conference on Data Mining. SIAM, 2015, pp. 936–944.

[12] M. Genois, C. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, and
A. Barrat, “Data on face-to-face contacts in an office building suggest
a low-cost vaccination strategy based on community linkers,” Network
Science, vol. 3, pp. 326–347, 9 2015.

[13] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine, vol. 29,
no. 3, pp. 93–106, 2008.

[14] J. Fournet and A. Barrat, “Contact patterns among high school students,”
PLoS ONE, vol. 9, no. 9, p. e107878, 09 2014.

[15] L. A. Adamic and N. Glance, “The political blogosphere and the 2004
us election: divided they blog,” in Proceedings of the 3rd international
workshop on Link discovery. ACM, 2005, pp. 36–43.

[16] J. Yang and J. Leskovec, “Overlapping community detection at scale: a
nonnegative matrix factorization approach,” in Proceedings of the sixth
ACM international conference on Web search and data mining. ACM,
2013, pp. 587–596.

[17] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila, “Finding effectors in
social networks,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2010, pp.
1059–1068.

[18] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[19] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in NIPS, vol. 14, no. 14, 2001, pp. 585–
591.

[20] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[21] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[22] F. R. Bach and M. I. Jordan, “Learning spectral clustering,” in NIPS,
vol. 16, 2003.

[23] F. R. Chung, Spectral graph theory. American Mathematical Soc.,
1997, vol. 92.

[24] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” 2017.

[25] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2016, pp. 1225–1234.

[26] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. ACM, 2015, pp. 1067–
1077.

[27] K. Riesen and H. Bunke, Graph classification and clustering based on
vector space embedding. World Scientific Publishing Co., Inc., 2010.

[28] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp. 1365–1374.

[29] A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Sami-
nathan, “subgraph2vec: Learning distributed representations of rooted
sub-graphs from large graphs,” arXiv preprint arXiv:1606.08928, 2016.

[30] J. Håstad, “Clique is hard to approximate within n1,” in Proc. 37th
Symp. on Found. Comput. Sci, 1996, pp. 627–636.

[31] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, “A survey of algorithms
for dense subgraph discovery,” in Managing and Mining Graph Data.
Springer, 2010, pp. 303–336.

[32] B. Perozzi and L. Akoglu, “Scalable anomaly ranking of attributed
neighborhoods,” in Proceedings of the 2016 SIAM International Con-
ference on Data Mining. SIAM, 2016, pp. 207–215.

