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ABSTRACT

In many applications, such as the Internet and infrastructure net-

works, nodes fail or get congested dynamically. We study the

problem of inferring all the failed nodes, when only a sample of

the failures is known, and there exist correlations between node

failures/congestion in networks. We formalize this as the Graph-

StateInf problem, using the the Minimum Description Length

(MDL) principle. We propose a greedy algorithm for minimizing

the MDL cost, and show that it gives an additive approximation,

relative to the optimal. We evaluate our methods on synthetic and

real datasets, which includes one from WAZE which gives tra�c

incident reports for the city of Boston. We �nd that our method

gives promising results in recovering the missing failures.

1 INTRODUCTION

Most network applications assume the network is static, and is

known ahead of time. �is is not true in practice, and networks are

inferred by indirect measurements, e.g., as in the case of the Internet

router/AS level graphs, which are constructed using traceroutes,

e.g., [5], or biological networks, which are inferred by experimental

correlations, e.g., [16]. Further, network elements can fail dynam-

ically, or their state may change with time. For instance, links in

the Internet router network or the transportation network can get

congested or fail. Reconstructing the network topology dynami-

cally and inferring network states in such se�ings are fundamental

problems. Such problems have been studied as part of the area

of “network tomography”, especially in communication networks,

e.g., [9, 11, 19]. Such networks are not publicly accessible, and indi-

rect probes are the only means of obtaining information; examples

of probes include queries of the activity states of selected nodes

and end-to-end measurements of delays between selected pairs

of nodes. �ese become very challenging problems, and all prior

work in this direction in network tomography has been focused

on simple models of independent link failures and delays, e.g., with

exponentially distributed probabilities [11].

In many se�ings, such as disaster events in infrastructure net-

works, however, failuresmight be spatially correlated, as in [1, 3, 15].

For instance, in the model considered in [1], the probability that

a node j fails decays with the distance from a source s . �is moti-

vates the problem GraphStateInf of inferring the network states

under such spatial correlations, which is the focus of our paper. A

closely related topic is the inference of the source of an infection

and other missing infections in the case of epidemic spread on

networks—these are typically modeled as SI/SIR processes, where

the infection spreads from one node to its neighbors with some

probability [12, 13, 17, 18]; see [8, 10] for introduction to epidemic

models. An approach based on the Minimum Description Length

(MDL) principle [7, 14] was introduced for missing infection prob-

lems in [12, 13, 18] for the SI process. However, there are key

di�erences in our se�ing, and the methods developed for missing

node infection in epidemic processes do not seem to directly work

for the GraphStateInf problem. Our contributions are summa-

rized below.

(1) We develop a novel formulation for the GraphStateInf

problem using the Minimum Description Length (MDL)

principle, which takes correlated failures into account. We

present Greedy, an algorithm for inferring the missing

failed nodes, given a sample of the failures. We prove

that the MDL cost of the solution computed by Greedy

is within an additive approximation of the minimum cost

MDL solution. Typically, approaches using MDL are based

on heuristics and ge�ing bounds is non trivial as MDL cost

functions are not convex. To the best of our knowledge,

our algorithm is the �rst to obtain rigorous bounds on the

objective value among MDL based approaches for network

inference.

(2) We evaluate our results on di�erent kinds of synthetic and

real datasets, namely, one week’s worth of tra�c status

and incident reports fromWAZE for the city of Boston, and

electric disturbance events in the power grid (described in

Section 4.1). We study the precision, recall and F1-score for

Greedy, compared with a baseline. We observe that our

algorithm is quite e�ective in inferring unknown/missing

failures in the network, and has lower MDL cost than the

baseline.

�e rest of the paper is organized in the usual way, with the

formulation �rst, then methods, and experiments. We then �nally

give the related work and conclusions.

2 OUR PROBLEM FORMULATION

We are given an undirected graph G(V ,E) representing an infras-

tructure network. We assume there is an initial failure at a node,

referred to as the seed node, which causes other nodes to fail. Fur-

ther, a subset Q ⊆ I of the actual failed nodes are assumed to be

known. �e objective in the GraphStateInf problem is to infer all

the missing failures.

2.1 Failure Model

Next, we will discuss the failure model we use to describe the

failures in the given network G. �is model is motivated by the

geographically correlated failure model introduced by Agarwal et

al [1], to capture failures in infrastructure networks due to large

scale disasters. In such events, there is an initial localized failure,

which causes other nodes to fail with some probability that decays

with the distance from the source.
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Following [1], we assume there is an initial single ‘seed’ node

s and all the failures I in G are caused due to the in�uence of that

seed node. We assume a discrete probability distribution function

ps : V → [0, 1] that gives the probability of each node v ∈ V being

a seed and conditional failure probability distribution function

F : V ×V → [0, 1] that gives the failure probability of a node v ∈ V
given a seed node s . Note that the ps (v) is the probability ofv being

the only seed, i.e,

∑
v ∈V ps (v) = 1. �ese probability distributions

are precomputed from historically observed failures. We assume

that the conditional failure probabilities given by F are independent

i.e., for-all v1,v2 ∈ V and v1 , v2,

F (v1 ∩v2 | s) = F (v1 | s)F (v2 | s) (1)

2.2 Probes

Based on our model given above, we assume that some seed failed

causing multiple correlated failures across the networkG . �e �nal

set of true failures is represented by I ⊆ V . Further, we are also
given a set of failed nodes represented by Q ⊆ I , which we will

refer to as probes in rest of this paper. We assume that the given

set of input probes Q are sampled uniformly at random from the

true failure set I with probability γ .

2.3 MDL

We formulate our problem using the Minimum Description Length

(MDL) principle [6]. We will use two-part MDL, or the sender-

receiver framework. Our goal here is to transmit the given set of

probes Q from sender to receiver by assuming that both of them

know the layout of the network G. We do this by identifying

the model that best describes the given data in terms of a formal

objective or cost function. �is cost function consists of two parts:

(1) Model cost that signi�es the complexity of the selected

model that explains the failures in the network; and

(2) Data cost that represents the cost of observing the given

probe data Q given the model.

More formally, given a set of modelsM, MDL identi�es the best

modelM∗ as the model that minimizes L(M)+L(D |M), in which

L(M) is the model-cost (length in bits to describe model M), and

L(D|M) is the data-cost (the length in bits to describe the data using
M). Note that the data we need to describe in our situation is the

probes set Q (and not the true failures set I ). Next we describe the
model space and the model and data cost, which we will optimize.

2.4 Model Space and Cost

Model Space: �emost natural model for our problem would have

beenM = (s, I ) (the source s ∈ V and the full failure set I ⊆ V ),
as it directly mimics the generative process of the failure model.

However, this model has several disadvantages. Firstly, note that

this model space is intuitively ‘fragile’: small changes in I or the
source s can have vastly di�erent costs. Hence due to data sparsity,

we expect it would be very hard to learn the true source which

generated the failures—indeed, in our experiments, we �nd that

it was not robustly learning the true source. As a result, we also

found that the solutions with minimum MDL cost were �nding

very few missing failed nodes (i.e. I − Q), leading to a very low

recall. How to design a be�er model space for our problem? We

observe that this model intuitively tries to explain ‘more’ than what

is needed. Note that while our original goal was to map the missing

failures only, this approach tries to explain the source as well as

the set of failures. Hence we adopt a di�erent approach, where we

try to marginalize over the seeds, and focus only on the failures.

�is makes our model space more robust as well. �is motivates

our proposed model, which consists of three components, namely,

M = (|Q|, |I |, I ). In other words, we send the size of probes Q,

the size of true failure set I , and then identify the set itself. A�er

sending the model, we will then identify the actual probes set Q as

the data.

Model cost: �e MDL model cost, L(|Q|, |I |, I ) has three compo-

nents

L(|Q|, |I |, I ) = L(|Q|) + L
(
|I |

�� |Q|) + L (
I
�� |Q|, |I |) .

We derive these below. We have L(|Q|) = − log
(
Pr (|Q|)

)
, by

using the Shannon-Fano code to encode |Q|. Similarly we have:

L
(
|I |

�� |Q |) = − log (
Pr ( |I |

�� |Q |))
= − log

( Pr ( |Q | �� |I |)Pr ( |I |)
Pr ( |Q |)

) (2)

From the sampling assumption for Q, we can get:

Pr
(
|Q|

�� |I |) = (
|I |

|Q|

)
γ |Q |(1 − γ ) |I\Q | (3)

Also observe that:

L
(
I
�� |Q |, |I |) = − log (

Pr
(
I
�� |Q |, |I |) )

= − log
(
Pr

(
I
�� |I |) ) = − log ( Pr (I )

Pr ( |I |)

) (4)

Combining all of the above, the complete model cost is:

L(|Q |, |I |, I ) =L(|Q |) + L
(
|I |

�� |Q |) + L (
I
�� |Q |, |I |)

= − log
(
Pr ( |Q |)

)
− log

( Pr ( |Q | �� |I |)Pr ( |I |)
Pr ( |Q |)

)
− log

( Pr (I )
Pr ( |I |)

)
= − log

(
Pr

(
|Q |

�� |I |) ) − log (
Pr ( |I |)

)
− log

( Pr (I )
Pr ( |I |)

)
= − log

((
|I |
|Q |

)
γ |Q|(1 − γ )|I \Q|

)
− log

( ∑
s∈V

Pr (I | s)p(s)
)

= − log

(
|I |
|Q |

)
− |Q | log(γ ) − ( |I | − |Q |) log(1 − γ )

− log

( ∑
s∈V

ps (s)
∏
v∈I

F (v | s)
∏
v ′<I

(
1 − F (v ′ | s)

))
(5)

2.5 Data Cost

Now, we need to describe the given input probes Q in terms of the

model. Given modelM = (|Q|, |I |, I ), describing Q is the same as

specifying the adjustments that needs to be applied to the failure

set I in the model to reach Q, which can be done by describing the

following sets:

(1) Unobserved failures i.e., Q+ = I \ Q
(2) Observation errors i.e., Q− = Q \ I
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In this paper, we assume that there are no observation errors,

i.e., Q− = ∅ (as Q ⊆ I ). According to the sampling assumption we

have, Q is sampled uniformly at random from I with probability

γ . �is implies that Q+ = I \ Q is sampled from I with uniform

probability (1−γ ). Hence we can compute the probability of seeing

a set Q+ when sampled from I as follows

Pr (Q+ |I ) = γ |Q |(1 − γ ) |Q
+ |

(6)

Now, using this probability distribution of observing the set Q+

given the failure set I we can compute the optimal number of bits

required to transmit Q+ encoded in terms of modelM as follows

(again using the Shannon-Fano code):

L(Q+ |I ) = − log
(
γ |Q |(1 − γ ) |Q

+ |
)

= − |Q| log(γ ) − (|I | − |Q|) log(1 − γ )
(7)

2.6 Our Formal Problem

Pu�ing it all together, we can state our formal problem:

Given an undirected graph G(V ,E), where node failures taken
place in the network as per the model described in Section-2.1,

and a set of observed failures Q ⊆ V , which are sampled inde-

pendently from the true failure set I∗ with a uniform probability

γ , �nd the complete set of failures I ⊆ V by minimizing the

MDL cost function L
(
|Q|, |I |, I ,Q

)
given by

L
(
|Q |, |I |, I, Q

)
= L(|Q |)+L

(
|I |

�� |Q |)
+L

(
I
�� |Q |, |I |) + L (

Q
�� |Q |, |I |, I )

= − log

(
|I |
|Q |

)
− log

( ∑
s∈V

ps (s)
∏
v∈I

F (v | s)
∏
v ′<I

(
1 − F (v ′ | s)

))
−2 |Q | log(γ ) − 2( |I | − |Q |) log(1 − γ )

(8)

where ps (s) is the seed probability of s and F (v | s) is the failure
probability of node v given seed node s .

3 PROPOSED METHODS

Clearly the search space for the problem is large, and there exists no

trivial structure for fast search. We now describe two approaches

for �nding solutions with low MDL cost. �e �rst, LocalSearch,

incrementally adds a node that gives the most reduction in MDL

cost, till no further improvements occur. �e second, Greedy,

guesses the size k of the optimal solution, and greedily picks the

k nodes that would minimize the cost. We show that the cost of

the solution produced by Greedy is within an additive factor of the

optimum.

3.1 Algorithm LocalSearch

�is is an intuitive local search algorithm which is popularly used

in manyMDL optimzations. We initialize Î to Q, and just repeatedly
add a node that reduces the MDL cost. �is is described formally

in Algorithm 1.

3.2 Algorithm Greedy

In this section we will discuss an e�cient algorithm for �nding a

failure set I which provides an additive approximation guarantee

on the MDL cost of the solution.

Algorithm 1 Algorithm LocalSearch

Input: Instance (V ,Q,p, P ,γ )
Output: Solution Î that minimizes L(|Q|, |Î |, Î ,Q)

1: Î ← Q
2: while∃v ∈ V \Î : L(|Q|, |Î |, Î ,Q)−L(|Q|, |Î |+1, Î∪{v},Q) > 0

do

3: u ← argmax

v ∈V \Î
L(|Q|, |Î |, Î ,Q) − L(|Q|, |Î | + 1, I ∪ {v},Q)

4: Î ← Î ∪ {u}
5: end while

6: Return Î

First, let A = − log
( |I |
|Q |

)
− 2|Q| log(γ ). We rewrite the MDL cost

function in the following manner:

L
(
|Q|, |I |, I ,Q

)
=A − log

( ∑
s ∈V

ps (s)
∏
v ∈I

F (v | s)
∏
v ′<I

(
1 − F (v ′ | s)

))
− 2(|I | − |Q|) log(1 − γ )

=A − log
( ∑
s ∈V

ps (s)
∏
v ∈V

(
1 − F (v ′ | s)

)
∏
v ∈I

F (v | s)

(1 − F (v | s))

)
− log (1 − γ )2( |I |− |Q |)

=A − log
( ∑
s ∈V

ps (s)
∏
v ∈V

(
1 − F (v ′ | s)

)
(1 − γ )−2 |Q |

∏
v ∈I

F (v | s)(1 − γ )2 |I |

(1 − F (v | s))

)
=A − log

( ∑
s ∈V

д(s)
∏
v ∈I

f (s,v)
)
,

(9)

where д(s) = (1 − γ )−2 |Q |ps (s)
∏
v ∈V

(
1 − F (v | s)

)
and f (s,v) =

F (v | s)(1−γ )2

1−F (v | s) . �erefore, the problem reduces to �nding a set Î such

that

Î = argmin

I

{
− log

(
|I |
|Q |

)
+ 2 |Q |λ1

− log

( ∑
s∈V

д(s)
∏
v∈I

f (s, v)
)}
.

(10)

�e main idea of this algorithm is to use the quantity f (s,v) =
F (v | s)(1−γ )2

1−F (v | s) de�ned above as the ‘weight’ for each pair (s,v). For

each seed node s ∈ V , we guess the size of the solution |Is |, if
the source were to be s , and pick the set of |Is | nodes which mini-

mizes the MDL cost. �is is described formally in Algorithm 2, and

analyzed in formally �eorem 3.1.

Theorem 3.1. Let I∗ be the set minimizing the MDL cost, and

let I denote the solution computed by Algorithm Greedy. �en,

L(|Q|, |I |, I ,Q) ≤ L(|Q|, |I∗ |, I∗,Q)+ log(n), where n is the number

of seed nodes.

Proof. Recall the de�nitions of д(s), f (s,v) and A above. �en,

L(|Q|,k, I ,Q) = − log
( ∑
s ∈V

ϕ(s, I )
)
+A ,
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Algorithm 2 Algorithm Greedy

Input: Instance (V ,Q,p, P ,γ )
Output: Solution Î that minimizes L(|Q|, |Î |, Î ,Q)

1: for each s ∈ V do

2: for each k ∈ [|Q|, |V |] do
3: Is (k) ← Top k − |Q| nodes in V \ Q with highest weight

f (s,v)
4: Is (k) ← Is (k) ∪ Q
5: end for

6: end for

7: S ← {Is (k) : ∀s ∈ V&k ∈ [|Q|, |V |]}
8: Î ← argmin

I ∈S
L(|Q|, |I |, I ,Q)

9: Return Î

where ϕ(s, I ) = д(s)
∏
v ∈I f (s,v). Note that ϕ(s, I ) is maximized for

the set Is (k) de�ned in Algorithm Greedy, since this consists of

the set of top k − |Q| nodes in V \ Q, with respect to the quantity

f (s,v), along with all nodes in Q. �erefore, we have

ϕ(s, Is (k)) ≥ ϕ(s, I
∗)

Adding over all possible seed nodes, we have∑
s ∈V

ϕ(s, Is (|I
∗ |)) ≥

∑
s ∈V

ϕ(s, I∗)

which implies for some seed ŝ , we have

ϕ(ŝ, Iŝ (k)) ≥
1

n

∑
s ∈V

ϕ(s, I∗)

⇒ − log

(
ϕ(ŝ, Iŝ (k))

)
≤ − log

(
1

n

∑
s ∈V

ϕ(s, I∗)
)

= − log
( ∑
s ∈V

ϕ(s, I∗)
)
+ log(n)

�is, in turn, implies

L(|Q|,k, Iŝ (k),Q) = − log
( ∑
s ∈V

ϕ(s, Iŝ (k))
)
+A

≤ − log

(
ϕ(ŝ, Iŝ (k))

)
+A

≤ − log

( ∑
s ∈V

ϕ(s, I∗)
)
+ log(n) +A

≤ L(|Q|,k, I∗,Q) + log(n),

where the �rst inequality follows because ϕ(s, I ) ≥ 0 ∀ s, I , so that∑
s ∈V ϕ(s, Iŝ (k)) ≥ ϕ(ŝ, Iŝ (k)). Since, the Algorithm 2 searches over

all possible solution sizes k , the theorem follows. �

Lemma 3.2. Algorithm Greedy runs in O(|V |3) time.

Proof. �e quantities д(s) and f (s,v) de�ned earlier in (9) can

be computed for all s,v in O(|V |3) time. �e algorithm involves

two for loops. �e inner loop in lines 2-5 runs inO(|V |) time, since

it �nds a solution Is (k) for each k . �e set S has size O(|V |2). Step
8 of the algorithm involves computing L(|Q|, |Is (k)|, Is (k),Q) for
each set Is (k). Done naively, it takes O(|V |

2) time to compute this.

However, by keeping the intermediate solutions, we can compute

L(|Q|, |Is (k)|, Is (k),Q) for a given s and for all k incrementally in

O(|V |2) time, leading to the time bound in the lemma. �

4 EXPERIMENTS

We evaluate performance of our algorithms on various synthetic

and real networks, which are discussed next.

4.1 Datasets

Synthetic Grid Dataset. We created a simple 60 × 60 grid where

each cell is considered as a node in a road network, leading to 3600

nodes. We assumed an uniform seed probability distribution across

all nodes. We computed conditional failure probabilities (PlainCF)

between pair of nodes (s,v) based on Geographically Correlated

Failure (GCF) Model [1] i.e., if s is the seed node then

F (v | s) = 1 − d(s,v) (11)

where d(s,v) is a distance function d : V ×V → [0, 1]. In our case,

d(·, ·) is the Manha�an distance between the nodes normalized by

the maximum distance. We will refer to this set of conditional

failure probabilities as GCF.

Real Datasets. We created three datasets from real world node

failure logs in transportation and power-grid networks. We use

failure logs in road networks from WAZE alerts data, which is pub-

licly available on the City of Boston’s website
1
. �ese alerts have

been reported by users via the crowd sourced application WAZE

between Monday 23
rd

February, 2015 and Sunday 1
st
March, 2015.

�e alerts in the dataset are spatially distributed across Boston,

Cambridge, and Brook-line regions of Massachuse�s. �e alerts

include di�erent types failures such as tra�c jam, extreme weather,

accidents, and road closures. Additionally, the latitude and longi-

tude of the a�ected locations, and start and end time of the alert

is also given. From these alerts, we created two datasets based on

tra�c jam (JAM) and extreme weather (WEATHER).

Similarly, we use a list of Electric disturbance events from En-

ergy.gov
2
—this list includes reported events of electric emergencies

and disturbance in power supply from 2002 to 2015. Each event log

contains information regarding date and time of the beginning and

restoration of the event, geographical areas a�ected by the event,

number of customer a�ected, and so on. We created POWER-GRID

dataset from the log of electric emergencies and disturbances.

Dataset creation. As discussed in Section 2.1, we need to de�ne

the seed probability and pair-wise conditional failure probability

distributions over all nodes in the network. �is is done in the

following manner. For WAZE alert data, we have partitioned the

complete geographical region occupied by these failures by using

a 119 × 78 grid as shown in Figure 1, where each cell is 0.00166◦

square and acts as a node in our virtual road network. For the

POWER-GRID data, each location referred in the dataset acts as a

node.

Seed Probability. Letnv denote the cell/nodev , as discussed above,
and let N =

∑
v nv denote the total number of failures across all

nodes. We de�ne the seed probabilities as

ps (v) =
nv
N

(12)

Conditional Failure Probabilities. We construct a Binary Failure

State Time Series (BinTS) for a span of 7 days, by using the temporal

information that is available fromWAZE alerts data. �is time series

1
h�ps://data.cityo�oston.gov/

2
h�ps://www.oe.netl.doe.gov/
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Figure 1: Partitions of Boston region occupied by WAZE

alerts using 119 × 78 grid

gives a binary (0 or 1) value for each time step which represents

the failure state of the respective node i.e., BinTSv (t) = 1 implies

that there is at-least one failure inv at time t . Using BinTS we were
able to compute the pair-wise conditional failure probabilities for

our datasets in the following manner. For two nodes v1 and v2,
we de�ne the Plain Conditional Failure Probability (PlainCF) of v1
given v2 as the ratio between number of time steps in which both

v1 and v2 are failed (i.e. with value 1 in BinTS) to the number of

time steps in which only v2 is failed.

PlainCF (v1 | v2) =
| {t |∀t, BinT Sv1

(t ) = 1&BinT Sv2
(t ) = 1} |

| {t |∀t, BinT Sv2
(t ) = 1} |

(13)

We study two more synthetic conditional failure probabilities,

named URandCF and NRandCF, for each dataset; these are de�ned

in the following manner: URandCF is an arbitrary sample from a

uniform distribution and NRandCF is an arbitrary sample from a

normal distribution (0.1 ×N(5, 1)) over the values [0, 1]. We follow

the same procedure to generate conditional probability failures for

the POWER-GRID dataset.

Dataset descriptions. We construct three di�erent datasets fol-

lowing the above steps.

JAM:�is is a dataset that we created fromWAZE alerts data using

data of failure type JAM.�e resultant dataset consists of a road net-

work with 2650 nodes along with seed probability distribution and

conditional failure probabilities computed as discussed in Sections

4.1 and 4.1. Figure 2 presents a spatial and frequency distributions

of the seed and conditional failure probabilities of this dataset.

WEATHER: Similar to the JAM dataset this dataset is created by

using WEATHERHAZARD failure data from WAZE alerts data.

�e resultant dataset consists of a road network with 1520 nodes

along with seed probability distribution and conditional failure

probabilities computed as discussed in Sections 4.1 and 4.1.

POWER-GRID:Asmentioned earlier, we created this dataset from

the log of electrical emergencies and disturbances. We �ltered out

the events in the log which were not related to loss of electric

service. For this dataset, which consists of 24 nodes, we computed

failure likelihood and conditional failure probabilities are described

in Sections 4.1 and 4.1.

4.2 Performance evaluation

In this section we discuss the performance of our algorithms against

various datasets that are described in Section 4.1 across various

values of γ ∈ [0.1, 1.0]. We examine the precision, recall and

F1-score for Greedy, compared with LocalSearch. We observe

that our MDL based approach does indeed allow us to infer un-

known/missing failures in the network using the probes. �e spe-

ci�c MDL formulation we consider in Section 2.6, which includes

|I | in the model seems to perform much be�er than other natural

MDL formulations.

Comparison of Greedywith LocalSearch. Figure 3 presents

a comparison of the trends in performance of both algorithms on

the JAM dataset with PlainCF probabilities across γ ∈ [0.1, 1.0]
and MDL cost of their respective solutions. For both algorithms,

the performance varies with the sampling rate, γ . We �nd that the

solution computed by Greedy has lower MDL cost, compared to

the baseline. One interesting observation from Figure 3b is that the

recall for Greedy decays with γ till 0.4 and then increases. Greedy

has higher F1-score compared to LocalSearch, for most values of

γ . In the rest of our evaluation, we only consider Greedy.

Performance of Greedy for di�erent datasets. Figures 4, 5,

6 and 7 present the performance of Algorithm Greedy for all the

datasets from Section 4.1, and for the three di�erent ways of de�n-

ing conditional probabilities. Across all these results, on average we

are able to �nd 80% of the failed nodes with an average precision of

79% across various values of γ ∈ [0.1, 1.0]. In other words, we are

successful in inferring a reasonable fraction of unknown/missing

failures in the network from partial set of observations with a

reasonable precision.

5 RELATEDWORK

Some of the di�erent areas related to our work include network

and state inference in communication networks, reconstructing

networks from cascades and inferring missing infections in the case

of epidemics. We brie�y discuss these below.

�e area of network tomography involves inferring link states,

such as delays and failures, in the Internet and other communication

networks; see, e.g., [2, 4, 9, 11, 19]. Probes such as end-to-end delays

are the only measurements that are available in such networks. At

an abstract level, the problem here involves solving for the link

delay vector x, given the measured delays across the probes. �is

becomes a very challenging problem and it is typically assumed

that link characteristics such as delays are modeled as independent

random variables with known distributions, but potentially un-

known parameters. Xia et al. [19] solve this assuming link delays

are exponentially distributed. Ni et al. [11] study di�erent kinds

of probing models, including multicast probes which can give esti-

mates on a tree, and develop methods for inferring the topology in

dynamic networks. �ere has also been work on designing probes

to infer part of the network structure, as in [2].

Another related topic is the inference of the source of an infection

and other missing infections, in the case of epidemic spread on

networks. Epidemics are modeled as stochastic processes, e.g.,
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a: Spatial distribution of seed probabilities. b: Spatial distribution of PlainCF for a random seed node.

Figure 2: JAM dataset created fromWAZE alerts data of Boston, Cambridge, Brook-line regions.
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Figure 3: Performance of the LocalSearch (a) and Greedy (b) on the JAM dataset with PlainCF probabilities. �e MDL costs

of the solutions is shown in (c).
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Figure 4: Performance of Greedy on the Synthetic Grid Dataset with GCF (a), URandCF (b), and NRandCF (c) conditional

probabilities.

SI/SIR, in which the infection spreads from an infected node to

its susceptible neighbors. Usually, only partial information about

the infections is known, and some of the problems that have been

studied include identifying the source of an infection and �nding

other missing nodes [12, 13, 17, 18]. �e Minimum Description

Length (MDL) principle [7, 14] has been successfully used in [12,

13, 18] for these problems, whereas [17] develop an MLE method.

A di�erent class of failure models from the SI/SIR type of epi-

demics has been studied extensively, motivated by se�ings such

as disaster events, e.g., [1, 3, 15]. �ese studies assume an initial

failure, and subsequent failures whose probability is correlated with

the source. For instance, in [1], the probability p(j |i) that node j
fails, given that i is the source is a function of the distance from i
to j , with the probabilities decaying with the distance. Our work is

motivated by these models.
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Figure 5: Performance of Greedy on the JAM Dataset with PlainCF (a), URandCF (b), and NRandCF (c) conditional probabili-

ties.
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Figure 6: Performance of Greedy on the WEATHER Dataset with PlainCF (a), URandCF (b), and NRandCF (c) conditional

probabilities.
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Figure 7: Performance of Greedy on the Power Grid Dataset with PlainCF (a), URandCF (b), and NRandCF (c) conditional

probabilities.

6 CONCLUSIONS

Our results show that an MDL based approach is quite useful in

the problem of inferring missing failures in se�ings with correlated

failures. �is motivates its use in other inference problems with

partial information. We have considered the simplest notion of a

probe here—information about speci�c nodes which have failed.

Extending our work to other kinds of probes (like connectivity

queries) is an interesting and natural problem. Inferring the state of

the network using such probes, and supporting additional queries

are interesting problems. Further we have assumed there are no

observational errors—designing robust algorithms in face of errors

is also interesting future work.
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