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Abstract
As observed in the case of COVID-19, effective vaccines for an emerging pandemic tend
to be in limited supply initially and must be allocated strategically. The allocation of vac-
cines can be modeled as a discrete optimization problem that prior research has shown
to be computationally difficult (i.e., NP-hard) to solve even approximately. Using a com-
bination of theoretical and experimental results, we show that this hardness result may
be circumvented. We present our results in the context of a metapopulation model, which
views a population as composed of geographically dispersed heterogeneous subpopu-
lations, with arbitrary travel patterns between them. In this setting, vaccine bundles are
allocated at a subpopulation level, and so the vaccine allocation problem can be for-
mulated as a problem of maximizing an integer lattice function g ∶ℤK

+→ℝ subject to a
budget constraint ∥x∥1 ≤D. We consider a variety of simple, well-known greedy algo-
rithms for this problem and show the effectiveness of these algorithms for three problem
instances at different scales: New Hampshire (10 counties, population 1.4 million), Iowa
(99 counties, population 3.2 million), and Texas (254 counties, population 30.03 million).
We provide a theoretical explanation for this effectiveness by showing that the approxi-
mation factor (a measure of how well the algorithmic output for a problem instance com-
pares to its theoretical optimum) of these algorithms depends on the submodularity ratio
of the objective function g. The submodularity ratio of a function is a measure of how dis-
tant g is from being submodular; here submodularity refers to the very useful “diminishing
returns” property of set and lattice functions, i.e., the property that as the function inputs
are increased the function value increases, but not by as much.

Author summary
Strategic and timely allocation of vaccines is crucial in combating epidemic outbreaks.
Developing strategies to allocate vaccines over subpopulations rather than to individ-
uals leads to policy recommendations that are more feasible in practice. Despite this,
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vaccine allocation over subpopulations has only received limited research interest, and
the associated computational challenges are relatively unknown. To address this gap,
we study vaccine allocation problems over geographically distinct subpopulations in
this paper. We formulate our problems to reduce either i) the total infections or ii) the
sum of peak infections over meta-population disease models. We first demonstrate that
these problems are computationally challenging even to approximate and then show
that a family of simple, well-known greedy algorithms exhibit provable guarantees. We
conduct realistic experiments on state-level mobility graphs derived from real-world
data in three states of distinct population levels: New Hampshire, Iowa, and Texas. Our
results show that the greedy algorithms we consider are i) scalable and ii) outperform
both state-of-the-art and natural baselines in a majority of settings.

Introduction
In the early stages of a pandemic like COVID-19, the demand for vaccinations far exceeds
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supply [1,2] and it is critical to strategically allocate vaccines [3,4]. The vaccine alloca-
tion problem can be modeled in a variety of ways, including as discrete optimization
problems [5–9].

However, all of these problems are computationally hard, even to solve approximately
(see [10], for a specific example). Despite these obstacles, we need to be able to solve vaccine
allocation problems at scale and have confidence that the obtained solutions are close to being
optimal. In this paper, we take steps towards this goal.

We consider the metapopulation-network model for disease-spread [11,12], which allows
for heterogeneity among geographically distinct subpopulations and arbitrary travel patterns
between them. Vaccine allocation within this model consists of allocating some number of
bundles of vaccines to each subpopulation while satisfying an overall budget constraint. The
resulting family of problems, which we call theMetapopulation Vaccine Allocation (MVA)
problems, can be formalized as maximizing an objective function (e.g., number of cases
averted) defined over an integer lattice domain subject to a budget constraint. Here, the
integer lattice refers to the set of all possible vaccine allocations, where each allocation assigns
an integer number of vaccines to each subpopulation. Not surprisingly, we show specific
problems obtained via realistic instantiations of the metapopulation-network model and
objective function in MVA are not just NP-hard (i.e., computationally intractable in general),
but even hard to approximate. We show these hardness results for two instantiations, which
we call MaxCasesAverted and MaxPeaksReduced, of MVA over SEIR (Susceptible-
Exposed-Infected-Recovered) metapopulation models [11,12]. These hardness of approxi-
mation results imply that worst-case approximation guarantees are not attainable for natu-
ral instantiations of MVA. However, for a family of simple, well-known greedy algorithms,
we show positive theoretical and experimental results for both MaxCasesAverted and
MaxPeaksReduced. These simple and natural greedy algorithms lend themselves to the
machinery from submodular function optimization for in-depth analysis. There is a rich lit-
erature of methods for submodular set function optimization [13–18] that has subsequently
been extended to submodular optimization over the integer lattice [19–22]. In general, sub-
modularity is a valuable property for a function being maximized, as it imposes structured
behavior when elements are added to its input, enabling us to bound how far the value of
a greedy solution is from the optimal value. Furthermore, in the last few years, researchers
have attempted to extend some of the aforementioned results for submodular set and lat-
tice function optimization to functions that are not submodular, by using the notion of
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submodularity ratio of a function, which is a measure of how distant that function is from
being submodular [23–25]. All of this literature is foundational to our approach to analyzing
vaccine allocation algorithms in a metapopulation model setting [11,12].

In our main theoretical result, we show that simple greedy algorithms provide worst-case
approximation guarantees for MaxCasesAverted and MaxPeaksReduced that become
better as the submodularity ratio of their objective functions approaches 1. The submodularity
ratio [23–26] of a set or lattice function is a measure (between 0 and 1) of how close the func-
tion is to being submodular, with values closer to 1 corresponding to functions that are closer
to being submodular. We complement this theoretical result with experimental results indi-
cating that the objective functions for MaxCasesAverted and MaxPeaksReduced might
have relatively high submodularity ratios.

We then experimentally evaluate the performance of greedy vaccine allocation algorithms
at three scales; we use New Hampshire (10 counties, population 1.4 million) for our small
scale experiments, Iowa (99 counties, population 3.2 million) for our medium scale experi-
ments, and Texas (254 counties, population 30.03 million) for our large scale experiments. We
compare the performance of the greedy methods with a set of trivial baselines, such as allocat-
ing vaccines according to population sizes. We also compare against a randomized algorithm
called Pareto Optimization for Subset Selection (POMS) [24]. POMS works by expanding a
random pareto-optimal frontier (i.e., interpreting solution size as a second objective func-
tion and finding solutions which balance the quality of both objective functions), and was
designed to compete against greedy algorithms for small scale problems. We show the greedy
algorithms we consider outperform POMS for our experimental settings, while scaling more
readily. Our experiments demonstrate that i) simple greedy vaccine allocation algorithms
outperform the natural baseline algorithms substantially (up to 9M more individuals saved
than the worst-performing baseline in some settings), ii) for both MaxCasesAverted and
MaxPeaksReduced, greedy algorithms perform near-optimally for most problem instances
we evaluate for New Hampshire (and recover similar approximation guarantees to those of
submodular functions for experiments in Iowa and Texas), and iii) the fastest of our greedy
algorithms are feasible even for large scale instances such as the state of Texas.

Materials and methods
Background
Notation.We use ℤ+ to denote the set of non-negative integers and for any positive integer n,
we use [n] to denote the set {1, 2,… ,n}.

Metapopulation disease-spread models. Ametapopulation disease-spread model [11]
generalizes the classic homogeneous-mixing compartmental models [27] by allowing
geographically-diverse subpopulations. Let K∈ℤ+ denote the number of subpopulations in
the metapopulation model. For each subpopulation i∈ [K], let ni denote the size of the sub-
population and let n denote the vector (n1,n2,… ,nK) of subpopulation sizes. For each pair
(i, j)∈ [K]× [K], let wij ∈ℤ+ denote the number of individuals moving from subpopulation
i to subpopulation j daily. Thus, each wij is a static (i.e., time independent) quantity. LetW
denote the K × Kmobility matrix induced by the wij values.

Our goal is to decrease the spread of disease by allocating a total of D∈ℤ+ bundles of
vaccines to individuals over all subpopulations; here D is the vaccine budget. A bundle can
be viewed as the smallest “shipment” of vaccines that can be allocated to a subpopulation
and we assume that each bundle consists of an integer Δ > 0 number of individual vaccines.
Let x = (v1, ..., vK)∈ℤK

+ denote a vaccine allocation, where vi is the number of bundles of
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vaccines allocated to subpopulation i. For simplicity, we assume that vaccination is pre-
emptive, i.e., occurs at time 1, with knowledge of initial infected, but before the disease has
started to spread. It is straightforward to generalize this to a setting in which vaccine alloca-
tion occurs later in the progression of the disease. Let I = (I01, I02,… , I0K)∈ℤK

+, where 0 ≤ I0i ≤
ni, denote the number of initial infections in subpopulation i. Let f(x|M, I) denote some
measure of disease-spread according to the metapopulation modelM starting with initial
infection vector I, expressed as a function of the vaccine allocation vector x. For example,
f(x|M, I) could denote the total number of infected individuals over some time window. Let
g(x|M, I) denote f(0|M, I)– f(x|M, I), representing the reduction in disease-spread due
to vaccine allocation x∈ℤK

+, relative to the no-vaccine setting. Note that both f and g are
defined over the integer lattice ℤK

+ and our goal is to maximize the integer lattice function
g(x|M, I) subject to the cardinality constraint ‖x‖1 ≤D.

Submodularity of lattice functions For K∈ℤ+, let g ∶ℤK
+→ℝ be a function defined on an

integer lattice domain. The function g is said to be submodular if for all x, y∈ℤ+

g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y) (1)

Here (x ∨ y)i =max{xi, yi} and (x ∧ y)i =min{xi, yi}.
Below we provide an alternate “diminishing returns” notion of submodularity that is easier

to work with. Here ei denotes the unit vector with 1 in coordinate i.

Definition 1. [21] (DR-Submodularity) A function g ∶ℤK
+→ℝ is said to be diminishing

returns submodular (DR-submodular, in short) if g(x+ ei)– g(x) ≥ g(y+ ei)– g(y) for all i∈ [K]
and x, y∈ℤK

+, where x ≤ y.

For set functions, submodularity and DR-submodularity are equivalent. However, it is
known [20] that if a lattice function is DR-submodular then it is submodular, but the con-
verse is false. Thus, DR-submodularity is a stronger notion compared to submodularity.
However, [24] presents a DR-type characterization of submodular lattice functions that is
quite useful for our analysis.

Lemma 2. [24] A function g ∶ℤK
+→ℝ is submodular if and only if for any x, y∈ℤK

+, x ≤ y
and i∈ [K] with xi = yi, g(x + ei) – g(x) ≥ g(y + ei) – g(y).

Note that according to this lemma, for submodular lattice functions, the DR property
is only required to hold at identical coordinates of x and y. The computational complexity
of maximizing a submodular lattice function g ∶ℤK

+→ℝ subject to a cardinality constraint,
namely max‖x‖1≤D g(x), is well understood. [20] extend the result for set functions from [28]
to lattice functions and show that greedy approaches yield a (1– 1

e )-approximation for this
problem for both submodular and DR-submodular lattice functions (an algorithm is said
to achieve an 𝛼-approximation for a maximization problem if it always produces a solution
whose objective value is at least an 𝛼 fraction (0 ≤ 𝛼 ≤ 1) of the optimal value). These approx-
imation guarantees are optimal due to the inapproximability result of [29], meaning that no
approximation algorithm can achieve a higher constant-factor guarantee.

The SEIR metapopulation model
The SEIR equations are governed by parameters 𝜆, 𝜂, and 𝛿, where 𝜆 is the infectivity, 1/𝜂
is the latency period, and 1/𝛿 is the infectious period. Let ri denote a multiplier that scales 𝜆
to allow for county differences in contact rates. Let T be a positive integer denoting the size
of the time window under consideration. For t∈ [T]∪{0}, each subpopulation is split into
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compartments Sti , Eti , Iti , and Rt
i representing the number of susceptible, exposed, infected,

and recovered individuals within subpopulation i at time t. We assume the initial conditions
E0i = R0

i = 0, I0i is an arbitrary non-negative number satisfying I0i ≤ ni, and S0i = ni – I0i . The evo-
lution of Sti , Eti , Iti , and Rt

i over time t is respectively governed by Eqs 2–5. The term qti that
appears in these equations is called the force of infection. When qti = 𝜆ri

Iti
ni
, Eqs 2–5 represent

the spread of disease in a single subpopulation i with a homogeneous mixing assumption.

St+1i = Sti – qtiSti (2)
Et+1i = Eti + qtiSti – 𝜂Eti (3)
It+1i = Iti + 𝜂Eti – 𝛿Iti (4)
Rt+1
i = Rt

i + 𝛿Iti (5)

We use the following expression for the force of infection term qti that takes the infection
incidence within subpopulation i along with flows of individuals into and out of subpopu-
lation i. The derivation of qti is inspired by a similar derivation in [5,12] and is included in
Section A in S1 Text.

qti = 𝜆
⎡⎢⎢⎢⎢⎣
ri
⎛
⎝
1 –∑

j

wij

ni
⎞
⎠

̂Iti
n̂i
+∑

j

wijrj
ni

̂Itj
n̂j

⎤⎥⎥⎥⎥⎦
(6)

n̂i denotes the effective population of subpopulation i at time t, describing the number of indi-
viduals present in subpopulation i after a daily commute has occurred, and ̂Iti denotes the
effective number of infected individuals in subpopulation i after a commute. The first term in
the right hand side of Eq 6 is the proportion of individuals leaving subpopulation i for their
commute, and the second term is the proportion of individuals arriving.

The SEIR metapopulation modelM described above is completely specified by the vector
(n, r,W,T,𝜆,𝜂,𝛿). In our experiments, each subpopulation represents a county within a state
(e.g., K = 99 for Iowa) and the mobility matrixW is obtained from two independent sources,
FRED [30] and SafeGraph [31]. By instantiating a specific disease-spread model for each sub-
population and describing its interaction with mobility matrixW, we can obtain a completely
specified metapopulation model.

Table 1 summarizes the notation introduced in this section.

Problem formulations
We are now ready to state theMetapopulation Vaccine Allocation (MVA) family of
problems.

Table 1. Metapopulation model notation.
Variable Definition
K,T Number of subpopulations, size of time window
ri Population density correlated 𝜆-multiplier for subpopulation i
ni Size of subpopulation i
wij Mobility from subpopulations i to j
qti Force of infection in subpopulation i at time t
𝜆, 1/𝜂, 1/𝛿 Infectivity, latency period, infectious period

https://doi.org/10.1371/journal.pcbi.1012539.t001
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MVA
Given a metapopulation modelM, initial infected vector I = (I01, I02,… , I0K)∈ℤK

+, where
0 ≤ I0i ≤ ni, and a vaccine budget D∈ℤ+, find a vaccine allocation x∈ℤK

+, satisfying
∥x∥1 ≤D such that g(x|M, I) ∶= f(0|M, I) – f(x|M, I) is maximized.

SEIR metapopulation vaccine allocation problems. For illustrative purposes, we
instantiate the general metapopulation modelM with an SEIR model for disease spread
within each subpopulation. Our framework is general and the SEIR model that we use within
subpopulations can be replaced by any other homogeneous-mixing disease spread model.

Using the SEIR metapopulation model described above, we obtain specific instances of
the MVA problem. But before we can describe these specific instances, we need to describe
how vaccination affects disease spread in the SEIR metapopulation model. For simplicity, we
assume that vaccine uptake and vaccine effectiveness are both perfect, and thus allocating a
vaccine bundle x = (v1,… , vK) implies that Δ ⋅ vi individuals in subpopulation i are vaccinated
and removed from S0i . Thus the vaccine allocation x = (v1,… , vK) updates the initial suscepti-
ble to S0i =max(0,ni–I0i –Δ⋅vi) for all i∈ [K]. The assumptions of perfect uptake and effective-
ness are easily relaxed; lowering the vaccine uptake or effectiveness is equivalent to allocating
fewer vaccines.

We now present two illustrative problems that maximize the impact of vaccines according
to different disease spread metrics. In the problem MaxCasesAverted, the metric is the total
number of infections averted across all subpopulations, and in the problem MaxPeaksRe-
duced, the metric is the decrease in the sum of all infection peaks across all subpopulations
(both taken over the entire simulation time). More precisely, given an SEIR metapopulation
modelM = (n, r,W,T,𝜆,𝜂,𝛿), initial infected vector I = (I01, I02,… , I0K)∈ℤK

+, where 0 ≤ I0i ≤ ni,
and a vaccine allocation x = (v1,… , vK)∈ℤK

+, we define the metric

totBurden(x|M, I) ∶= ∑
k∈[K]
(RT

k + ITk ),

which is simply the total number of individuals who became infected in the time window
[0,T]. Another natural disease spread metric for the SEIR metapopulation model is

maxBurden(x|M, I) ∶= ∑
k∈[K]

max
0≤t≤T

Itk,

which is the total number of individuals infected during “peak” infection time over all the
subpopulations. This metric is motivated by the fact that even small peaks are challenging in
low-resource counties (typically in low-population counties), because healthcare infrastruc-
ture is often limited in such counties. So even a small spike in the number of infected individ-
uals can quickly overwhelm local resources. Thus we seek to reduce the likelihood that local
healthcare systems will be overwhelmed with the maxBurden metric.

Given metapopulation modelM, initial infection vector I, and budget D, we define the
following discrete optimization problems:

MaxCasesAverted
Find a vaccine allocation x∈ℤK

+, satisfying ∥x∥1 ≤D such that the following is maximized.

totBurden(0|M, I) – totBurden(x|M, I)
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MaxPeaksReduced
Find a vaccine allocation x∈ℤK

+, satisfying ∥x∥1 ≤D such that the following is maximized.

maxBurden(0|M, I) – maxBurden(x|M, I)

Hardness of MaxCasesAverted and MaxPeaksReduced
As with many resource allocation problems, both MaxCasesAverted and MaxPeaksRe-
duced are not only NP-hard, but even hard to efficiently approximate (additional back-
ground on NP-hardness may be found in [32]). The purpose of this section is to formally
establish that the MVA problem is too hard to solve exactly in general, making it necessary
to use approximation algorithms. We show this by a reduction from theMaximum k-Subset
Intersection (Max k-SI) problem [33]. The input to Max k-SI consists of a collection C =
{P1,P2,… ,Pm} of sets, where each set Pj is a subset of a universe U = {p1, p2,… , pn}, and a
positive integer k . The problem seeks to find k subsets Pj1 ,Pj2 ,… ,Pjk from C, whose inter-
section has maximum size. The following theorem from [33] shows that Max k-SI is highly
unlikely to have an efficient approximation algorithm, even with an inverse polynomial
approximation factor.

Theorem 3. [33] Let 𝜖 > 0 be an arbitrarily small constant. Assume that SATISFIABILITY
does not have a probabilistic algorithm that decides whether a given instance of size n is satis-
fiable in time 2n

𝜖
. Then there is no polynomial time algorithm for Max k-SI that achieves an

approximation ratio of 1/N𝜖′ , where N is the size of the given instance of Max k-SI and 𝜖′ only
depends only on 𝜖.

We now show a reduction fromMax k-SI to both MaxCasesAverted and MaxPeaksRe-
duced, thereby establishing the inapproximability of both of these problems.

Theorem 4. Let 𝜖 > 0 be an arbitrarily small constant. Assume that SATISFIABILITY does
not have a probabilistic algorithm that decides whether a given instance of size n is satisfiable
in time 2n

𝜖
. Then there is no polynomial time algorithm for MaxCasesAverted or for Max-

PeaksReduced that achieves an approximation ratio of 1/N𝜖′ , where N is the size of the given
instance of MaxCasesAverted or MaxPeaksReduced and 𝜖′ only depends only on 𝜖.

Proof: To prove the portion of this theorem pertaining to MaxCasesAverted, we show
the following lemma.

Lemma 5. Suppose there is a polynomial-time algorithmA that yields an 𝛼-approximation
for MaxCasesAverted. Then there is a polynomial-time 𝛼/2-approximation algorithmA′ for
Max k-SI.

Proof of Lemma 5. Given an instance (C,U , k) of Max k-SI, we construct the graph G
withm+n+ 1 nodes. For each subset Pj ∈ C and each pi ∈ U , there is a node in G, for a total
ofm+n nodes. There is an extra node I that is connected to every Pj-node. There are edges
between the Pj-nodes and the pi-nodes connecting an Pj-node to an pi-node iff pi /∈ Pj.

To each node v in G, we assign a population nv as follows: nI =m, nPj = 2n for all j∈ [n],
and npi =M for all i∈ [n], whereM is a large integer whose value will be specified later.

We then interpret each undirected edge in G as a pair of directed edges pointing in oppo-
site directions and assign a flow to each directed edge. We assign flow 1 to each edge from I to
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Pj and to each edge from Pj to pi. To all other edges, i.e., the edges pointing “backwards”, we
assign flow 0. This construction is illustrated in Fig 1. This specifies the vectors n and w of the
instance of MaxCasesAverted.

We set the contact rate rv and infectivity 𝜆 such that the force of infection qtv is always at
least 1. This corresponds to “perfect infectivity”, meaning that if a subpopulation contains
some infected and some susceptible individuals at a time step, then all the susceptible indi-
viduals in the subpopulation will transition to the exposed state at the next time step. We then
set 𝜂 = 𝛿 = 1 so that the latency period and recovery period are both 1. With this setting of
the parameters, the infection will completely die out in 5 time steps, i.e., every individual will
either be susceptible or recovered. So we set the size of the time window T = 5.

Finally, we set the vaccination budget D = (m– k) ⋅ 2n and initialize the entire popula-
tion ofm individuals at node I to be infected and all other individuals to be susceptible. This
completes the specification of the problem instance I of MaxCasesAverted.

We now make 2 simple observations that follow from the construction of I and depend
on the notion of being “unprotected” with respect to a vaccine allocation. Let x be an arbi-
trary, feasible allocation for I . A subpopulation Pj is called unprotected for x if xPj < 2n; oth-
erwise, Pj is called protected for x. A subpopulation pi is called unprotected for x if xpi <M and
for some subpopulation Pj that is unprotected for x, the edge {Pj, pi} is in G; otherwise, pi is
called protected for x.
Observation 1: In every unprotected subpopulation Pj, j∈ [m], 2n– xPj individuals will
become exposed in time step 1 and infected in time step 2.
Observation 2: In every unprotected subpopulation pi, i∈ [n],M–xpi individuals will become
exposed in time step 3 and infected in time step 4.

These 2 observations immediately lead to the following 3 claims.
Claim i) Consider a vaccine allocation x∈ℤm+n+1

+ that is feasible for I and satisfies xpi > 0.
Let x′ ∈ℤm+n+1

+ be an allocation obtained from x by reallocating all vaccines from the sub-
population pi to subpopulations Pj, j∈ [m]. Then x′ is feasible for I and

totBurden(x′|M, I) ≤ totBurden(x|M, I).

Claim ii) Consider a vaccine allocation x∈ℤm+n+1
+ that is feasible for I and satisfies 0 <

xPj , xPj′ < 2n for two subpopulations Pj,Pj′ , j /= j′. Let x′ ∈ℤm+n+1
+ be an allocation obtained

Fig 1. The instance of MaxCasesAverted and MaxPeaksReduced is a graph G constructed from the given
instance (C = (P1,P2,… ,Pm),U = (p1, p2,… , pn), k) of Max k-SI. Each node represents a subpopulation, with the
size of the subpopulation shown in square brackets next to it. The directed edges permit 1 unit flow. The unit flows
from nodes Pj to pi encode non-membership. For example, the flow from P1 to p2 implies that p2 /∈ P1.

https://doi.org/10.1371/journal.pcbi.1012539.g001
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from x by reallocating as many vaccines as possible from the subpopulation Pj′ to the subpop-
ulation Pj, until xPj = 2n or xPj′ = 0 (or both). Then x′ is feasible for I and

totBurden(x′|M, I) ≤ totBurden(x|M, I).

Claim iii) Consider a vaccine allocation x∈ℤm+n+1
+ that is feasible for I and satisfies

||x||1 =D = (m– k) ⋅ 2n. Then using the reallocations from Claims (i) and (ii), it is possible
to transform x into x′ ∈ℤm+n+1

+ in polynomial time such that x′ is feasible for I , x′Pj = 2n for
exactly (m–k) subpopulations Pj, x′ is 0 for all other subpopulations, and

totBurden(x′|M, I) ≤ totBurden(x|M, I).

Claim (iii) allows us to assume that any 𝛼-approximation algorithmA for MaxCas-
esAverted returns an allocation x′ for the problem instance I , that picks exactly (m–k)
subpopulations Pj and vaccinates these subpopulations entirely, while allocating no vac-
cines to any of the remaining subpopulations. Similarly, Claim (iii) implies that there is an
optimal allocation x∗ for I that picks exactly (m–k) subpopulations Pj and vaccinates these
subpopulations entirely, while allocating no vaccines to any of the remaining subpopulations.

Let S(x′) be the set of subpopulations Pj unprotected for x′. Similarly, define S(x∗). Note
that |S(x′)| = |S(x∗)| = k. Let E(x′) be the set of subpopulations pi that are protected for x′.
Similarly, define E(x∗). By the construction of edges from subpopulations Pj to subpopula-
tions pi in I , it follows that E(x′) = ∩Pj∈S(x′)Pj. Similarly, E(x∗) = ∩Pj∈S(x∗)Pj

The objective function value of MaxCasesAverted for the optimal allocation x∗, which is
totBurden(0|M, I) – totBurden(x∗|M, I), can be simplified to

(2n ⋅m + n ⋅M) – totBurden(x∗|M, I)
= (2n ⋅m + n ⋅M) – (k ⋅ 2n +M(n – |E(x∗)|))
= 2n(m – k) +M ⋅ |E(x∗)|
= 2n(m – k) +M ⋅ | ∩Pj∈S(x∗) Pj| (7)

Similarly, the objective function value of MaxCasesAverted for the 𝛼-approximate allo-
cation x′ is 2n(m– k)+M ⋅ |∩Pj∈S(x′) Pj|. Since x

∗ maximizes the objective function value of
MaxCasesAverted, Eq 7 implies that |∩Pj∈S(x∗) Pj| has largest possible cardinality. Since
|S(x∗)| = k, this implies that S(x∗) is an optimal solution to the Max k-SI problem. Using
OPTMax k-SI to denote the optimal objective function value of Max k-SI, we can rewrite
the expression (7) as 2n(m– k)+M ⋅OPTMax k-SI. Since x′ is an 𝛼-approximate solution to
MaxCasesAverted,

2n(m – k) +M ⋅ | ∩Pj∈S(x′) Pj| ≥ 𝛼 (2n(m – k) +M ⋅OPTMax k-SI) .

Rearranging terms we get

| ∩Pj∈S(x′) Pj| ≥ 𝛼 ⋅OPTMax k-SI –
(1 – 𝛼) ⋅ 2n(m – k)

M

| ∩Pj∈S(x′) Pj| ≥ 𝛼 ⋅OPTMax k-SI –
2nm
M

(8)
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PickingM large enough so that 2nm
M ≤

𝛼
2 and using OPTMax k-SI ≥ 1, we obtain

| ∩Pj∈S(x′) Pj| ≥
𝛼
2
⋅OPTMax k-SI.

This implies that the allocation x′ can be used to obtain an 𝛼/2-approximation to Max
k-SI.
We now prove a similar lemma for the MaxPeaksReduced problem.

Lemma 6. Suppose there is a polynomial-time algorithmA that yields an 𝛼-approximation
for MaxPeaksReduced. Then there is a polynomial-time 𝛼-approximation algorithmA′ for
Max k-SI.

Proof of Lemma 6.This uses the same argument as the lemma above. Claims (i) and (ii) hold
for maxBurden(x|M, I) as well and from these two claims, Claim (iii) follows. Furthermore,

maxBurden(0|M, I) – maxBurden(x∗|M, I)

simplifies exactly to expression (7), from which inequality (8) follows. From this, the lemma
immediately follows, as shown above. ◻

Algorithmic approach and analysis
We present the following four greedy algorithms for MVA:

1. ℓ-EnumGreedy: Enumerates all feasible solutions with at most ℓ subpopulations allo-
cated a positive number of vaccine bundles. Then each of these solutions is iteratively
extended greedily, one subpopulation at a time, with a variable number of additional
vaccine shipments. Because of the potentially large number of initial feasible solutions,
this is only suitable for small and medium-scale problems.

2. SingletonGreedy: Finds one solution by extending the empty solution greedily, one
subpopulation at a time, until D shipments are allocated. Compares this solution to the
K solutions by allocating the entire budget D to each of the K subpopulations. Returns
the best of these K + 1 solutions.

3. FastGreedy: Runs a “relaxed” version of greedy that stops its search as soon as it
finds a “good enough” additional allocation of vaccine shipments. The threshold
for a “good enough” allocation is adaptive, i.e., may change from iteration to itera-
tion. This algorithm trades off solution quality for speed and is suitable for large-scale
problems.

4. UnitGreedy: Starting from the empty allocation, greedily allocates just one vaccine
shipment at a time. Searching over a space of just one additional vaccine shipment
per subpopulation, speeds up each iteration. This algorithm is suitable for large-scale
problems.

In the following, we first describe these algorithms in further detail and then we estab-
lish approximation guarantees for ℓ-EnumGreedy, SingletonGreedy, and UnitGreedy
based on how close the objective function is to being submodular. These algorithms and their
accompanying analyses also apply to the general budget-constrained maximization problem
on an integer lattice: max∥x∥1≤D g(x), where g ∶ℤK

+→ℝ is an arbitrary, monotone function
defined on an integer lattice.
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We start by defining the LatticeGreedySubroutine, whose search space is the entire
lattice ℤK

+ in each iteration. This subroutine forms the basis for two greedy algorithms
ℓ-EnumGreedy and SingletonGreedy [20] (detailed below). Algorithms based on Lat-
ticeGreedySubroutine are prohibitively expensive for large problem instances, so we also
consider FastGreedy [25], which is a relaxation of LatticeGreedySubroutine, based on
a threshold greedy algorithm [34]. In addition, we evaluate and further analyze an approach
which considers the lattice as a multiset and runs the greedy algorithm for set functions over
it, which we call UnitGreedy (Algorithm 3). In this section, we describe each algorithm we
evaluate and their associated approximation guarantees, some of which we derive.

Greedy algorithm descriptions
LatticeGreedySubroutine description We first describe LatticeGreedySubrou-

tine, which is the core component of ℓ-EnumGreedy and SingletonGreedy. The foun-
dation of LatticeGreedySubroutine is to repeatedly apply a “locally optimal” approach,
where the subpopulation and number of vaccine shipments is applied that would improve the
objective function the most.

As shown in the Algorithm 1 pseudocode, LatticeGreedySubroutine selects a (k*,s*)
pair that maximizes the marginal gain of g(⋅) in each iteration, where k∗ ∈ [K] is a subpop-
ulation and s∗ ∈ℤ+ is the number of bundles to allocate to subpopulation k*. To compute
the highest marginal gain among all possible (k, s)∈ [K]×ℤ+ pairs in each iteration of the
algorithm, we assume that the algorithm has access to a “value oracle” that returns the value
of the objective function g(⋅) at any point in its domain. It is possible that the selected pair
(k*,s*) is not feasible because adding it to the solution causes the budget constraint to be vio-
lated. Such an iteration is said to have failed, and we remove the (k*,s*) pair from the search
space Q, which is a list that LatticeGreedySubroutine maintains of all feasible allocations.
Otherwise, the iteration is successful and the (k*,s*) pair is used to update the allocation. It
is useful for our analysis to state the algorithm in this manner, allowing for failed iterations.
However, to obtain an efficient implementation we can, in Line 4, prune the search space Q so
as to guarantee that the condition in Line 5 is always satisfied. Such an implementation runs
in O(K ⋅D2 ⋅Tg) time in the worst case, where Tg is the worst case running time of the value
oracle. However, the at most K ⋅D pairs in Q can all be evaluated in parallel, and assuming full
parallelism with no overhead, the running time of LatticeGreedySubroutine can also be
reduced to O(D ⋅Tgv log(K ⋅D)) in the PRAMmodel (even with exclusive read and exclu-
sive write). We note that LatticeGreedySubroutine and the algorithms based on it come
from [20].

ℓ-EnumGreedy description We further allow LatticeGreedySubroutine to start
with an arbitrary initial allocation x̂0, and not just 0 (see Line 1). This is so that we can use
LatticeGreedySubroutine as the completion step for an algorithm that enumerates solu-
tions of bounded size. Specifically, let ℓ ≥ 1 be a fixed integer and let S be the set of all feasi-
ble solutions of size ℓ or less. Thus each element in S is a subset of at most ℓ subpopulations,
each allocated some number of vaccine bundles so that the overall allocation is of size at most
D. Note that |S| =O(Kℓ ⋅Dℓ). We then iterate over all elements of S and call LatticeGreedy-
Subroutine with x̂0 set to each element in S . We call this entire algorithm ℓ-EnumGreedy.
Later in this section, we analyze 3-EnumGreedy.

SingletonGreedy description While 3-EnumGreedy runs in polynomial time
(specifically, O(K4 ⋅D5 ⋅Tg) time), it is expensive and not practical for large instances. A
cheaper algorithm based on LatticeGreedySubroutine computes one solution by starting
LatticeGreedySubroutine with 0 as the initial allocation and then computes K additional
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“singleton” solutions by allocating the entire budget to each of the K subpopulations. The final
solution returned is the best of these K + 1 solutions. We call this the SingletonGreedy algo-
rithm. Note that the running time of SingletonGreedy is dominated by LatticeGreedy-
Subroutine.

Algorithm 1 LatticeGreedySubroutine (M, I, x̂0)
1: x̂← x̂0
2: Q ∶= {(k, s) ∶ k∈ [K], 1 ≤ s ≤ ⌈ nkΔ ⌉ – x̂k}
3: while ∥x̂∥1 <D and Q≠∅ do
4: k∗, s∗← argmax

(k,s)∈Q

g(x̂+s⋅ek |M,I)–g(x̂|M,I)
s

5: if ∥x̂ + s∗ ⋅ ek∗∥1 ≤D then
6: x̂← x̂ + s∗ ⋅ ek∗
7: Q←Q \ {(k, s) ∶ s + x̂k > ⌈ nkΔ ⌉}
8: else
9: Remove (k*,s*) from Q
10: end if
11: end while
12: return x̂

FastGreedy description FastGreedy [25] is a more flexible version of Lattice-
GreedySubroutine that maintains a threshold value to determine how strict the algorithm
is in choosing allocations. FastGreedy starts with a high threshold (𝜏f) value that determines
the minimum benefit required from a (k,s) pair to select it, and 𝜏f is relaxed as FastGreedy
progresses. In each iteration, any (k,s) pair that provides benefit above the current threshold
gets selected, allowing multiple selections per iteration (unlike LatticeGreedySubroutine,
which picks only one). At the end of each iteration, the threshold is lowered according to the
rate parameters 𝜅f and 𝛿f. More specifically, 𝜅f controls how much 𝜏f decreases in each itera-
tion, where a higher value of 𝜅f will result in higher standards for selection in each iteration. 𝛿f
controls how quickly 𝛽f approaches 𝛽∗f , which is an upper-bound on the DR-submodularity
ratio (see Eq 7 and [25]). The parameter 𝜀f determines the minimum progress FastGreedy
must make in order to terminate early (i.e., before the budget is met).

FastGreedy differs from LatticeGreedySubroutine in two ways that make it more effi-
cient: i) FastGreedy allows allocation to multiple subpopulations in a single iteration instead
of only one per iteration, and ii) FastGreedy determines the best number of bundles through
a binary search subroutine (included in Appendix B) instead of searching through every (k,s)
pair (which LatticeGreedySubroutine does).

UnitGreedy description. On the problem instances we consider, in practice,
3-EnumGreedy, and SingletonGreedy elect to allocate one bundle at a time for a majority
of iterations. With this in mind, we consider another more efficient algorithm, UnitGreedy.
As shown in the Algorithm 3 pseudocode, UnitGreedy allocates one vaccine bundle to a
subpopulation k∈ [K], each time selecting a subpopulation that yields the highest marginal
gain in the objective function - this is equivalent to converting the lattice into a multiset and
running a set greedy algorithm on it (such as the one in [26]). The algorithm continues until
the vaccine budget D is met.

The running time of this algorithm is O(K ⋅D ⋅Tg). Note that the marginal gains for
the various bundles can be computed (Line 3 in Algorithm 3) in parallel in a straight-
forward manner, and if we ignore overhead for parallelization, the running time reduces
to O(D ⋅ Tg).
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Algorithm 2 FastGreedy (M, I,𝜅f,𝛿f, 𝜀f ∈ (0, 1))
1: x← 0,M← max

k∈[K]
g(ek),m←M,m′ ←M/𝜅f,𝛽f ← 1

2: while m ≥M𝜀f/D do
3: m← max

k∈[K]
g(x + ek) – g(x)

4: if m > 𝜅fm′ then
5: 𝛽f ← 𝛽f𝛿f
6: end if
7: m′ ←m
8: 𝜏f ← 𝛽f𝜅fm
9: for k∈ [K] do
10: ℓ← BinarySearchPivot(M, g, x, k,D, 𝜏f)
11: x← x + ℓek
12: if ∥x∥1 =D then return x
13: end if
14: end for
15: end whilereturn x

Algorithm 3 UnitGreedy (M, I)
1: x̂← 0
2: while ∥x̂∥1 <D do
3: k∗← argmax

k∈[K]
g(x̂ + ek|M, I) – g(x̂|M, I)

4: x̂← x̂ + ek∗
5: end while
6: return x̂

Approximation guarantees
The performance of our algorithms depends on how close to submodularity their objective
functions are. In this section, we i) formally define the notion of “distance to submodularity”
and ii) connect these definitions to the quality of output of our algorithms.

Lattice function submodularity ratios To analyze the greedy algorithms described above,
we utilize the notion of submodularity ratio defined in [24]. The submodularity ratio of a
function g is a quantity between 0 and 1 that is a measure of g’s “distance” to submodular-
ity. Since there are two distinct notions of submodularity for lattice functions, as defined in
the Background section, there are two associated notions of submodularity ratios, which we
now present. To simplify notation, we dropM and I and simply use g(x) for our objective
function.

Definition 7. DR-Submodularity Ratio. [24] The DR-submodularity ratio of a function
g ∶ℤK

+→ℝ is defined as

𝛽(g) = min
y≤x,k∈[K]

g(y + ek) – g(y)
g(x + ek) – g(x)

(9)

In this definition (and in the next definition below) we designate 0
0 to be 1 and

n
0 to

be∞ for any positive integer n. From this definition it is clear that 𝛽(g) ≤ 1 because x = y
is included in the space that is being minimized over. Furthermore, this definition along
with the definition of DR-submodularity (Definition 1) implies that 𝛽(g) = 1 iff g is DR-
submodular. Thus, the “distance” 1 –𝛽(g) indicates how far the function g is from being
DR-submodular. Below we present a similar definition that captures the notion of “distance”
of a function g from being submodular.
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Definition 8. Submodularity Ratio. [24] The submodularity ratio of a function g ∶ℤK
+→ℝ

is defined as

𝛼(g) = min
y≤x,k∈[K]∶xk=yk

g(y + ek) – g(y)
g(x + ek) – g(x)

(10)

Like 𝛽(g), the submodularity ratio 𝛼(g) also satisfies 𝛼(g) ≤ 1 and 1–𝛼(g) indicates how
far the function g is from being submodular. Since submodularity is a weaker notion than
DR-submodularity, an arbitrary lattice function will be “closer” to submodularity than DR-
submodularity. Correspondingly, 𝛼(g) ≥ 𝛽(g).

We now present approximation guarantees for 3-EnumGreedy (Theorem 9a), Single-
tonGreedy (Theorem 9b), and UnitGreedy (Theorem 10). The approximation guarantee
associated with FastGreedy can be found in [25].

Guarantees for 3-EnumGreedy and SingletonGreedy Theorem 9 provides a guaran-
tee for 3-EnumGreedy and SingletonGreedy. Previously, [20] established approximation
guarantees for these algorithms over submodular objective functions, whereas we establish
them for more general objective functions.

Theorem 9. Let g ∶ℤK
+→ℝ be an arbitrary monotone function. Let OPT denote the optimal

solution to the problemmax∥x∥1≤D g(x).
(a) If x̂ is the solution returned by 3-EnumGreedy then

g(x̂) ≥ (1 – e–𝛼(g)) ⋅OPT

(b) If x̂ is the solution returned by SingletonGreedy then

g(x̂) ≥ 𝛼(g)
2

⋅ (1 – e–𝛼(g)) ⋅OPT

The proof is included in Section B.1 in S1 Text.
Guarantee for UnitGreedy Here, we provide a version of the approximation guaran-

tee found in [26], which is dependent on the submodularity ratio for set functions [23] and
generalized curvature [26]. Their guarantee is applicable to UnitGreedy when we consider
the lattice over which we allocate to be a multiset.

Theorem 10. Let g ∶ℤK
+→ℝ be an arbitrary monotone function. Let OPT denote the optimal

solution to the problemmax∥x∥1≤D g(x). If x̂ is the solution returned by UnitGreedy then

g(x̂) ≥ (1 – e–𝛽(g)) ⋅OPT

The above results show that the approximation guarantees shown in the literature [20,28]
for greedy algorithms when g is a submodular function (on sets or lattices) are more general
and apply to arbitrary monotone integer lattice functions.

Note that the theorems above also provide a trade-off between approximation-factor
and running time. UnitGreedy is the fastest algorithm, but this provides an (1– e–𝛽(g))-
approximation, which is no better than the (1– e–𝛼(g))-approximation provided by the more
expensive algorithm 3-EnumGreedy.

We remark that ℓ-EnumGreedy, SingletonGreedy, FastGreedy, and UnitGreedy are
well known algorithms for maximizing a submodular function over sets or lattices subject
to a cardinality constraint (e.g., [19,20,25,26]). Our main contribution here is to show that
3-EnumGreedy and SingletonGreedy provide approximation guarantees even when the
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Table 2. Summary of greedy algorithms presented in this section. Details of approximation factors for
FastGreedy and UnitGreedy may be found in [26] and [25], respectively.
Algorithm Query Complexity Approximation Factor Prior Work
3-EnumGreedy O(K4 ⋅D5) 1 – e–𝛼(g)

[this paper]
Analysis for lattice
submodular functions [19,20]

SingletonGreedy O(K2 ⋅D2) 𝛼(g)
2 (1 – e

–𝛼(g))
[this paper]

FastGreedy O((log𝛿f(𝛾d) ⋅ log𝜅f(𝛾d)
+ log𝜅f 𝜀

2/D) ⋅ K logD)

1 – e–𝜅f𝛽
∗𝛾s – 𝜀

[prior work]
Analysis for lattice
non-submodular functions [25]

UnitGreedy O(K ⋅D) 1
𝛼g (1 – e

–𝛼g𝛾dk)
[prior work]
1 – e–𝛽(g)
[this paper]

Analysis for multiset
non-submodular functions [26]

https://doi.org/10.1371/journal.pcbi.1012539.t002

objective function is not submodular and these guarantees degrade gracefully as the objective
function becomes less submodular, as measured by the submodularity ratio. We also derive
a lattice function based approximation guarantee for UnitGreedy, extending from the set
function guarantee provided in [26].

Finally, we note that the POMS algorithm in [24] achieves a max((1– e–𝛽(g)),𝛼(g)/
2 ⋅ (1 – e–𝛼(g))) -approximation. Our results show that simple, well-known, and faster greedy
algorithms achieve these same approximation factors.

Results
Next, we present a variety of experiments that collectively show that i) greedy methods out-
perform various baseline vaccine allocation algorithms for both MaxCasesAverted and
MaxPeaksReduced objectives, ii) greedy methods are very close to optimal for all instances
for which this comparison was feasible, and iii) the greedy methods are considerably faster
than POMS [24] (when requiring all algorithms to run until their approximation factors can
be guaranteed).

We run our experiments at 3 different scales: (i) small-scale experiments: New Hampshire
(10 counties, population 1.4 million), (ii) medium-scale experiments: Iowa (99 counties, pop-
ulation 3.2 million), and (iii) large-scale experiments: Texas (254 counties, population 30.03
million).

Our code and processed data are made available. Experiments were run on AMD EPYC
7763 CPUs with 2 TB RAM.

Baselines
Our baselines include natural vaccine allocation strategies such as Population, Out-
Mobility, In-Mobility, and Random, which assign vaccines to each county proportional
to the population, the total mobility originating in the county, the total mobility terminating
in the county, and uniformly at random respectively. We also compare our approaches against
POMS [24], which works by expanding a random pareto-optimal frontier.

Data
Our experimental test-beds consist of simulated outbreaks over inter-county mobility graphs
for New Hampshire, Iowa and Texas constructed from two separate sources:
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FRED (Framework for Reconstructing Epidemic Dynamics) [30] (open source) includes
a census-based synthetic population with high-resolution social, familial, demographic,
and behavioral details. We infer a daily-commute mobility network from home and work
locations.

• Movement: Daily inter-county commute statistics.
• Coverage: Uniform coverage ensuring that home and work locations for every county
(i.e., subpopulation) are modeled to an equal degree.

• Strengths: Captures essential work-based mobility and is consistent across counties.
• Limitations: Lacks recreational, shopping, and irregular mobility patterns.

SafeGraph [31] (open source for academics) provides aggregated and anonymized mobility
data from mobile device GPS signals, which provides inferred ‘home’ locations and visits to
places of interest (POIs).

• Movement: All types of travel including work, leisure, shopping, social visits, and other
activities.

• Coverage: Broad coverage for urban areas with comprehensive mobile and internet
infrastructure.

• Strengths: Captures a comprehensive view of mobility including irregular patterns.
• Limitations: Potentially unreliable coverage for rural subpopulations due to lower
mobile phone infrastructure.

Mobility graphs.We derive state-level directed mobility graphs from both data sources,
where nodes correspond to counties and directed weighted edges correspond to movement
from the source county to the target county, with edge weights representing the number of
commutes between county pairs. The mobility graphs constructed using FRED and SafeGraph
are similar for New Hampshire and Iowa (the SafeGraph mobility graphs have a slightly
higher density). The New Hampshire graphs are nearly complete due to the state’s small size
(it can be crossed by vehicle in about 45 minutes). In contrast, the mobility graphs for Texas
reveal significant differences between FRED and SafeGraph data sources. The density of the
FRED mobility graph is an order of magnitude lower than that of SafeGraph. This difference
occurs because SafeGraph captures more irregular travel patterns, including instances where
individuals travel long distances across Texas. Such cross-state travel is relatively rare com-
pared to New Hampshire, where short distances make travel between any two points feasible,
but it takes nearly 10 hours to cross Texas by vehicle. A more comprehensive description of
mobility graph construction and a table of their properties appears in Section C.2 and Table
A in S1 Text.

Parameters
We select values of 𝜆 (infectivity) at approximately 0.347 and 0.535 to result in 20% and 70%
of each population becoming infected without vaccination, respectively. We conducted exper-
iments with a wider range of 𝜆 values (in general, we observed that problem instances with
lower values of 𝜆 are more easily solved by more vaccine allocation methods) and chose two
values that represent significantly different levels of infectivity. We performed experiments
for New Hampshire, Iowa, and Texas, with a vaccine budget of 10% through 60% of each
state’s total population in 10% increments. Each vaccine budget refers to the total percent
of the population for which vaccines are available, and we assume that the entire vaccine
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budget will be used up for each budget amount. The parameters k, ni, and wij are instanti-
ated according to the data when we constructed the mobility graphs. The parameters ri scale
the infectivity parameter 𝜆 for each county, and is set in proportion to the population den-
sity of each county. We set the initially infected vector I to be 1 for each county. The choice
in I does not make a difference in our setting due to the deterministic nature of our model
and the small diameter of our mobility graphs (at most 4). 𝜂 and 𝛿 are set according to [35].
For FastGreedy in New Hampshire and Iowa, we set 𝜅f = 𝛿f = 0.96, and in Texas, we set
𝜅f = 𝛿f = 0.93. For all FastGreedy experiments, we set 𝜀f = 0. We run each simulation for at
least 200 timesteps and terminate the simulation when the disease dies out.

Performance of greedy methods compared to baselines
In our first experiment, we compare the performance of greedy vaccine allocation algo-
rithms to baseline algorithms using both the FRED and SafeGraph mobility graphs, for both
the MaxCasesAverted and MaxPeaksReduced problems. For our small-scale experi-
ment (New Hampshire), we run all four greedy algorithms. For our medium-scale experi-
ment (Iowa), we drop our slowest greedy algorithm 3-EnumGreedy because the initial enu-
meration step required by 3-EnumGreedy too prohibitively expensive the number of sub-
populations grows. For our large-scale experiment (Texas), we drop our slowest two greedy
algorithms (3-EnumGreedy and SingletonGreedy) because exploring every possible
number of shipments to each subpopulation in a reasonable amount of time is infeasible for
this scale. For this comparison, we always run POMS for the same amount of time as Unit-
Greedy. We seek to demonstrate how close the performance of POMS gets to that of Unit-
Greedy in a simple wall clock time based comparison. We repeat these experiments for six
different budgets (expressed as a percentage of the population of the state) for two different
values of 𝜆. The results for a high infectivity value of 𝜆 are summarized in Figs 2, 3, and 4. The
same experiments for lower infectivity parameter values can be found in Section C.3 in S1
Text.

Fig 2 shows that, for our small-scale experiments, the baselines never outperform the
greedy methods. Population and POMS perform on-par with the greedy methods in some
instances, particularly in MaxPeaksReduced. We see the performance of baselines relative
to the greedy methods decline as the scale of our experiments become larger.

As observed in Fig 3, even for our medium-scale experiments, the greedy algorithms out-
perform each baseline in several settings, while no baseline outperforms the greedy methods.
Fig 4 demonstrates that, for our large-scale experiment, UnitGreedy and FastGreedy out-
perform the baselines by a wider margin than our small and medium-scale experiments over
the FRED dataset. This margin is more narrow (with UnitGreedy and FastGreedy still in
the lead) over the SafeGraph mobility graph. For SafeGraph, UnitGreedy and FastGreedy
perform on-par with the same methods over the FRED data - the difference is primarily in
the increased performance of the baselines over SafeGraph. We note that for our large-scale
experiment (Texas), the mobility graph constructed using SafeGraph data is far more dense
than the one constructed using FRED data, and as a result, disease flows much more freely
over the subpopulations. This highlights how mobility graph structure can impact the effec-
tiveness of simple vaccine allocation methods. Similar results hold for a lower value of 𝜆,
which can be found in Figs B, C, and D in S1 Text.

UnitGreedy performs at least on-par with the other greedy methods, all of which employ
larger search spaces. In all experiments, after the greedy methods, the Population heuris-
tic performs well, followed by POMS, other baselines, and finally Random. The relatively
poor performance of POMS could be attributed to the fact that it requires a long running
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Fig 2. Percentage totBurden and percentage maxBurden reduced by all approaches for 𝝀 = 0.5345 in New
Hampshire for FRED (first column) and SafeGraph (second column).

https://doi.org/10.1371/journal.pcbi.1012539.g002

time to achieve its theoretical guarantee (see Performance-Time Trade-off). The surprisingly
good performance of the Population heuristic suggests that it might be a good on-the-field
strategy in the absence of mobility data for small problem instances. UnitGreedy substan-
tially outperforms Population and FastGreedy for our large-scale experiment on Texas
over FRED data, with totBurden reduced by up to 8% of the population, which translates to
almost 2 million additional cases avoided.

Near-optimality of greedy algorithms
In this section, we demonstrate that in practice, the greedy algorithms we evaluate return
allocations whose objective function value is close to optimal for both MaxCasesAverted
and MaxPeaksReduced. First, we directly compute optimal solutions for our small-scale
experiment (New Hampshire) using mobility derived from FRED data, which would be pro-
hibitively expensive for our medium-scale and large-scale settings. We consider 4 problem
instances for each of MaxCasesAverted and MaxPeaksReduced, obtained by setting 𝜆
to 0.347 and 0.5345 and the budget D to 2 values (10% and 40% of the population). For these
problem instances we compute an optimal solution by exhaustive search and compare the
results to that of 3-EnumGreedy, SingletonGreedy, UnitGreedy, and FastGreedy.

For each problem and problem instance, let OPT denote the objective function value of
an optimal solution. Table 3 shows the performance relative to OPT of problem instances for
10% and 40% budgets, high and low infectivity, and both objective functions for each greedy
method.
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Fig 3. Percentage totBurden and percentage maxBurden reduced by UnitGreedy, SingletonGreedy,
FastGreedy and baselines for 𝝀 = 0.535 in Iowa for FRED (first column) and SafeGraph (second column).

https://doi.org/10.1371/journal.pcbi.1012539.g003

Problem instances for the state of Iowa are much larger and it is not feasible to com-
pute OPT to make a direct comparison. To circumvent this problem, we first note that it
is possible to obtain improved versions of Theorems 9(a), 9(b), and 10 by defining “per
instance” versions of the DR-submodularity ratio and submodularity ratio. To be specific, let
x̂i denote the allocation after iteration i of UnitGreedy, let x∗ be an optimal solution, and let
y∗ = 0 ∨ (x∗ – x̂i). Define

𝛽(g, x̂i) ∶=
∑K

j=1 g(y
∗
j ej + x̂i) – g(x̂i)

g(y∗ + x̂i) – g(x̂i)
(11)

The numerator is the total marginal gain of independently increasing each individual sub-
population’s allocation to the optimal allocation. The denominator is the marginal gain of
increasing x̂i to the optimal solution all at once. If g were submodular, it would follow that
𝛽(g, x̂i) ≥ 1, but this guarantee does not hold for an arbitrary g(⋅). It is possible to show that
the bound stated inTheorem 10 holds for 𝛽(g, x̂), i.e., g(x̂) ≥ (1 – e–𝛽(g,x̂)) ⋅OPT (more on this
may be found in Section C.4 in S1 Text).

Since we cannot calculate the optimal solution x∗ directly (and 𝛽(g, x̂i) depends on x∗)
we cannot calculate 𝛽(g, x̂i) directly either. Instead, we use a sampling method (described
in Section C.4 in S1 Text) to find an estimate of 𝛽(g, x̂i), which we denote as ̂𝛽(g, x̂i). We
calculate ̂𝛽(g, x̂i) 5000 times for each experiment to estimate 𝛽(g, x̂i). Our key finding is
that ̂𝛽(g, x̂) is very close to (or even larger than) 1 for most of our experimental instances,
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Fig 4. Percentage totBurden and percentage maxBurden reduced by UnitGreedy, FastGreedy and baselines for
𝝀 = 0.525 in Texas for FRED (first column) and SafeGraph (second column).

https://doi.org/10.1371/journal.pcbi.1012539.g004

Table 3. Approximation factors for each problem instance.
NH (FRED) 10% Budget Cases Averted Peaks Reduced

𝜆 = 0.3475 𝜆 = 0.5355 𝜆 = 0.3475 𝜆 = 0.5355
3-EnumGreedy 99.84% 98.53% 99.71% 96.33%
SingletonGreedy 79.02% 99.04% 99.71% 99.33%
FastGreedy 79.02% 95.29% 92.29% 95.21%
UnitGreedy 79.02% 99.04% 99.71% 96.33%
NH (FRED) 40% Budget Cases Averted Peaks Reduced

𝜆 = 0.3475 𝜆 = 0.5355 𝜆 = 0.3475 𝜆 = 0.5355
3-EnumGreedy 100% 99.86% 100% 99.97%
SingletonGreedy 100% 99.86% 100% 99.97%
FastGreedy 100% 99.26% 100% 99.97%
UnitGreedy 100% 99.86% 100% 99.97%

https://doi.org/10.1371/journal.pcbi.1012539.t003

implying that g might be close to being submodular in practice. This suggests that the alloca-
tion g(x̂) ≥ (1 – 1/e) ⋅OPT≈ 0.63 ⋅OPT.

Estimates for 𝛽(g, x̂) can be found in Table 4. These values indicate worst-case approxima-
tion factors for performance on-par (and some exceeding) that of submodular functions for
our problem formulations and experimental settings.
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Table 4. Estimates of 𝛽(g, x̂) for each problem instance.
NH (FRED) 60% Budget Cases Averted Peaks Reduced

𝜆 = 0.3475 𝜆 = 0.5355 𝜆 = 0.3475 𝜆 = 0.5355
3-EnumGreedy 1.03 1.01 1.74 1.02
SingletonGreedy 1.41 1.01 1.53 1.02
FastGreedy 1.04 1.01 1.05 1.01
UnitGreedy 1.51 1.02 2.66 1.12
IA (FRED) 60% Budget Cases Averted Peaks Reduced

𝜆 = 0.3475 𝜆 = 0.5355 𝜆 = 0.3475 𝜆 = 0.5355
SingletonGreedy 1.02 1.01 1.06 1.01
FastGreedy 1.04 1.01 1.05 1.01
UnitGreedy 1.02 1.02 1.07 1.04
TX (FRED) 60% Budget Cases Averted Peaks Reduced

𝜆 = 0.3475 𝜆 = 0.5355 𝜆 = 0.3475 𝜆 = 0.5355
FastGreedy 1.12 1.03 1.04 1.03
UnitGreedy 1.02 1.02 1.06 1.03

https://doi.org/10.1371/journal.pcbi.1012539.t004

Performance and running-time trade-offs
Here, we compare the performance and running time trade-offs for 3-EnumGreedy, Sin-
gletonGreedy, FastGreedy, UnitGreedy and POMS. Let cmax =max{ni|i∈ [K]}. The
approximation guarantee for POMS requires T = 2ecmaxD2K queries [24]; this makes POMS
significantly more expensive to run compared to the greedy methods. The term “query” refers
to an evaluation of the objective function g(⋅); here, that evaluation entails running a dis-
ease simulation conditioned on a vaccine allocation. Compared to POMS, UnitGreedy
requires relatively fewer T =K ⋅D queries. In addition, UnitGreedy is much faster in prac-
tice (by Wall Clock Time) than POMS since UnitGreedy is embarrassingly parallel, whereas
POMS is much more inherently sequential. These comparisons are presented in Table 5,
where we list required iterations and practical run time (extrapolated from 12 hours for
POMS). FastGreedy introduces an approximation guarantee parameterized by a value
which upper bounds the DR-submodularity ratio. Their input parameters can be adjusted to
determine the quality required of potential allocation in each iteration, effectively trading

Table 5. FastGreedy, UnitGreedy, SingletonGreedy, 3-EnumGreedy, and POMS comparison with respect
to practical running time (estimated for POMS) to achieve approximation guarantee for New Hampshire with
20% and 60% budgets.
NH (FRED) 20% Budget Queries Required Wall Clock Time

𝜆 = 0.3475 𝜆 = 0.5355 𝜆 = 0.3475 𝜆 = 0.5355
FastGreedy 1567 70 3.9 Minutes 7.4 Seconds
UnitGreedy 6.67 ⋅ 103 6.67 ⋅ 103 16.7 Minutes 7.6 Minutes
SingletonGreedy 6.43 ⋅ 105 7.57 ⋅ 105 1 Hour 37.1 Minutes
3-EnumGreedy 6.53 ⋅ 105 7.58 ⋅ 105 1 Hour 37.6 Minutes
POMS 3.63 ⋅ 1015 3.63 ⋅ 1015 ∼ 1.5 ⋅ 108 Years ∼ 1.2 ⋅ 108 Years
NH (FRED) 60% Budget Queries Required Wall Clock Time

𝜆 = 0.3475 𝜆 = 0.5355 𝜆 = 0.3475 𝜆 = 0.5355
FastGreedy 4761 2025 7.7 Minutes 3.3 Minutes
UnitGreedy 2 ⋅ 104 2 ⋅ 104 33.2 Minutes 30 Minutes
SingletonGreedy 3.54 ⋅ 106 2.7 ⋅ 106 3.9 Hours 3.4 Hours
3-EnumGreedy 3.55 ⋅ 106 2.66 ⋅ 106 5.1 Hours 1.5 Hours
POMS 3.27 ⋅ 1016 3.27 ⋅ 1016 ∼ 1.1 ⋅ 109 Years ∼ 1.1 ⋅ 109 Years

https://doi.org/10.1371/journal.pcbi.1012539.t005
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performance for speed. When the input parameters to FastGreedy are set so that the
performance is maximized, the resulting approximation guarantee is similar to that of Unit-
Greedy, 3-EnumGreedy, and SingletonGreedy.

Discussion
Through a combination of theoretical and experimental results, we have shown that even
though metapopulation model vaccine allocation problems are inapproximable in the worst
case, simple greedy algorithms can be both effective and scalable for these problems. We pro-
vide a possible theoretical explanation for the effectiveness of these greedy algorithms by
establishing worst case approximation guarantees in terms of the submodularity ratios of
the objective functions of these problems. Specifically, we extend worst case approximation
guarantees from the literature for lattice greedy algorithms [20,25,26] to the non-submodular
objective function setting. Our analysis builds upon prior work on submodular set and lattice
function maximization [5,10,19,20,28,34].

For specific instantiations of the metapopulation model vaccine allocation problems (e.g.,
MaxCasesAverted, MaxPeaksReduced) we provide some empirical evidence that the sub-
modularity ratio of the objective functions is high enough (i.e., close enough to 1) to imply
that greedy algorithms yield near-optimal solutions to these problems. The greedy algorithms
we evaluate are effective across small (New Hampshire), medium (Iowa), and large (Texas)
problem scales over two mobility graphs constructed from FRED [30] and SafeGraph [36]
data sources. In all problem instances of MVA we evaluate, the greedy methods outperform
the baselines, sometimes by quite a significant margin. This difference in performance is
typically greatest for a high 𝜆 (infectivity) value, vaccinating 30% to 50% of the total state’s
population for each problem scale. We also demonstrate that the greedy algorithms achieve an
approximation factor of over 0.79 for a 10% budget, and an approximation factor of over 0.99
with a 40% budget for both MaxCasesAverted and MaxPeaksReduced problem instances
over New Hampshire.

We observe the performance of the greedy methods are on-par with each other for the
Texas FRED and SafeGraph mobility graphs, but the performance of the baselines over the
FRED mobility graph are much lower. Because of this, we conjecture that the MVA prob-
lem over sparse mobility graphs is harder to solve and we cannot depend on the baselines.
Across all experiments, we observe that the MVA problem instances with a lower infectivity
value 𝜆 - infecting approximately 20% of the population - are generally easier to achieve good
performance on for all methods.

Moreover, we have parallelized our algorithms to enhance scalability. As a result, the fastest
of our algorithms takes 2-3 hours to run for the state of Texas. The ability to parallelize the
computation allows us to manage the computational demands of large states, ensuring that
our methods remain feasible even in large-scale datasets. The query complexities for each
greedy algorithm (shown in Table 2) further contributes to the feasibility and speed of the
fastest two greedy algorithms we present, UnitGreedy and FastGreedy. In addition, it is
quite natural to speed up greedy methods by looking not just for a locally optimal update in
each iteration, but for an approximately optimal update, which is a main principle behind the
threshold approach of FastGreedy. These features of the greedy methods present a com-
putational advantage with respect to scalability over algorithms such as POMS, introduced
in [24].

Despite these contributions, several limitations remain. Our current disease model is rela-
tively simple and deterministic and it assumes homogeneous mixing within subpopulations.
Our model can be extended in a variety of ways in order to better capture the complexities of
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real-world disease spread. It would relatively easy to extend the SEIR model we use to allow
for additional compartments (e.g., an infected but asymptomatic compartment). Another
simple extension for future work could be to extend the model to one that captures certain
demographics (e.g., age, gender, etc.) of the population, such as the one presented in [7].
Incorporating demographics of the population into the disease model would be the first step
in designing a vaccine allocation method that prioritizes certain groups. A more granular
approach would be to incorporate agent-based simulations within subpopulations, to better
reflect heterogeneous contact patterns. The choice of a disease model in our setting is largely
driven by the needs of the vaccine allocation methods. On the other hand, the granularity and
sophistication of the disease model has a direct impact on the computational cost of our vac-
cine allocation methods. This trade-off, between sophistication of the disease models and the
computational cost of the vaccine allocation methods should be carefully considered when
choosing a disease model. Exploring faster, more scalable algorithms, such as sketch-based
methods [25,37], could alleviate this trade-off to some extent and is a promising direction
for future research. An additional limitation is that the inferred mobility data we use is based
on limited sources and does not fully reflect real-world movement patterns, particularly in
rural areas. Expanding to include more comprehensive mobility data, such as transporta-
tion networks, would improve accuracy. Our work focuses on preemptive vaccine allocation,
i.e., vaccine allocation at the beginning of an outbreak. Expanding our work to consider vac-
cine allocation over time as the disease spreads and more vaccines become available is also
a promising direction for future research. For this paper, we ran experiments on individual
states in isolation without taking physical border effects into account, where in real-world
settings, the influence of areas (especially urban) across a state border could have significant
impact on vaccine allocation decisions. Finally, deriving confidence bounds for the estimated
submodularity ratios would enhance the robustness of our theoretical guarantees.

Supporting information
Fig A in S1 Text. Iowa and New Hampshire mobility graphs derived from FRED data.We
overlay mobility graphs over maps of Iowa and New Hampshire, where the size of each node
is proportional to the population size of the subpopulation in which it is centered. Likewise,
the width of each edge e∈ Eij is proportional to its weight wij (number of individuals com-
muting from subpopulation i to subpopulation j).

Fig B in S1 Text. Percentage MaxCasesAverted and percentage MaxPeaksReduced
for all approaches in New Hampshire under low infectivity.Most methods are able to save
all individuals across all budgets for this small problem instance, with Random being the
lowest performing method.

Fig C in S1 Text. Percentage MaxCasesAverted and percentage MaxPeaksReduced
for UnitGreedy, SingletonGreedy, FastGreedy and baselines in Iowa under low
infectivity.The effectiveness of the greedy methods is largely unchanged from that of the
small problem instances (New Hampshire), but the baseline methods begin to decrease in
performance.

Fig D in S1 Text. Percentage MaxCasesAverted and percentage MaxPeaksReduced
for UnitGreedy, FastGreedy and baselines in Texas under low infectivity. For the
SafeGraph mobility graph, all methods are able to save most individuals for all budgets, unlike
for the FRED mobility graph, where the performance decreases for smaller budgets.
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S1 Text. Contains Supplementary Information sections A–D, detailing model derivation,
approximation guarantee proofs, descriptions of mobility graph construction, parameters,
additional experiments, and related work.
(PDF)

Table A in S1 Text. Comparison of FRED and SafeGraph mobility graph properties. Con-
tains properties of the mobility graphs constructed from FRED and SafeGraph data in New
Hampshire, Iowa, and Texas.

Table B in S1 Text. System specifications for experiments. Contains information on the
CPU type, memory, and storage where we run experiments.

Table C in S1 Text. Metapopulation model notation. Summary of the notation used for the
metapopulation disease model.

Table D in S1 Text. Problem formulations and algorithm notation. Summary of the nota-
tion used for problem formulations and algorithms.
(PDF)
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