
TempoBiGen: A Curated Generative Model for
Healthcare Mobility Logs with Visit Duration

Hieu Vu1, Alberto M. Segre1, and Bijaya Adhikari1 (�)

University of Iowa, Iowa City IA 52242, USA
{hieu-vu,alberto-segre,bijaya-adhikari}@uiowa.edu

Abstract. Healthcare facilities, which serve vulnerable populations such
as patients and the elderly, are also hotspots where pathogens drive noso-
comial infections. Accurately modeling pathogen transmission within
these settings is essential for understanding their dynamics and enhanc-
ing preparedness and intervention strategies. A key barrier to achieving
high-fidelity models of pathogen transmission within healthcare facili-
ties is the scarcity of fine-grained, high-quality mobility logs that cap-
ture real-world interactions. Data synthesis offers a promising solution
by generating realistic mobility datasets. Existing methods can generate
synthetic mobility logs while preserving the temporal evolution of the
original data’s structural properties. However, these approaches are lim-
ited in two key ways: (1) they typically overlook the bipartite structure
inherent in mobility logs (e.g., interactions between healthcare workers
and rooms), and (2) they fail to account for the duration of interactions,
a critical factor in transmission dynamics. Building on top of existing
work, we introduce TempoBiGen, a curated generative model designed
to address these shortcomings. TempoBiGen explicitly models bipartite
temporal networks and incorporates visit duration in a post-processing
step, producing high-fidelity, ready-to-use synthetic mobility logs. We
evaluated TempoBiGen using real-world mobility logs gathered from
healthcare facilities, assessing its performance in preserving snapshot-
based graph properties (e.g., degree distribution and connected compo-
nents size) and replicating temporal dynamics through disease spread
simulations. Our results demonstrate that the proposed approach leads
to a robust and effective tool for generating synthetic mobility data, of-
fering additional resources to enhance modeling and analyzing hospital
mobility patterns.

Keywords: Deep Temporal Graph Generative Model · Hospital Bipar-
tite Graph · Interaction duration modeling.

1 Introduction

Contact patterns between healthcare providers (HCPs) and patients observed
during patient-care delivery within healthcare facilities also serve as potential
pathways for Healthcare Associated Infections (HAIs) and Antimicrobial Resis-
tance Organisms (AMROs) transmissions [10,22,2]. Moreover, these interactions

2 H. Vu et al.

also facilitate the spread of respiratory infections such as influenza and COVID-
19 [3,17]. Since healthcare facilities such as inpatient units and long-term care
facilities house vulnerable populations, it is imperative to i) model accurate dy-
namics of both fomite-mediated (for HAIs and AMROs) [12] and person-person
infection (for respiratory diseases) spread and ii) infer latent infections [13], and
iii) design effective intervention strategies to mitigate further harm [16].

A major obstacle to this is the lack of fine-grained high-resolution mobil-
ity data collected from healthcare facilities. Such data is challenging to ob-
tain as there are numerous technical and administrative hurdles [4]. A number
of prior work circumvent the lack of data by leveraging randomized (random
mixing [11] or random graphs [15]) and/or statistical (stochastic block models,
Watts-Strogratz models [1,27]) contact pattern models for disease spread simu-
lation. A different line of prior work employs wearable sensors (such as Radio-
frequency identification devices, RFID) in healthcare facilities to capture the
mobility patterns [5]. However, these studies are often limited to small facilities
or to a unit/ward within a larger facility, as large-scale deployment still remains
a challenge.

Even when fine-grained healthcare mobility data is available, sharing the
data with public health experts and epidemiological modelers is challenging, as
these data typically have numerous policy restrictions [8]. These administra-
tive restrictions are primarily designed to protect patients’ privacy. To enable
high-fidelity epidemiological modeling within healthcare facilities while respect-
ing these restrictions, here we ask the following question: Given a large corpus
of fine-grained healthcare mobility data, is it possible to generate a novel yet
representative synthetic data? Here, by novel, we mean that the generated data
is only allowed a non-significant overlap with the original data, and by represen-
tative, we mean that the generated data has similar statistical properties as the
original one.

An obvious solution to the question above is to represent the mobility log as
a temporally dynamic network and use an existing off-the-shelf graph genera-
tive model [9,29] to generate synthetic data. However, most existing approaches
blindly train a generative model (such as adversarial generative model, diffusion
model, or probabilistic model) over graphs with the hope of capturing statisti-
cal properties such as degree distribution, clustering coefficients, and diameter.
These approaches fail to capture the intricate relationship between the HCWs
and patients, the domain constraints posed by HCWs shifts and care patterns,
and other HCW behaviors such as the time between visits. To overcome the
shortcomings mentioned above, we start with an existing temporal graph gener-
ative model and extend it to include bipartite constraints in our model. We then
further extend to generate realistic visit duration (which prior works ignore).

Our contributions are as follows:

– We propose an extension to an existing temporal graph generation model to
account for the bipartite nature of the hospital mobility data and to explicitly
model visit duration for fine-grained data generation.

Generative model for Healthcare Mobility Logs with Visit Duration 3

– We conduct extensive experiments with mobility data collected from large-
scale healthcare facilities and contrast the generated data against the original
data via a diverse set of metrics, including snapshot-based graph properties,
HCWs shift properties, and disease spread simulations. We showed that our
model is able to generate realistic mobility logs for a variety of units within
healthcare facilities, each exhibiting unique care patterns.

2 Related Work

Mobility logs collection in Healthcare Facilities. Numerous efforts have
been made to collect fine-grained, high-quality hospital mobility logs to improve
the understanding of care patterns and facilitate early predictions of healthcare-
associated infections (HAIs). Several studies have explored the use of wearable
devices to track interactions among healthcare workers (HCWs) and between
HCWs and specific locations [26,21,6]. While these approaches provide detailed
mobility data, they are often constrained by small participant pools, short data
collection periods, and the high cost of wearable devices, limiting their scalability
and generalizability.
Data Synthesis for Temporal Interaction Graphs. Synthetic data gener-
ation for temporal interaction graphs focuses on preserving both structural and
temporal patterns. Prior approaches fall into two categories: motif-based methods
and deep generative models. Motif-based methods use recurring substructures to
guide generation. Early work modeled the evolution of motifs over time, albeit
in discretized snapshots that loses detailed timestamp information. For example,
STM [24] and DyMOND [28] either utilize a frequency-based method or model
the arrival rates of a fixed set of atomic static motifs (edge, wedge, triangle)
over active node sequences. The MTM model [19] extended this by dynamically
learning transitions among arbitrary motifs. These approaches are efficient and
interpretable but limited in capturing global dynamics and rich node/edge fea-
tures. Deep generative models offer greater expressiveness. TAGGEN [30], TG-
GAN [29] and STGEN [18] utilize the GAN framework to improve fidelity by
modeling edge timestamps in continuous time. However, they over rely on deep
architecture to capture the temporal dynamics, which may limit interpretability
and scalability. TIGGER [9] advanced this approach with a scalable recurrent
model based on Temporal Point Processes, enhancing fine-grained temporal ac-
curacy and scalability. Collectively, these methods highlight an ongoing shift
towards integrating scalability and more expressive temporal modeling in gen-
erative frameworks.

In summary, existing approaches for temporal interaction graph generation
range from motif-based methods emphasizing the benefit of capturing local struc-
tures to deep generative models that capture intricate temporal dependencies.
However, to the best of our knowledge, no prior work has addressed the genera-
tion task specifically for bipartite temporal networks jointly with visit duration.
To address this gap, we introduce TempoBiGen, which explicitly models bi-
partite temporal networks and incorporates visit duration in a post-processing

4 H. Vu et al.

step, producing high-fidelity, ready-to-use synthetic mobility logs for downstream
tasks such as disease simulation.

3 Our Approach

HCW mobility within healthcare facilities is best represented as a Temporal
Bipartite Graph, G(H,R, E , C) where the first partition H represents HCWs and
the second component R represents the rooms occupied by patients. A temporal
bipartite edge e(h, r, t, d) ∈ Ec describes an interaction - a visit of a HCW h ∈ H
to a room r ∈ R starting at time t for a total duration of d within a class c ∈ C.
In our application, a class is a healthcare unit within a hospital where the logs
are collected.
Problem Description. We pose the problem of generating synthetic health-
care mobility logs as a one-shot generative problem, where only one instance of
temporal graph G is revealed to the learning algorithm with the goal of learning
a generative model P (G) that maximizes the likelihood of generating G by lever-
aging its structural and temporal properties. Once trained, one can sample a new
mobility log G′ from P (G). Ideally, G′ should have similar structural/temporal
properties as G and lead to a similar dynamics of HAI spread while having as
few overlap with G as possible.
Approach Overview. We propose a two-stage solution to our problem. In
Stage 1, we learn and sample G̃′ ∼ P (G̃′) using our proposed conditional bipartite
recurrent generative model, where G̃′ is a modified version of G without duration
information. In Stage 2, after estimating the probability distribution of visit
durations from the training data, we sample durations for each generated visit
in G̃′ to construct the final sampled graph G′. An overview of our proposed
method is illustrated in Figure 1.

3.1 Stage 1: Learn P(G̃′)

Recall that G̃′ does not have duration and is a simple streaming temporal bi-
partite graph. To learn P (G̃′), we extend an existing temporal graph generation
approach, TIGGER [9], to handle bipartite edges.
Background on TIGGER and Temporal Random Walk Modeling. To
model temporal interaction graphs, TIGGER first extracts temporal random
walks from the graph and models their distribution using Temporal Point Pro-
cesses (TPPs) [7] combined with autoregressive modeling. This approach pro-
vides flexibility in capturing temporal dynamics. Formally, given a temporal
graph G, TIGGER first samples a set of random walks S to define P (G) :=∏

S∈S Pθ(S), where Pθ(S) is parameterized by a recurrent generative model with
a TPP-based event time modeling head. By operating on random walks, TIG-
GER effectively leverages the sparsity of real-world graphs, making it scalable
to large networks. Additionally, its simple model design allows for extension to
inductive settings by incorporating a multi-node decoder. Instead of learning a
distribution over node IDs, this decoder jointly learns a mixture model of node

Generative model for Healthcare Mobility Logs with Visit Duration 5

Fig. 1. Overview of proposed method.

embeddings. In this work, to mitigate the data scarcity problem in modeling a
single continuous-time temporal graph, we adopt the same assumption of trans-
ferring the learning task from modeling the distribution of a temporal graph to
modeling the distribution of conditional temporal random walks and only focus
on the transductive generative task.
Conditional temporal random walks on Bipartite graphs. We first ex-
tract random walks in the temporal bipartite network G. Formally, a conditional
random walk on a bipartite temporal graph is defined as follows:

Definition 1. Given a class c, we define a conditional temporal random walk
(CDTR) S on a bipartite interaction graph G of length ℓ, starting from a node v
at time t, as a sequence S = {s1, s2, . . . , sℓ}, where each tuple si ∈ S is a (node,
time) pair. The walk starts with s1 = (v, t), and for all i ∈ [2..ℓ], we require that
(si−1.v, si.v, si.t) ∈ Ec, and si−1.v and si.v belong to different node partitions.

Conditional bipartite recurrent generative model (BiTIGGER). Note
that, while TIGGER can be trained on temporal bipartite random walks, it does
not explicitly model the bipartite nature of the graph, which can lead to the
generation of non-bipartite walks (and eventually non-bipartite graphs). Hence,
for our application, it is critical to modify TIGGER to handle the bipartite
nature of our mobility logs. We start by defining the probability of a conditional

6 H. Vu et al.

bipartite temporal graph for a given class c, P (G|c) := P (S|c), with S being the
set of CTRWs extracted from G (Definition 1). Assuming the independence of
random walks, it can be expressed as the product of the probabilities of individual
random walks, i.e., P (S|c) =

∏
S∈S p(S|c). As we only generate conditional RWs,

to ease our notation, we will omit c in the condition and recall it when necessary.
In a manner similar to [9], each individual p(S) can be defined as the product
of the time and the node probabilities as follows:

p(S) = p(s1)

ℓ∏
i=2

p(si.v | (s1, . . . , si−1))× p(si.t | (si.v, (s1, . . . , si−1))) (1)

Each of the conditional probabilities for node and time can now be mod-
eled using a Recurrent Neural Network (RNN) [20]. The hidden state and out-
put state of a RNN cell is updated as hi = rnnhidden

θ (hi−1, si−1) and oi =
rnnoutput

θ (hi−1, si−1) respectively. We further incorporate the class condition
into the initial hidden state h0 = fc(c), where fc(·) is a learnable embedding
function. We can simplify the conditional probabilities as follows:

p(S) = p(s1)

ℓ∏
i=2

p(si.v | oi)× p(si.t | si.v,oi) (2)

To explicitly model the bipartite nature of our random walks, we introduce
three key modifications. First, we define a partition indicator pi for each node
vi in the walk, which alternates between the two node partitions—H and R.
This ensures that consecutive nodes in a bipartite random walk always belong
to different partitions.

Second, we employ dedicated prediction heads for each partition indicated
by pi. By doing so, we restrict the prediction at each step to only the appropri-
ate partition, thereby guaranteeing that generated edges always connect nodes
from different partitions. This partition-specific prediction also reduces the pre-
diction space at each step, simplifying the learning process and improving model
efficiency.

Finally, to determine when a random walk should terminate, we introduce
a special end-of-walk token, denoted by ⊥, which does not belong to either
partition. At each step, the model first predicts the probability of ending the
walk with ⊥, and if not, proceeds to predict the next node from the appropriate
partition as indicated by pi. This approach ensures that the generated random
walks are both valid and consistent with the bipartite structure of the underlying
graph.

The overall conditional probability of generating a node si.v at step i is thus
computed as follows:

p(si.v = v | oi) = p(⊥|oi)× I[si.v = ⊥]

+ (1− p(⊥|oi))× I[pi = H]× p(si.v = v|oi, pi = H)

+ (1− p(⊥|oi))× I[pi = R]× p(si.v = v|oi, pi = R) (3)

Generative model for Healthcare Mobility Logs with Visit Duration 7

with the probabilities p(si.v = v|oi, pi) and p(⊥|oi) expanded as follows:

p(si.v = v|oi, pi) = θ(pi)
v (oi)

= θ(pi)
v (rnnoutput

θ (hi−1, (si−1.v, si−1.t)))

= θ(pi)
v (rnnoutput

θ (hi−1, (fv(si−1.v) ∥ ft(si−1.t))))

=
exp(WO

v
(pi)oi)∑

∀u∈V exp(WO
u
(pi)oi)

(4)

where WO
v
(pi) is in R|H|×dO if v ∈ H and R|R|×dO if v ∈ R, θ(pi)

v is parameters for
the prediction head for partition pi, and dO is the dimension of vector oi. Similar
to [9], fv(·) and ft(·) are embedding functions for the node and time, respectively,
and ∥ denotes concatenation. We also have p(⊥|oi) = Sigmoid(WO

⊥oi) with
WO

⊥ ∈ R1×dO .
Proposed by [25] and employed by [9], TPPs under the form of a mixture

of log-normal distribution showcases strong performance in modeling inter-event
time within a sequence of events. We also utilize it here and provide its formu-
lation for the sake of completeness:

p(si.t | si.v,oi) = p(si.t− si−1.t | si.v,oi) = θt(∆t | si.v,oi)

=

K∑
k=1

ϕK
k

1

∆tσK
k

√
2π

exp(− (log∆t− µK
k)2

2(σK
k)2

) (5)

where ∆t is time difference between si.t and si−1.t, p(t) is parameterized by θt
and µK

k , σK
k , ϕK

k are parameters of θt.

µK
k = WµK

k (fv(si.v) ∥ oi), σK
k = exp(WσK

k (fv(si.v) ∥ oi))

ϕK
k =

exp(WϕK
k (fv(si.v) ∥ oi))∑K

j=1 exp(W
ϕK
j (fv(si.v) ∥ oi))

with K is number of components in the Log-Normal Mixture distribution and
WµK

k ,WσK
k ,WϕK

k ∈ R(dV +dO),∀k. Note that every component’s learnable weights
are shared across each time stamp in the sequence.

Similar to TIGGER, we train our proposed model to minimize the negative
log-likelihood:

L(S) =
∑
c∈C

− log p(S|c) = −
∑
c∈C

∑
S∈S

log p(S|c) (6)

with log p(S|c) is given in Equation 1. Once trained, we can follow Algorithm 1
in [9] to sample synthetic bipartite CTRWs for each class c ∈ C.

8 H. Vu et al.

Visits construction via Coarse-grained and Fine-grained random walks
merging. After sampling a set Ŝ of CTRWs, we need to construct the final
temporal graph G̃′, representing the synthetic collection of HCW-Room visits.
For scalability, we employ the independent random walk sampling, which has
a downside of generating redundant sets of CTRWs. By redundancy, we mean
that the same HCW-Room pair appears in multiple random walks. Due to the
redundancy in the sampled CTRWs, simply taking the union of the generated
events from samples can lead to a noisy graph with multiple visits of the same
HCW to different rooms at the same (or very close) time, which is not realistic.
Previous works such as TG-GAN [29] and STGEN [18] circumvent this by using
a non-parallel generation process, trading off the efficiency for event consistency.
TIGGER [9] instead proposed a merging process that retains top frequent edges
proportional to their occurrence in the sampled CTRWs based on the true graph
statistics. However, this approach requires maintaining a distribution for each
unique timestamp in the generated data, which is problematic for fine-grained
temporal resolution as: 1) the number of unique timestamps becomes very large
and mostly noisy due to the stochasticity of the model, and 2) the distribution of
events at each timestamp is extremely sparse and insufficient to give a reliable
estimation. Thus, when aggregating sampled CTRWs, we aim to achieve the
following two goals: 1) reduce noise in the generated events, and 2) preserve the
continuity of events up to a constant gap δ. To this end, we employ a three-
step merging process: coarse-grained merging, fine-grained merging, and a final
refinement step.
Step 1: Coarse-grained merging - Obtain Ĝ(d). Recall that the number of
unique timestamps in our sampled CTRWs is larger than that in the original
data. Hence, the number of events taking place in each unique time-stamp is
relatively low and therefore it is unlikely that a unique HCW-Room pair appears
more than once in each timestamp. Hence, frequency based filtering cannot be
done at each timestamp. To address this, we first extract a collection of the most
frequent HCW-Room pairs for each day from the sampled CTRWs and filter out
the rest, reducing the noise in the generated events. Additionally, note that
daily-snapshot graphs are also standard in evaluating graph-based properties
[29,18,9].

Formally, we first obtain a distribution of the occurrence of HCW-Room pairs
for each day of the synthetic data:

p̂d({hi, ri}) =
α(hi, ri, d)∑

{hj ,rj}∈P̂d α(hj , rj , d)

where α(hi, ri, d) is the number of times the edge (hi, ri) appears in day d and
P̂ d = {(h, r)|(h, r, t) ∈ Ŝd, t ∈ d}. Then, we keep sampling from this distribution
until we get the required number of pairs for that day, which is extracted from
the training data of the corresponding day.
Step 2: Fine-grained merging - Obtain G̃(d). Coarse-grained merging is
effective in preserving the sparsity of the graph. However, it cannot maintain
the continuity of events. Specifically, coarse-grained merging corresponds to the

Generative model for Healthcare Mobility Logs with Visit Duration 9

case where the minimum time gap δ between consecutive visits of an HCW to a
room is set to one day (86, 400 seconds), which is not realistic. To address this
issue, we perform fine-grained merging to merge the visits that are within δ of
each other.

We employ two strategies to ensure this: 1) Snapshot-based merging strategy,
where we divide the examined period into grids of length δ and fuse edges within
the same grid cell; 2) Adaptive merging strategy, where starting from the first
visit, looping in sorted order of start time, we fuse the visits that are within δ
period of each other. In both cases, we maintain the average start time t̄ and
the number of events that were merged together, denoted by β(hi, ri, t̄), for each
fused edge. Note that the tuples (hi, ri, t̄) are unique and, at this point, the edges
are not necessarily δ apart (due to averaging of the start time) and we need a
refining step to ensure this.
Step 3: Refining G̃(d).

Subsample daily visits: The fine-grained merging step may retain more than
one visit for each HCW-Room pair each day, and we denote this number as
α̂(hi, ri, d) (note that α̂(hi, ri, d) ≤ α(hi, ri, d)). However, it usually results in the
total number of visits being significantly higher than the actual number in the
training data. Thus, to preserve the sparsity of the original data, we subsample
the set of daily visits obtained from Step 2 proportionally to α̂(hi, ri, d). The
number of visits to be sampled for each pair ñd({hi, ri}) is defined as follows:

ñd({hi, ri}) =
α̂(hi, ri, d)∑

(hj ,rj)∈P̃d
α̂(hj , rj , d)

× nd
v

where P̃ is the set of ({hi, ri}) pair that remain after Step 2 and nd
v is the number

of required visits for each day, which is extracted from the training data. Among
all possible visits (hi, ri, t̄) for each (hi, ri) pair, we sample ñd({hi, ri}) visits
proportional to β(hi, ri, t) with the following distribution:

p̃hi,ri(t̄) =
β(hi, ri, t̄)∑

t∈τhi,ri
β(hj , rj , t)

with τhi,ri = {t̄|(h, r, t̄) ∈ Ẽd, h = hi, r = ri}.
Resolve conflicts for each HCW: An HCW usually has many visits in a single

day, and those visits must be at least δ time apart. As mentioned above, this
constraint may not be satisfied after the merging steps. We define a conflict as a
pair of consecutive visits that violate this temporal separation requirement. To
resolve such conflicts, we retain the visit associated with the higher fused-edge
count, β(hi, ri, t̄), and discard the other. Specifically, for each HCW, we iterate
through their visits in chronological order and accumulate only the valid ones.
The first visit is always included. For each subsequent visit, we check whether
it conflicts with the last accepted visit: if no conflict occurs, it is added to the
valid set; otherwise, the visit with the higher fused-edge count is retained.

10 H. Vu et al.

3.2 Stage 2: Duration sampling

Given a set of visits for each HCW, our goal is to sample realistic durations
for each visit. Examining the visit duration in our data, we noticed that the
distribution of visit durations is strongly right-skewed, with multiple peaks. A
straightforward baseline is to uniformly sample durations between a lower bound
(the minimum observed duration) and an upper bound (the gap to the next
visit). While this approach does not capture the right-skewed nature of real
visit durations, it serves as a reasonable baseline, especially since our evaluation
focuses on truncated snapshot graphs that depend more on aggregate duration
distributions and are less sensitive to individual visit details. Below, we describe
our approach for estimating and sampling from the duration distribution, which
aims to better preserve the duration patterns observed in the training data.

Estimating duration distribution The most natural way of sampling visit
duration is to sample from the set of observed durations based on their fre-
quencies. However, this simple approach ignores the continuous nature of the
data and may inadvertently reveal individual care patterns, thus raising privacy
concerns. Additionally, some HCWs have very few visits during the examined
period. Repeatedly sampling observed duration for these HCWs introduces bias
towards the observed values. To address this, we aggregate data from multiple
HCWs and estimate a duration distribution for each group.

However, since we are generating data conditioned on unit type, clustering
HCWs within each unit separately can lead to inconsistencies. For example,
we may encounter cases where an HCW absent from the training data for a
unit appears in the generated samples for that unit, making it unclear which
estimated distribution to use for sampling durations. To address this, we cluster
HCWs across all units based on their embeddings, and then sample durations
conditioned on these global clusters. This ensures consistency and applicability
of the duration distributions to all generated visits. Below, we outline our step-
by-step process for learning the probability distribution of visit durations.

Transform duration data into log-space: As noted, our duration distribution
is right-skewed, and a straightforward way to model the duration data X is to use
a mixture of log-normal distributions. Furthermore, we know that Y = ln(X)
follows a mixture of Normal distributions, which is easier to model and well-
supported by many off-the-shelf libraries. So the first step is to transform the
duration data X into log-space Y = ln(X).

Fit a Gaussian Mixture Model to the Log-Transformed Data: Once we trans-
form the data into the log-space, we can fit a Gaussian Mixture Model (GMM)
to capture the complex mixing patterns in the data. A GMM assumes that Y is
generated from K components, each with mean µk, standard deviation σk, and
mixing probability πk, where

∑K
k=1 πk = 1. Since the optimal number of compo-

nents K is unknown and the data exhibits a diverse range of mixing patterns, we
employ a Dirichlet Process Mixture of Normals, which allows for automatic de-
termination of K. Specifically, we use the BayesianGaussianMixture class from

Generative model for Healthcare Mobility Logs with Visit Duration 11

sklearn package [23] to fit a GMM with Dirichlet Process prior to obtain the
parameters πk, µk, and σk for each remaining active component k = 1, 2, . . . ,K.

Sampling from the Mixture of Normal Distributions When sampling
the duration for each visit, we know both the start time of the current visit and
the next visit for the HCW. Therefore, the sampled duration must be bounded
above by the gap to the next visit, and below by the minimum duration observed
in the data to capture realistic visit patterns.

Let the bounds for a sequence of visits be [a1, b1], [a2, b2], . . . , [am, bm], where
ai is the minimum allowed duration and bi is the gap to the next visit (minus a
slack, if desired). Since we model durations in log-space, X = exp(Y), a sample
X ∈ [ai, bi] corresponds to Y ∈ [ci, di] with ci = ln(ai) and di = ln(bi). Note
that the mixture probability density function (pdf) for variable Y is as follows:

fY (y) =

K∑
k=1

πk · N
(
y | µk, σ

2
k

)
,

Thus, the pdf for Y truncated to [ci, di] is given by:

fY |trunc(y) =
fY (y)

P (ci ≤ Y ≤ di)
for y ∈ [ci, di],

where the normalization constant is:

P (ci ≤ Y ≤ di) =

∫ di

ci

fY (y) dy =

K∑
k=1

πk · P (ci ≤ Y ≤ di|component k).

and for each component k, we have:

Pk = P (ci ≤ Y ≤ di|component k) = Φ

(
di − µk

σk

)
− Φ

(
ci − µk

σk

)
where Φ is the standard normal CDF. The adjusted mixing probability for com-
ponent k within [ci, di] is then:

π′
k =

πkPk∑K
j=1 πjPj

Now, we can generate a sample by the following steps:

– Choose a component k with probability π′
k.

– Sample Y from the normal distribution N(µk, σ
2
k) truncated to [ci, di].

– Transform back to X = exp(Y).

This approach ensures that sampled durations are both realistic and consis-
tent with the temporal constraints of the generated visits.

12 H. Vu et al.

Generating duration for each visit Applying the above sampling technique,
we generate duration information for each synthetic visit. For each HCW, we first
compute the gap between consecutive visits to serve as the upper bound for the
sampled duration. To ensure realistic transitions between rooms, we subtract a
slack gap (e.g., 30 seconds) from this upper bound, preventing the duration from
occupying the entire interval. The lower bound is set as the minimum observed
duration from the training data. We then sample durations from the truncated
mixture distribution within these bounds. The final output is a set of temporal
edges (h, r, t, d), forming the synthetic temporal graph G′.

4 Experiments

In this section, we present the performance of our proposed approach in capturing
the daily-snapshot graph properties, disease spread characteristics, and HCW
care patterns. All of our experiments were conducted on an AMD EPYC 7763
machine with 2TB memory and 8 NVIDIA A30 GPUs each with 24GB memory.
Our code is available at https://github.com/hieuvt29/TempoBiGen.

Our experiments are designed to answer the following questions: 1) Does the
generated graph capture the statistical properties of the daily snapshots of the
original data? 2) Is the disease spread the same in the generated graph compared
to the original network? 3) Does our model generate realistic mobility logs that
capture HCW shift patterns?
Datasets: Here we use a collection of proprietary datasets obtained via a
data use agreement. The data consists of more than 44 million HCP-room visits
collected from 25 different healthcare facilities in the US, ranging in size from
small rural facilities to large-scale tertiary-care facilities. We use a subsampled
two weeks of data for the experiments below with 1939 HCWs (33 job types),
263 rooms, and a total of 118, 209 visits across 10 unit types.
Testing models: In the following experiments, we set δ = 120 (2 minutes) -
heuristically chosen based on the training data. We use the suffix “_CG” to de-
note methods that only use the coarse-grained merging, where edges are merged
for the whole day. Note that this approach cannot retain the visit start time
within a day. The suffix “_FG” denotes the methods that only use fine-grained
merging, where edges are merged only based on δ. The suffix “_unif” refers to
the uniform visit duration sampling method. The reported results are averaged
over all unit types and averaged over 3 generated graphs for each method, with
standard deviation in parentheses. For a concise plot, we use “TBG” to denote
our proposed TempoBiGen method. The best values are in bold.

4.1 Snapshot graph properties

In this experiment, we evaluate daily-graph properties. Similar to [9], we re-
port the median absolute error for 9 different graph properties. The results are
summarized in Table 1.

https://github.com/hieuvt29/TempoBiGen

Generative model for Healthcare Mobility Logs with Visit Duration 13

Table 1. Performance based on mean absolute error (standard deviation in parenthe-
ses) between sampled and true daily-snapshot graphs.

Method % Edge Mean Wedge PLE Edge LCC NC Mean Mean Has
Overlap Degree Count Entropy BC CC Duration?

Actual_Median N/A 5.6269 2502.15 1.7960 0.9274 86.35 1.2 0.0246 0.3411 No
TIGGER_CG 76.1927 0.3878 75.50 0.0740 0.0068 6.75 0.1 0.0019 0.0162 No

(0.1889) (0.0023) (2.2287) (0.0037) (0.0001) (0.13) (0.0) (0.0001) (0.0007)
BiTIGGER_CG 75.7778 0.3690 63.30 0.0755 0.0069 6.60 0.1 0.0014 0.0157 No

(0.2401) (0.0020) (1.25) (0.0032) (0.0004) (0.09) (0.0) (0.0001) (0.0001)
BiTIGGER_FG 23.4438 2.5149 2024.02 0.4916 0.0292 44.10 1.0 0.0300 0.1201 Yes

(0.2904) (0.0184) (6.64) (0.0303) (0.0004) (0.23) (0.1) (0.0018) (0.0024)
BiTIGGER_FG_unif 23.4438 2.5149 2024.02 0.4916 0.0292 44.10 1.0 0.0300 0.1201 Yes

(0.2904) (0.0184) (6.64) (0.0303) (0.0004) (0.23) (0.1) (0.0018) (0.0024)
TBG_adapt 64.2953 0.6650 692.40 0.0761 0.0087 9.60 0.1 0.0034 0.0189 Yes

(0.3571) (0.0096) (13.31) (0.0019) (0.0001) (0.09) (0.0) (0.0003) (0.0002)
TBG_snap 68.2677 0.4688 464.70 0.0707 0.0080 7.65 0.1 0.0026 0.0159 Yes

(0.0652) (0.0092) (4.66) (0.0003) (0.0004) (0.09) (0.0) (0.0001) (0.0004)
TBG_unif_adapt 64.4092 0.6859 667.25 0.0831 0.0091 9.00 0.1 0.0035 0.0191 Yes

(0.2257) (0.0043) (11.96) (0.0025) (0.0003) (0.22) (0.0) (0.0001) (0.0005)
TBG_unif_snap 68.3447 0.4610 484.45 0.0657 0.0079 7.90 0.1 0.0026 0.0158 Yes

(0.0995) (0.0072) (5.21) (0.0029) (0.0003) (0.29) (0.0) (0.0001) (0.0001)

From the table, we observe that methods using only coarse-grained merging
perform better across most metrics. This is expected, as evaluating based on
daily graphs means that merging at the day level retains the most frequently
occurring HCW-Room pairs while filtering out noisy signals. However, these
methods fail to preserve the precise start times of events, making them unsuitable
for our downstream tasks. On the other hand, relying solely on fine-grained
merging introduces excessive noise, leading to unrealistic graphs where an HCW
appears to have an unreasonably high number of visits per day. Our approach,
which combines both coarse-grained and fine-grained merging, strikes a balance
between preserving daily graph properties and maintaining event-level details,
resulting in a middle-ground performance. Notice that, due to the low number
of active HCWs each day for each unit type, we are expected to see a high
percentage of overlapping edges for daily-snapshots.

4.2 Disease Simulation

The core motivation of this work is to enable accurate disease modeling, which
requires a generative approach that preserves disease spread patterns in the
original contact network. To evaluate how well our method preserves these pat-
terns, we start by constructing a weighted temporal graph of HCWs based on
their visits. Visits are divided into 12-hour snapshot graphs, aligning with typ-
ical hospital shifts. Edges are formed between HCWs who visit the same room
within a snapshot. Edge-weight for edge (h1, h2) is computed as w(h1, h2) =

14 H. Vu et al.

σ(d1+d2+10×d12), with σ(x) = 1/(1+e−x), where d1 and d2 are the duration
visit for h1 and h2 respectively, d12 is the overlap duration. We use a factor of
10 to account for the increased likelihood of disease transmission when HCWs
share a room simultaneously.

For disease simulation, we use the well-known SIR compartmental model
with an edge-weight-adjusted transmission rate [14]. We run 50 simulations for
each unit type with base transmission rate β = 0.35, recovery rate γ = 0.2, and
number of initially infected HCWs in the first snapshot of 10. We then compare
attack rates between real data and different approaches using box plots.

Figure 2 highlights the difference between considering and ignoring duration
information. It clearly shows that, given the same assumption of base transmis-
sion rate, ignoring the duration information (unweighted) consistently leads to
higher attack rates compared to the weighted version. This suggests that the du-
ration information is crucial for capturing more realistic transmission scenarios.

Fig. 2. Comparison with and without edge weights.

We further compare the attack rates across all unit types with weighted data.
The absolute difference between attack rates of each method against that of true
data averaged over all unit types is shown in legend Fig 3. The results show that
TempoBiGen with the adaptive strategy performs the best, achieving the lowest
average difference, followed by the snapshot-based approach, and both clearly
outperform the uniform sampling methods. Additionally, having different attack
rates for different unit types demonstrates that our generative model effectively
captures the unique characteristics of each unit type.

4.3 Shift Efficiency and Uniformity

To assess how well the generated data follows care patterns for each unit type, we
compute shift efficiency and uniformity across different methods. Shift efficiency
is defined as the ratio of total shift visit duration to the full shift duration (a
value between 0 and 1), while shift uniformity is the number of unique rooms

Generative model for Healthcare Mobility Logs with Visit Duration 15

Fig. 3. Attack rates for different methods.

serviced per shift divided by the total number of shift visits (also between 0 and 1,
small numbers mean more attention on fewer rooms). Table 2 shows the average
absolute differences between the two values of our methods and baselines against
those of the original data. The results indicate that non-trivial sampling methods
significantly improve shift uniformity but are less effective in maintaining shift
efficiency.

Table 2. Average Efficiency and Uniformity Differences.

Method Avg. Efficiency Difference Avg. Uniformity Difference

TBG_adapt 0.37098 0.29616
TBG_unif_adapt 0.30222 0.45497
TBG_snap 0.34981 0.28193
TBG_unif_snap 0.32082 0.31203

5 Conclusion

In this paper, we presented a generative model to produce realistic mobility
graphs within healthcare facilities. Following the state-of-the-art temporal graph
generation literature, we formulated a one-shot learning problem and extended
existing methods to address conditional bipartite graph generation problem
with temporal edge duration sampling. Specifically, we proposed a two-stage
approach. First, we extended TIGGER to handle bipartite graphs and com-
bine coarse-grained and fine-grained merging into our sampling procedure to

16 H. Vu et al.

construct a bipartite temporal graph. Second, given the generated HCW-Room
visits, we added a post-processing module to generate realistic visit durations.
Our results demonstrate that the proposed approach effectively captures visit
duration patterns, preserves the statistical properties of daily-snapshot graphs,
and enables realistic disease simulations. Extending our work for the inductive
setting (where new nodes arrive over time) and formally incorporating privacy
(for example, via differentiable privacy) are promising future directions.

6 Acknowledgments

The authors acknowledge feedback from members of the Computational Epi-
demiology research group at the University of Iowa and the CDC MInD-Healthcare
group. This work was supported by the CDC under cooperative agreement U01-
CK000594. Its contents are solely the responsibility of the authors and do not
necessarily represent the official views of CDC.

References

1. Abbe, E.: Community detection and stochastic block models: recent developments.
Journal of Machine Learning Research 18(177), 1–86 (2018)

2. Adhikari, B., Lewis, B., Vullikanti, A., Jiménez, J.M., Prakash, B.A.: Fast and
near-optimal monitoring for healthcare acquired infection outbreaks. PLoS com-
putational biology 15(9), e1007284 (2019)

3. Capolongo, S., Gola, M., Brambilla, A., Morganti, A., Mosca, E.I., Barach, P.:
Covid-19 and healthcare facilities: a decalogue of design strategies for resilient
hospitals. Acta Bio Medica: Atenei Parmensis 91(9-S), 50 (2020)

4. Casey, D.: Challenges of collecting data in the clinical setting. NT Research 9(2),
131–141 (2004)

5. Coletti, P., Libin, P., Petrof, O., Willem, L., Abrams, S., Herzog, S.A., Faes, C.,
Kuylen, E., Wambua, J., Beutels, P., et al.: A data-driven metapopulation model
for the belgian covid-19 epidemic: assessing the impact of lockdown and exit strate-
gies. BMC infectious diseases 21, 1–12 (2021)

6. Fournet, J., Barrat, A.: Contact patterns among high school students. PloS one
9(9), e107878 (2014)

7. Goldschmidt, U.: An introduction to the theory of point processes (2016), https:
//api.semanticscholar.org/CorpusID:63985456

8. Gostin, L.O., Levit, L.A., Nass, S.J.: Beyond the hipaa privacy rule: enhancing
privacy, improving health through research (2009)

9. Gupta, S., Manchanda, S., Bedathur, S., Ranu, S.: Tigger: Scalable generative
modelling for temporal interaction graphs. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 36, pp. 6819–6828 (2022)

10. Haque, M., Sartelli, M., McKimm, J., Bakar, M.A.: Health care-associated
infections–an overview. Infection and drug resistance pp. 2321–2333 (2018)

11. Hethcote, H.W.: The mathematics of infectious diseases. SIAM review 42(4), 599–
653 (2000)

https://api.semanticscholar.org/CorpusID:63985456
https://api.semanticscholar.org/CorpusID:63985456

Generative model for Healthcare Mobility Logs with Visit Duration 17

12. Jang, H., Fu, A., Cui, J., Kamruzzaman, M., Prakash, B.A., Vullikanti, A., Ad-
hikari, B., Pemmaraju, S.V.: Detecting sources of healthcare associated infections.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp.
4347–4355 (2023)

13. Jang, H., Pai, S., Adhikari, B., Pemmaraju, S.V.: Risk-aware temporal cascade
reconstruction to detect asymptomatic cases. Knowledge and Information Systems
64(12), 3373–3399 (2022)

14. Kamp, C., Moslonka-Lefebvre, M., Alizon, S.: Epidemic spread on weighted
networks. PLOS Computational Biology 9(12), 1–10 (12 2013). https://
doi.org/10.1371/journal.pcbi.1003352, https://doi.org/10.1371/journal.
pcbi.1003352

15. Keeling, M.J., Eames, K.T.: Networks and epidemic models. Journal of the royal
society interface 2(4), 295–307 (2005)

16. Kiji, M., Hasan, D.H., Segre, A.M., Pemmaraju, S.V., Adhikari, B.: Near-optimal
spectral disease mitigation in healthcare facilities. In: 2022 IEEE International
Conference on Data Mining (ICDM). pp. 999–1004. IEEE (2022)

17. Lansbury, L.E., Brown, C.S., Nguyen-Van-Tam, J.S.: Influenza in long-term care
facilities. Influenza and other respiratory viruses 11(5), 356–366 (2017)

18. Ling, C., Cao, H., Zhao, L.: Stgen: Deep continuous-time spatiotemporal graph
generation. In: Machine Learning and Knowledge Discovery in Databases: Euro-
pean Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022,
Proceedings, Part III. p. 340–356. Springer-Verlag, Berlin, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-26409-2_21, https://doi.org/10.1007/
978-3-031-26409-2_21

19. Liu, P., Sariyüce, A.E.: Using motif transitions for temporal graph generation. In:
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. pp. 1501–1511 (2023)

20. Medsker, L.R., Jain, L., et al.: Recurrent neural networks. Design and Applications
5(64-67), 2 (2001)

21. Monsalve, M.N., Pemmaraju, S.V., Thomas, G.W., Herman, T., Segre, A.M., Pol-
green, P.M.: Do peer effects improve hand hygiene adherence among healthcare
workers? Infection Control & Hospital Epidemiology 35(10), 1277–1285 (2014)

22. Morrison, L., Zembower, T.R.: Antimicrobial resistance. Gastrointestinal En-
doscopy Clinics 30(4), 619–635 (2020)

23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825–2830 (2011)

24. Purohit, S., Holder, L.B., Chin, G.: Temporal graph generation based on a distri-
bution of temporal motifs. In: Proceedings of the 14th International Workshop on
Mining and Learning with Graphs. vol. 7 (2018)

25. Shchur, O., Biloš, M., Günnemann, S.: Intensity-free learning of temporal point
processes. arXiv preprint arXiv:1909.12127 (2019)

26. Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.F., Khanafer, N., Régis, C., Kim,
B.a., Comte, B., Voirin, N.: Estimating potential infection transmission routes in
hospital wards using wearable proximity sensors. PloS one 8(9), e73970 (2013)

27. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. nature
393(6684), 440–442 (1998)

28. Zeno, G., La Fond, T., Neville, J.: Dymond: Dynamic motif-nodes network gener-
ative model. In: Proceedings of the Web Conference 2021. pp. 718–729 (2021)

https://doi.org/10.1371/journal.pcbi.1003352
https://doi.org/10.1371/journal.pcbi.1003352
https://doi.org/10.1371/journal.pcbi.1003352
https://doi.org/10.1371/journal.pcbi.1003352
https://doi.org/10.1371/journal.pcbi.1003352
https://doi.org/10.1371/journal.pcbi.1003352
https://doi.org/10.1007/978-3-031-26409-2_21
https://doi.org/10.1007/978-3-031-26409-2_21
https://doi.org/10.1007/978-3-031-26409-2_21
https://doi.org/10.1007/978-3-031-26409-2_21

18 H. Vu et al.

29. Zhang, L., Zhao, L., Qin, S., Pfoser, D., Ling, C.: Tg-gan: Continuous-time tem-
poral graph deep generative models with time-validity constraints. In: Proceedings
of the Web Conference 2021. pp. 2104–2116 (2021)

30. Zhou, D., Zheng, L., Han, J., He, J.: A data-driven graph generative model for
temporal interaction networks. In: Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. pp. 401–411 (2020)

	TempoBiGen: A Curated Generative Model for Healthcare Mobility Logs with Visit Duration

