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ABSTRACT

Customer Interaction Networks (CINs) are a natural framework for
representing and mining customer interactions with E-Commerce
search engines. Customer interactions begin with the submission of
a query formulated based on an initial product intent, followed by a
sequence of product engagement and query reformulation actions.
Engagement with a product (e.g. clicks) indicates its relevance to the
customer’s product intent. Reformulation to a new query indicates
either dissatisfaction with current results, or an evolution in the
customer’s product intent. Analyzing such interactions within and
across sessions, enables us to discover various query-query and
query-product relationships.

In this work, we begin by studying the properties of CINs devel-
oped using Walmart.com’s product search logs. We observe that
the properties exhibited by CINs make it possible to mine intent
relationships between queries based purely on their structural in-
formation. We show how these relations can be exploited for a)
clustering queries based on intents, b) significantly improve search
quality for poorly performing queries, and c) identify the most influ-
ential (aka. ‘critical’) queries whose performance have the highest
impact on performance of other queries.
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1 INTRODUCTION

Search engine logs serve as an invaluable resource of customer
interactions with a search engine. Each search session in the log,
begins with the submission of a query formulated based on an
initial intent, followed by a sequence of result engagement and
query reformulation actions. Engagement with a result (e.g. clicks),
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signals its relevance to the customer’s intent. Reformulation to a
new query indicates either dissatisfaction with current results, or
evolution of intent. Considerable attention is therefore paid toward
mining meaningful information from search logs, and using it to
improve various aspects of the system. In web-search domain, this
is reflected in several prior works [1, 4, 14, 22], which propose
novel search log representations, formulate various log mining
tasks, and evaluate the utility of mined information in delivering
measurable system improvements. Graph based representations
such as click-graphs [23], cover graphs [1], query flow graphs [6],
term graphs [35] etc. are frequently used. Popular mining tasks
include identification of relationships (e.g. synonymy, generaliza-
tion, specialization etc.) between query-query pairs, and relevance
relationships between query-URL pairs. The mined information
is then used for applications like related query recommendation,
search quality improvement (via relevant URL retrieval) etc.

In context of E-Commerce search however, literature is sparse.
There has been some work on analyzing E-Commerce search logs
to study relationships between customers and products [13, 27].
Nevertheless, to the best of our knowledge, no formal study on
the properties and utility of various query-query and query-item
graph representations currently exists. Compared to web-search,
the E-Commerce domain presents several unique characteristics,
which make such a study interesting.

(1) Precise Intent: Since E-Commerce search is a type of entity
search, the notion of query intent is more precise compared
to web search. In E-Commerce, intent can typically be repre-
sented by a well defined set of product attribute-value pairs
expected by the query.

(2) Narrow Search Mission: The goal of search is also narrow
i.e. to buy a particular product, which makes sessions coher-
ent. There are also clear task completion signals i.e. an item
being added-to-cart or purchased.

(3) Category Hierarchy: Products in an E-Commerce catalog
are usually organized into a well defined category hierarchy,
which can serve as useful ground truth for intent mining
tasks.

These characteristics allow us to define better metrics around vari-
ous graphmining tasks, and conduct large scale evaluations without
using human input. A review of prior papers in web search domains
suggests this is a significant problem, since evaluations are typi-
cally manual and consequently small in scale. Also owing to these
differences, we use the term Customer Interaction Networks (CINs)
as an umbrella term to refer to various graphs constructed using E-
Commerce search logs, distinguishing them from their web-search
counterparts.
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(a) Session logs (b) Query Reformulation Network (c) Item Click Network

Figure 1: Network Creation Process. Snapshots of four distinct session logs. Each entry in the log consists of a query, an item,

the time of engagement among other data. (b) Query Reformulation network and (c) Item Click networks constructed from the

session logs.

In this paper, we present a formal study of the properties of vari-
ous graphs constructed using E-Commerce search logs, with a focus
on their utility toward mining query-query and query-product re-
lationships. Our proposed graph mining based techniques provide
us a complementary source for discovering query and product re-
lationships, without directly using their textual content, making
our techniques language independent. We begin by studying the
properties of real-world customer interaction networks developed
using Walmart.com’s product search logs. We observe that CINs ex-
hibit significantly different properties compared to other real world
networks (e.g. WWW, social networks etc.), making it possible to
mine intent relationships between queries, based purely on their
structural information. We then leverage CINs for three different
query relations mining tasks. Our main contributions are:

• Empirical Study: We study structural properties of four
different CINs, namelyQuery Reformulation, Item Click, Com-
posite Click, and Cover networks.

• Graph Theoretic Problem Formulation: We formulate
intent based query clustering and critical query mining prob-
lems as formalQuery Clustering and CriticalQueries
problems.

• Algorithms:We propose carefully designed efficientHubQ-
Expansion andCritical-Queries algorithms to solveQuery
Clustering and CriticalQueries problems respectively.

We have omitted proofs for some of the lemmas due to lack of
space.

2 RELATEDWORK

Network Analysis. [10, 16] were among the first to study the
macroscopic structure of large scale networks. Recently, Zhang et
al. [39] studied the structure of expertise networks, Shen et al. [34]
presented empirical study of E-commercemarketplace network, and
Zlatic et al. [41] studied the network formed by hyperlinks among
Wikipedia pages. Community detection is a well-studied problem
in network setting [20, 31], including for bipartite networks [3] and
heterogeneous networks [26]. Other important tasks related to our
work include discovering influential nodes in networks [9, 24] and
measuring node centrality [8, 33].
Query Graphs. Beeferman and Berger introduced click graphs [4]
for clustering similar queries and URLs. Several subsequent works

utilized click-graphs for other applications [12, 18, 19] like query-
suggestion, document-search, relevance feedback andURL-annotation.
Baeza-Yates [1] proposed various variants of query relation graphs
including Cover graphs. Boldi et al. [6, 7] studied query-flow graphs
and used them for related query suggestion. These are similar to our
Query Reformulation networks (Section 3.1), except that they also
use query content to decide the existence of query-query edges.
Query Relation mining.Many techniques have been employed
in mining relations between queries. Query clustering has been
exploited to group similar queries [2, 4, 37]. Some other works are
based on association rules [17] and modeling users [40].

3 DATA AND APPLICATIONS

3.1 Our Networks

In this work, we used session level customer interaction data col-
lected over a year’s period from Walmart.com. The collected data
consists of information including query string, clicked items, time
of interaction etc. From these, we created four CINs, namely Query
Reformulation, Item Click, Composite Click, and Cover networks (See
Figure 1).
Query Reformulation Network. Query Reformulation network
is a directed weighted networkG(Q,E,W ), where each node q ∈ Q
is a query string. A directed edge (q1,q2) exists if query string q2
was a consecutive reformulation of query string q1 within a session.
The weight w(q1,q2) ∈ R+ for edge (q1,q2) indicates frequency
with which q1 tends to get reformulated to q2. To filter out noisy
and insignificant data, we define some constraints. An edge (q1,q2)
is added to the network G(Q,E,W ), only if the support of query
q1 is greater than δ1 and the reformulation ratio from q1 to q2 is
greater than δ2 percentage. For our experiments both δ1 and δ1
were in the range [0, 20]1. Note that filtering out the noisy nodes
and edges does not affect the performance of our algorithms as
we are concerned only about significant reformulation relations.
After clearing out insignificant edges and nodes, our final Query
Reformulation network has 2.11 million nodes and 2.14 million
edges.
Item Click Network. Item Click network is a bipartite weighted
network B(Q, I ,E,W ) where Q is the query partition and I is the
item partition. A query node q ∈ Q is a query string. An item node

1The exact values of the threshold is not disclosed due to confidentiality issues.



i ∈ I is an item id. An edge (q, i) ∈ E exits if a customer clicks on an
item i after giving query q. The weightw(q, i) ∈ R+ for edge (q1,q2)
indicates frequency with which i tends to get clicked for query q.
Similar to Query Reformulation network, we filter out insignificant
edges. Our final Item Click network has 5.4 million nodes and 18.4
million edges.
Composite Click Network. Composite Click network is a stan-
dard click network consisting of both query-to-query and query-to-
item edges. We created Composite Click network by superimposing
the Query Reformulation and Item Click networks. The resulting
network has 6.3 million nodes and 20.5 million edges.
Cover Network. From our Item Click network, we inferred query-
to-query Cover network. In the Cover network, two queries have
an edge between them if they share an item neighbor in the Item
Click network. Query to item click relations are clear indication of
query intents. Hence, the edges in the the Cover network, inferred
from click relations, naturally represent similar intents between
two query nodes. These networks tend to get very dense. Hence we
imposed additional threshold on edge-weight. The resulting graph
has 785 thousand nodes and 71 million edges.

3.2 Applications

Since our CINs capture various facets of customer interaction data,
they can be leveraged for various applications like query cluster-
ing, improving performance of queries with no engagement data,
and so on. One can design methods based on query contents for
these applications, however our goal here is to exploit the net-
work structure to solve these problems. An advantage of leveraging
the graph structure over a content-based approach is that graph
based methods are language independent. Hence, our approach
can be easily used for any E-commerce search system, regardless
of the language it uses. Moreover, our methods are complemen-
tary to language/content-based approaches. Combining these two
approaches is an interesting future work.

In this work, we focus on leveraging CINs for three different
applications. Descriptions of the applications are as follows.
Intent Based Query Clustering: In E-commerce search, identi-
fication of query intent is crucial to returning relevant items. An
intent of a query is a mapping to attribute-value pairs of the prod-
ucts. Ultimately, it is represented as a set of products.
Product Recommendation: In any E-commerce search system,
one often encounters queries with no customer engagement data. In
this application, we exploit query relations to recommend products
for poorly performing queries.
Critical Queries: Critical queries are the queries which have
the highest impact on the performance of other queries. In this
application, we try to exploit structure of the Query Reformulation
network to identify most critical queries. We formalize the notion
of critical queries in a later section.

In the next sections, we first characterize various structural prop-
erties of our CINs. We then discuss how to exploit them for various
applications.

4 CHARACTERIZING OUR NETWORKS

It is well-known that most real networks like WWW, social net-
works, the Internet, buyer-seller networks, etc. [10, 16, 34] demon-
strate specific regular structural properties. In this section, we in-
vestigate the structural properties of our CINs and show how they
differ from other networks. These differences have a major implica-
tions for our applications.

4.1 Degree Distribution

Many real networks are scale free in nature, i.e, the in-degree and
the out-degree follow power law distributions [10, 16]. The proba-
bility of a node having a degree θ in a scale-free networks is given
by the probability density function P(θ ) ∝ θ−α . Another distribu-
tion that is prevalent in real networks is the log-normal distribution
where P(θ ) = 1√

2πσθ
e−(ln θ−µ)

2/2σ 2
[28]. Both distributions are

heavy tailed, i.e. they have (near) linear log density.
We first look at the degree distributions of the Query Refor-

mulation network. The observed empirical pattern in the degree
distribution of Query Reformulation network is summarized in the
following observation.

Observation 1. Query-Query degree dist. The in-degree dis-
tribution of the Query Reformulation network follows power law
distribution with α = 2.41, while the out-degree distribution follows
log-normal distribution with µ = 0.12 and σ = 0.38.

The degree distribution plots for Query Reformulation network
are presented in Figure 2. The in-degree follows power law distri-
bution with multiple nodes having in-degree greater than 1000. On
the other hand, the maximum out-degree is 9, which is negligible
in comparison. Note that, our noise filtering process contributes
in reducing the maximum value of out-degree in the Query Re-
formulation network to some extent. However, the exact value of
the maximum out degree is much less than that warranted by our
thresholds. This suggests that while it is probable that many queries
get re-formulated into a single query consistently, it is not the case
where one query repeatedly gets reformulated into many other
queries. This observation is very different from other networks
where both in and out degree tend to have similar power law dis-
tributions [10, 34]. We found the queries with highest in-degrees
tend to be very general queries such as “sweatshirts”, “tablets”, “tv”
etc. The in-neighbors of these queries tend to be more specialized
queries such as “hooded fleece sweatshirts”, “infant sweatshirts”,
“hp tablet”, “htc tablet” etc.

In the bipartite Item Click network B(Q, I ,E,W ), we look at the
degree distribution of the query partitionQ and the item partition I
individually. We observed that the degree distribution for both par-
titions follow log-normal distribution. Similarly, we also observed
that the degree distribution for Cover network follows log-normal
distribution while that for Composite Click network follows power
law distribution.

In summary, we found that degree distributions for all of our
CINs follow heavy tailed degree distributions. The heavy tailed
degree distributions indicate that while there exist some popular
queries which connect with many other queries and items, most
queries connect only to a few queries and items. Hence, the net-
works (due to sparse connections only between relevant nodes)



(a) In-degree Distribution (b) Out-Degree Distribution

Figure 2: In and out degree distributions of Query Reformula-
tion network.

preserve the relationships between queries and items for the most
part.

4.2 Assortativity and Degree Correlation

Degree assortativity, r ∈ [−1, 1], is a measure of similarity between
nodes and their neighbors in terms of degree [31]. Formally, degree
assortativity is defined as the Pearson Correlation Coefficient of
degrees between all pairs of connected nodes. The value r = −1
implies that the network is disassortative (negative correlation) and
r = 1 implies that the network is assortative (positive correlation).
Social networks are known to be assortative. However, other net-
works like protein-protein interaction network are known to be
disassortative [30]. The observation regarding assortativity of our
CINS networks is as follows:

Observation 2. Degree assortativity. Query Reformulation,
Item Click, and Composite Click networks are neither assortative nor
disassortative, with r = −0.02, r = −0.09, and r = −0.07 respectively,
while the Cover network is assortative with r = 0.22.

The assortativity plot for the Query Reformulation and Cover
networks are shown in Figure 3. For Query Reformulation network,
we observe that the neighbors of high degree nodes have very low
degrees. On the other hand, high degree nodes connect to each
other predominantly in the Cover network. For Item Click and Com-
posite Click networks, we do not observe any asymmetrical pattern.
The positive assortativity of the Cover network implies that it is
ill-suited for query intent mining, as general influential queries
which typically have distinct intents, tend to connect to each other.
The degree distribution and assortativity of the Query Reformu-
lation network suggests the dominance of star-like structures in
the network. It highlights that unpopular queries are typically re-
formulated to related popular queries, capturing the intent of the
queries.

4.3 Connected Components, Diameter, and

Clustering

Many real directed networks are known to have the “bow-tie” struc-
ture with a giant strongly connected component (SCC)[10, 39]. It
is reported that the WWW has SCC consisting of 27.7% of the

(a) Query Reformulation Cover

Figure 3: Assortativity Plots (degree vs average neighbor’s

degree) for Query Reformulation and Cover networks.

nodes [10], while community expertise network for Java forum
has SCC consisting of 12.3% of the nodes [39]. In our only directed
network, the Query Reformulation network, we do not find the
“bow-tie” structure, with just 300 out of 2.11 million nodes in the
largest strongly connected component. The reason for absence of
“bow-tie” structure can be attributed to customer behavior. It is
unlikely that customers reformulate a query with an specific intent
to a query with drastically different intent repeatedly. Most signifi-
cant reformulations are related, thus creating distinct partitions of
graphs which are not reachable from each other in both directions.
On the other hand, the web pages can arbitrarily link to one another
in the WWW and people with different expertise may interact with
each other in the Java Forum network, which leads to a formation
of SCC in these networks.

Another common property exhibited by most real world net-
works is the “small world” phenomenon, commonly referred to as
six degree of separation. Very large real networks like the WWW,
social networks e.t.c are known to have small diameters [10, 36].
However, all three of Query Reformulation, Item Click, and Compos-
ite Click networks have relatively large diameters of 94, 37, and 36
respectively. This suggests that “weak links” are missing in these
networks which implies customers do not typically search for unre-
lated queries one after another and do not click on arbitrary items
for a given query significant number of times. On the other hand,
the diameter of the Cover network is only 12, which suggests that
Cover network does not consist of regions representing homoge-
neous intent.

Average Clustering Co-efficient, ACC ∈ [0, 1], of a network
measures how well the nodes are clustered together. The value of
ACC = 0 indicates that the network is not clustered at all, whereas
ACC = 1 indicates that the network is well clustered. For bipartite
networks, clustering co-efficient is defined in terms of overlapping
neighbors of nodes in the same partition [25]. We computed the
average clustering co-efficient for all of our networks and observed
that the Query Reformulation, Item Click, and Composite Click net-
works have very low clustering co-efficient of 0.05, 0.12, and 0.07,
respectively, while the Cover network has very high clustering co-
efficient of 0.76. The clustering co-efficient gives further validation
of previous implication that Query Reformulation, Item Click, and
Composite Click network are suitable for query intent mining, while
the Cover network is not.



Table 1: Summary of properties of CINs. QQ stands for Query
Reformulation, Qi for Item Click, QQI for Composite Click and

C for Cover networks. ACC stands for average clustering co-

efficient.

Properties QQ QI QQI C
degree power-law

log-normal
log-normal power-law log-normal

assortativity none none none positive
diameter 94 37 36 12
ACC 0.05 0.12 0.07 0.76

4.4 Summary

In this section we explored various properties exhibited by our
CINs. The properties of our networks indicate that they are dif-
ferent from common real world networks and that they preserve
relevance between queries and items. Thus, our CINs can be lever-
aged for various query mining tasks. In the next three sections, we
explore applications of CINs in query intent mining and product
recommendation.

5 APPLICATION 1: INTENT BASED QUERY

CLUSTERING

In E-commerce search, identification of query intent is crucial to
returning relevant items. However, in practice, one encounters with
many queries with ambiguous intent due to very little engagement
data. An approach to identify intent of such queries is to cluster
them with other queries whose intent is known and leverage the
general intent of the cluster to recommend product for queries
with low engagement data. Clustering queries based on intent is
known to be useful in many potential applications like query rec-
ommendation, categorization etc. in both web and E-commerce
search [2, 4].

Since our Query Reformulation network captures the significant
reformulation relations, we propose to exploit the Query Reformu-
lation network to cluster the queries with same intent.

5.1 Problem Formulation

Recall that the Query Reformulation network is a query-to-query
reformulation network. Hence neighboring queries in the Query Re-
formulation network are similar to each other. Therefore, intuitively
a community in the Query Reformulation network is expected to
consist of queries with similar intent. Hence the problem of in-
tent based query clustering in the Query Reformulation network is
well-founded. The problem can be stated as follows:

Informal Problem 1. Query Clustering
Given: A Query Reformulation network G(Q,E,W ), and an integer
k ∈ Z.
Find: A k partition of Q , such that each partition contains queries
with the same intent.

To formalize Informal Problem 1, two questions must be ad-
dressed (i) How is intent defined in terms of graph structure? (ii)
How to measure ‘closeness’ between two queries in terms of intent?

To address the first question, we rely on the empirical study. As
mentioned in Section 4, nodeswith high in-degree tend to be general

queries with broad intent like ‘tv’, ‘phone’, ‘sweater’ etc. Majority of
specific queries reformulated to these general queries tend to have
similar intents. Hence, these general queries with high in-degree
nodes in the Query Reformulation network are good candidates to
represent the intent. To address the second question, we look at the
edge relation in the Query Reformulation network. Each edge in the
Query Reformulation network represents significant reformulation.
Therefore, shorter reformulation paths from one query to another
is a good indication of similar intents and vice-versa. Hence both
questions (i) and (ii) can be answered in terms of the graph structure.

Next, we formalize Informal Problem 1 leveraging two graph
properties (i) high in-degree nodes and (ii) shortest paths. Given a
Query Reformulation network and the number of distinct intents k ,
our goal is to discover k disjoint partitions {C1,C2, . . . ,Ck }. Since
intents are well-represented by the high in-degree nodes, we for-
malize the problem by asking to find a set S = {s1, s2, ..., sk } of
such nodes and partitions C = {C1,C2, ...,Ck }, such that Ci is the
partition with the intent represented by si . Moreover, since the
short reformulation path indicates closer intent between queries,
we require nodes in Ci to have a short distance to si .

Let θ i (v) be the in-degrees of v; d(a,b) be the shortest hop dis-
tance between two nodes a and b; and s(v) be the node in S such
that both the nodesv and s(v) belong to the same partition (i.e. s(v)
is the seed node of the community v belongs to). Now, our formal
problem, purely in terms of network structure, can be stated as
follows:

Problem 1. Given a query reformulation network G(Q,E) and
an integer k , identify a set S∗ = {S1, S2, ..., Sk } of the general query
nodes and set of partitions C∗ = {C1,C2, ...,Ck }, such that Si ∈ Ci
and

S∗,C∗ = argmin
S,C

J (S,C) = argmin
S,C

[( ∑
v ∈V

d(v, s(v))

) (∑
s ∈S

1
θ i (s)

)]

5.2 Methods

Since our original problem requires partitions, traditional com-
munity detection methods are natural baselines for our problem.
Hence we use an existing community detection method based on
modularity [32], an overlapping community detection method and
a heuristic specifically designed for Problem 1 as baseline methods.
Brief descriptions are as follows:

• Louvian: We used the popular Louvian method to maximize
modularity in Query Reformulation network [5].

• BigClam: It is an overlapping community detectionmethod based
on bipartite affiliation model [38].

• LouvianSmall: Most queries share intent with few other queries.
Hence, we modified the Louvian to generate smaller commu-
nities by defining threshold on the first stage of the Louvian
algorithm.

• Star: Since Query Reformulation network is dominated by star-
like structures, we generate star shaped communities by cluster-
ing high in-degree nodes with their neighbors. This approach is
designed to choose high degree nodes as the community center.
Hence, it is a heuristic for Problem 1.



We run Louvian to cluster the Cover and the Composite Click
networks as well. Since, the Composite Click network is a hetero-
geneous network, we also used modified version of Louvian to
maximize the composite modularity [26] defined on heterogeneous
networks. We name this method ComLouvian.

While traditional community detectionmethods are natural base-
lines for Problem 1, they would be sub-optimal as they do not di-
rectly optimize the given objective. Our main idea is to leverage the
structural properties of the Query Reformulation network instead,
to solve Problem 1. We exploit the following properties: (a) over
half of the nodes in the Query Reformulation network lie outside the
giant weakly connected component, (b) the assortativity plots (see
Figure 3) shows that the high in-degree nodes are very unlikely to
have an edge between them, and finally, (c) the Query Reformulation
network has low clustering co-efficient and long diameter which
indicates that the queries with distinct intents are well separated.
Based on these observations, we propose our algorithm HubQEx-
pansion (Hub-Query Expansion) for clustering queries with similar
intents in E-Commerce Query Reformulation network.

Property (a) indicates that the significant number of queries exist
outside the giant connected component, hence we cluster queries
in each connected components. We distribute the number of com-
munities to be found in each connected component proportionally
to their size, i.e., for each connected componentGi (Qi ,Ei ,Wi ) inG ,
the number of community to be found is set to ki =

|Qi |
|Q |

. Following
the property (b), we assign ki nodes with highest in-degree in the
component Gi , to their own community. Assigning high degree
nodes to to their own community is justified as they tend to be
general queries and it is intuitive that general queries like ‘tv’ and
‘sweater’ have distinct intents. Finally, (c) suggests that queries with
distinct intents are well separated. Hence, we expand the communi-
ties using breadth-first search. We continue community expansion
until all the nodes in the connected component are assigned to a
community. The complete pseudocode is in Algorithm 1.

The objective in Problem 1, involves two terms
∑
v ∈V [d(v, s(v))]

and
∑
s ∈S

[
1

θ i (s)

]
. Intuitively, Algorithm 1 tries to optimize the

second term of the objective by assigning high in-degree nodes as
the cluster centers and the first term by assigning nodes to the same
community as the closest (shortest-path) cluster centers. Since we
observe that the high in-degree nodes tend to have short paths
to many queries and also are well-separated with each other, we
expect the solution obtained from Algorithm 1 to minimize both
terms in the objective and result in a good solution to Problem 1.

Lemma 5.1. Algorithm 1 has linear time complexity of O(m + n),
wherem is the number of edges and n is the number of nodes.

5.3 Experiments

Metrics. Measuring how well the methods minimize the objective
in Problem 1 demonstrates their ability in solving the problem.
However, it does not indicate how well the communities are clus-
tered in terms of their intents. Since sets of relevant items were not
available for most queries, we treat product category learned from
an accurate tagger as the proxy for query intents. Intuitively, if two
queries have associated items in common, they should also have
product categories in common. Hence, product categories are good

Algorithm 1 HubQExpansion
Require: Query Reformulation network G(Q, E,W ) , number of commu-

nities k
Ensure: k disjoint partitions of Q
1: Partition P = ∅

2: for each connected component Gi (Qi , Ei ,Wi ) in G do

3: ki =
|Qi |
|Q |

4: Temp set S = ∅

5: for node v in ki nodes in Qi with highest in-degree do
6: S = S ∪ {v }

7: Assign nodes in Qi to nodes in S using BFS
8: P = P ∪ S
9: return P

Table 2: Performance of Louvian on Query Reformulation,
Composite Click, and Cover networks. The table showsAIH ,AIS ,
and F1 based on categories. The performance of Louvian on

Query Reformulation network is the best.

Networks AIHcat AIScat F1cat
Query Reformulation 0.26 0.11 0.15

Composite Click 0.07 0.31 0.11
Cover 0.05 0.54 0.09

Table 3: Performance of various methods for Query Cluster-

ing in Query Reformulation network. The table showsAIH ,AIS ,
and F1cat . The final objective value J is also shown. HubQ-

Expansion outperforms all the baselines.

Method AIHcat AIScat F 1cat J (×106)
Louvian 0.26 0.11 0.15 19.7

ComLouvian 0.07 0.33 0.12 118.7
LouvianSmall 0.39 0.08 0.13 0.73

Star 0.38 0.12 0.18 3.01
BigClam 0.14 0.21 0.17 17.7

HubQExpansion 0.37 0.14 0.20 0.54

proxy for intent. We obtained categories for 267K queries, which
we use to evaluate all the methods.

A measure of cluster goodness is the categorical homogeneity
of each community. To that end, for a community C , we define its
Community Intent Homogeneity CIH as the fraction of node pairs

which share a category, i.e., CIH (C) = 2 ∗
∑
qi ,qj ∈C δ (PC(qi ),PC(qj ))

|C |× |C−1 |
, where PC(qi ) represents the category associated with node qi and
δ (a,b) = 1 if a = b, 0 otherwise. Note that forCIH , we only include
the nodes for which category information is available. We then
compute the Average Intent Homogeneity AIHcat for a partition
P as AIHcat =

∑
C∈P CIH (C)

|P | . The AIHcat score of 0 represents
that the communities in the partition are heterogeneous, while the
AIHcat score of 1 represents that the communities are perfectly
homogeneous.

AIHcat has a drawback as the smaller communities tend to get
higher score. Hence, to overcome this, we also measure the num-
ber of communities in which a category is represented. Ideally, we



would want each category to be represented in a single community.
Hence, we measure average inverse spread AIScat of a category
as 1

Spread , where Spread is defined as the average number of com-
munities the categories are represented in. The AIScat score of 1
represents that each category is represented in a single community,
while a score close to 0 represents that the categories are spread
across communities. Finally, we compute F1cat as the harmonic
mean of AIHcat and AIScat .
Performance. First, we ran Louvian on the Query Reformulation,
the Composite Click, and the Cover networks. The results are sum-
marized in Table 2. The results show that the clusters obtained from
the Query Reformulation perform the best, indicating that it is the
most suitable network for query clustering.

Next, we ran all the methods in the Query Reformulation net-
work and ComLouvian in the Composite Click network. First, we
computed performance of the methods with respect to the objective
of Problem 1. The result is presented in Table 3. As expected HubQ-
Expansion outperforms all the baselines in terms of the Problem 1
objective. Next, we computed the intent based metrics described
above. The results are summarized in Table 3. As observed,HubQEx-
pansion outperforms all the baselines. Louvian performs decently
indicating that traditional community detection methods are in-
deed suitable for Problem 1. Poor performance of LouvianSmall
indicates that artificially creating smaller clusters prevents good
clusters from forming. Naive Star heuristic performs well due to
the fact that communities in the Query Reformulation network are
centered around the ‘popular’ queries. However, HubQExpansion
outperforms all the methods, since it exploits the unique structure
of the Query Reformulation network to find communities with the
same intent.

6 APPLICATION 2: PRODUCT

RECOMMENDATION

Improving search quality for queries with no customer engagement
data is a challenging task. In this section, we propose to leverage the
Composite Click network to associate items with poorly performing
queries and evaluate whether such a method does in fact improve
search quality for queries with no engagement data.

6.1 Problem and Method

In this task, we explore whether product recommendations made
based on the Composite Click network could help improve search
quality for poorly performing queries. We used the current Wal-
mart.com product search engine as the baseline, and identified
poorly performing queries. The criteria for selection was queries in
the lowest 10th percentile in terms of click through rate, and a con-
version rate, defined as ( #Quer ieswithorders

#Quer ies ), of 0. For variation,
we used a random walk based method similar to [12], except that
our network is directed (we treat query-to-item links as directed
here), and there are no out going edges from the items, making
them sink nodes. The unnormalized edge weights for our Composite
Click network were computed as follows:

• Query q1 to q2 edge:w(q1,q2) =
c(q1,q2)
c(q1)

• Query q to product i edge:w(q, i) =
c(q,i)
c(q) ,

where c(q1,q2) represents the number of times q1 is formulated
to q2, c(q1) represents the number of times q1 occurs, and c(q, i)
represents the number of times product i is clicked for query q. We
further normalized the weight of each directed edge (q,x), where x
may be a query or product, by the sum of all out-going edges from
the base node q.

In order to make product recommendations for some query q,
we started with a weight of 1 at node q, and spread it across the
graph by executing random walk iterations. After several iterations
(50 were usually enough), a portion of the weight settled on the
product nodes. Top 5 highest weighted products were then used
as recommendations for q. Our variation ranking method injected
these recommended products into the top 10 search results for
query q demoting some of the original results below 10th position.

6.2 Experiments

For evaluation, we identified a random sample of 136 poorly per-
forming queries2. A dataset of query-product pairs was created
by obtaining top 10 results for each query, from both control and
variation. Expert E-Commerce analysts were then asked to assign
a relevance rating between 0 − 4 for each query document pair, 4
being extremely relevant and 0 being irrelevant. We observed that
our recommendation based variation performed significantly better
achieving a 34% improvement in average NDCG@10[21] (baseline
NDCG10: 0.439, NDCG10: 0.588). Out of 136, 99 queries were im-
proved, while 31 were degraded. From a practical point of view the
degradations are not harmful, since the queries already have poor
conversion rates. This observation was further backed up by our
online A/B test evaluation which showed a statistically significant
5.8% lift in click through rate and 6.9% lift in conversion.

7 APPLICATION 3: CRITICAL QUERIES

In the previous section (Section 6), we showed that the engagement
data from one query can be leveraged to improve the performance
of other related (via reformulation relation) queries. A natural ques-
tion that arises in this setting is which queries have the highest
cumulative impact on the performance of other related queries?
We refer to these as the ‘Critical Queries’.

Mining the critical queries is important for improving the over-
all performance of the search system. Typically in processes like
manual curation, which aims at improving search quality by man-
ually improving the search results, the queries that appear most
frequently in the search log are selected. However, this yields a
sub-optimal improvement in the overall performance as these most-
frequent queries do not necessarily improve the performance of
other queries. On the other hand, by definition, critical queries
have the highest impact on the performance of the related queries.
Hence, correctly identifying the critical queries for the curation
process would yield a better improvement in performance. Note
that the critical queries can be leveraged for many other tasks
in E-commerce like measuring performance of a search system,
identifying broad search categories and so on.

Since our Query Reformulation network captures the reformu-
lation relation well, we propose to mine the critical queries by
leveraging the Query Reformulation network.
2Number of queries was obtained based on the available crowdsourcing budget.
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Figure 4: (a) Intersection between top-k critical queries returned by Algorithm 2 and other baselines. (b) Our method outper-

forms all the baselines in terms of ϕ(T ). (c) Our method performs the best based on usability metrics.

7.1 Problem Formulation

To formalize the problem of choosing the most critical queries,
we need to correctly model customer behavior during the query
reformulation process. We model customer behavior in query re-
formulation as a discrete-time dynamical process that occurs over
the Query Reformulation network. We call it the Randomized User
Navigation (RUN) model.
RUN Model: In an E-Commerce search system, a customer (user)
submits an arbitrary query to the search system. A list of items
relevant to the query are displayed. The customer, depending on
many factors like satisfaction with the search result, relevance of
products etc. may decide to submit another query or exit the search
system.

This process can actually be viewed as a discrete-time proba-
bilistic dynamical process over the Query Reformulation network
G(Q,E,W ). Given a current node v , we proceed as follows:

(1) With probability pt , the process terminates
(2) With probability 1 − pt , we continue the process and jump

from current node v to a query node u, such that (v,u) ∈ E,
with probability pj = w (v,u)∑

(v,a)∈E w (v,a)

The process starts from an arbitrary query node sampled from Q
uniformly at random. Note that, an instance of RUNmodel produces
a sequence of queries which we call ‘reformulation logs’.

Now, let T be a set of nodes. We define ϕ(T ) as the probability
that an arbitrary instance of RUN model goes through at least one
node in T . Empirically, ϕ(T ) is the fraction of times at least one
node in T appears in reformulation log produced by repetitions of
the RUN model.
Remark. Since both PageRank’s Random Surfer model [33] and
our RUN model simulate a random walker over a network, they
appear to be similar. However, PageRank’s Random Surfer model
is distinct from our RUN model as it has no notion of a termination
probability and the walker can teleport to any node in the network.
Given enough time, every nodev ∈ Q is visited and hence, ϕ(T ) for
any set T is always 1 under the Random Surfer model—which is not
the case for the RUN model. The RUN model is also distinct from the
cascade style models (like IC [24]) as only a single node is visited
at a time in the RUN model, whereas the ‘contagion’ spreading in
the cascade models can infect multiple nodes at once (depending
on who else was ‘infected’ in the previous time-step)

Having defined the RUN model and ϕ(·), we can state our Critical
Queries identification problem formally as follows:

Problem 2. Critical Queries
Given: A Query Reformulation network G(Q,E,W ), and budget
k ∈ Z.
Find: a set of nodes T ∗ = {q |q ∈ Q}, such that |T ∗ | = k and

T ∗ = argmax
T

ϕ(T )

.

7.2 Methods

Problem 2 is NP-hard (we can reduce from the SetCover problem;
proof omitted due to space). Although it is challenging to solve
Problem 2 optimally in an efficient manner, one can use various
centralitymeasures or query logs based heuristics to identify critical
queries. Some of these methods can be the following:
• MostFreq (MF): In this method, we select the queries that had
the highest frequency from the same data from which the Query
Reformulation network was created.

• SessionFreq (MS): In this method, we select the queries that
appeared in most sessions.

• PageRank (PR): We pick the nodes with highest page rank [33]
on the Query Reformulation network.

• EigCentrality (EigC): We pick the nodes with highest eigen-
vector centrality [8] on the Query Reformulation network.
None of methods mentioned above solve Problem 2 directly.

Hence, we seek for a fast algorithmwith a performance guarantee. It
turns out that ϕ(·) is sub-modular [24]. A function f (·), which maps
a set to a real number, is sub-modular if it satisfies the diminishing
return property i.e. f (A∪{v})− f (A) ≥ f (B∪{v})− f (B), for any
elementv , and setsA ⊂ B. Next, we prove that ϕ(·) is sub-modular
and monotonous.

Lemma 7.1. ϕ(·) is sub-modular and monotonous.
Proof. In the RUNmodel, a customer at nodeqi makes a decision

to whether make a random jump to one of qi ’s out-neighbors and
which node to jump to. Suppose the customer makes the random
decision before the process, i.e, decides on the number of RUNmodel
iterations l , the starting nodes, and the node jumps beforehand. Let
the set D be the set of outcomes of the random decisions. Note
that given D, these k iterations of RUN are a deterministic processes,
which produce l reformulation logs.



Now, let A and B be two sets of nodes of Query Reformulation
network and let A ⊂ B. Consider a node v such that v < B. Also
let ϕD(A) be the fraction of logs that go through any node is A
given D. Now, ϕD(A ∪ {v})−ϕD({v}) is the fraction of logs that go
though v , which does not already go through any node in A. This
value is definitively larger than or equal to ϕD(B ∪ {v}) −ϕD({v}),
since A ⊂ B. Hence, ϕD() is sub-modular.

Now, ϕ(T ) equals
∑
Decision D Prob(D)ϕD(T ).

Since, any linear combination of sub-modular functions is also
sub-modular, ϕ(·) is sub-modular. Since, ϕ(·) is a non-decreasing
function, it is also monotonous. �

Speeding up. Due to Lemma 7.1, a simple greedy algorithm will
give 1 − 1/e approximation [29]. However, such a method is expen-
sive due to repetitive simulations. Leveraging the idea in [11], we
propose sampling based greedy algorithm Critical-Queries. First
of all, we initialize set T to an empty set. We then sample a graph
G ′ from G based on the number of iterations l and termination
probability pt . Given the deterministic network G ′, we compute
ϕG′(T ) and ϕG′({v}) for every v in G ′. We repeat such process
R times and choose v with the highest average gain in ϕ(·). We
repeat the entire process until |T | = k . Note that there exist other
techniques from related problems to speed up our algorithm [9, 15].
However, we chose this method for its simplicity. The complete
pseudocode is presented in Algorithm 2.

Algorithm 2 Critical-Queries (GR)
Require: Query Reformulation network G(Q, E,W ) , termination proba-

bility pt , number of iterations of RUN l , and budget k
Ensure: Best set of nodes T
1: T = ∅

2: for i = 1 to k do

3: дv = 0 for all v ∈ V \ T

4: for i = 1 to R do

5: Sample G′ based on pt and l
6: compute ϕG′ (T)

7: for v ∈ V \ T do

8: дv+ = ϕG′ ({v })

9: дv = дv /R for all v ∈ V \ T

10: T = T ∪ {argmaxv (дv )}
11: return T

As shown by the next two lemmas, Algorithm 2 gives a provable
approximation guarantee and has near linear time complexity.

Lemma 7.2. Algorithm 2 provides a (1 − 1/e) approximation to
Problem 2.

Lemma 7.3. The time complexity of Algorithm 2 is O(kR(n +m)).

7.3 Experiments

Metrics. While the value of ϕ(T ) for various methods indicates
the quality of T , it does not highlight usefulness of queries in T .
Hence we define two additional metrics to measure usability of T .

To improve state of search system by curating theT , the ancestor
nodes in Query Reformulation network, i.e. queries leading up to T

must actually be related to the queries in T . Hence, we measure
whether the ancestor queries of T are actually relevant to it or not.

To this end, we determined the set of items related to each query in
T and computed the number of ancestor queries, In f Q , that had at
least one common relevant items with the queries in T . Formally,
let Ad be the set of ancestors within distance d of all query q in T .
Let, the set of items relevant to set of queries T , be I(T ). Now, we
calculate In f Q , influenced queries, as In f Q =

∑
q∈A5 1(|I(T ) ∩

I({q})| ≥ 1). Similarly, another metric of interest is how close the
ancestors are related to the critical queries. To capture the notion
of overall relation between queries and their ancestors, we also
compute the size of set of items, SumI , which are relevant for both
the nodes in T and their ancestors as SumI = |I(T ) ∩ I(A5)|.
Performance. For Critical-Queries, we set pt as 0.7 and l as the
number of nodes in the network. We ran all the methods on the
Query Reformulation network. First of all, we check the whether
the set T returned by Critical-Queries is distinct from the ones
returned by the baselines. In Figure 4 (a), we plot the size of inter-
section of T returned by various methods and T obtained from
Critical-Queries against, k , the size of T . At least 45 % of nodes
returned by Critical-Queries are not present in sets returned by
any other method. Hence, Critical-Queries returns the critical
queries which other methods fail to discover.

The performance of all the methods in terms of ϕ(T ) is shown
in Figure 4 (b). As we can see, Critical-Queries consistently out-
performs all the baselines for multiple values of k in terms of ϕ(T ).
PageRank (PR) and EigCentrality (EigC) and have poor per-
formance as they tend to choose nodes which are close to each
other and return a set of similar queries. The MostFreq (MF) and
SessionFreq (MS) heuristics perform better than other baselines,
however, they too suffers from the same problem especially for
lower values of k . The results for In f Q and SumI are shown in
Figure 4 (c). Our method has higher values for both In f Q and SumI
compared to all the baselines. The results reveal that the queries we
find using Critical-Queries are closely related to their ancestor
queries showcasing their usability.

8 CONCLUSIONS

In this work, we studied various structural properties of CINs con-
structed from customer interactionwith E-Commerce search engine.
Our results show that these networks are significantly distinct from
other real world networks. We also observed that the structural
properties of CINs, the Query Reformulation and the Composite
Click networks in particular, make them useful for mining query re-
lations. We demonstrated usability of these networks, by leveraging
them to cluster queries based on their intents, improve performance
of poorly performing queries, and mine critical queries. To cluster
queries based on intent, we proposed efficient HubQExpansion al-
gorithm, carefully designed to exploit special structure of the Query
Reformulation network. Similarly, we modeled user interactions in
E-Commerce search system as the RUN model, formulated Criti-
cal Queries problem and proposed efficient Critical-Queries
algorithm to identify critical queries. Our extensive experiments
demonstrate that the Query Reformulation network is useful and
our methods are successful in mining query relations.
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