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Abstract
One of the most significant challenges in combating against
the spread of infectious diseases was the difficulty in estimat-
ing the true magnitude of infections. Unreported infections
could drive up disease spread, making it very hard to ac-
curately estimate the infectivity of the pathogen, therewith
hampering our ability to react effectively. Despite the use of
surveillance-based methods such as serological studies, iden-
tifying the true magnitude is still challenging. This paper
proposes an information theoretic approach for accurately
estimating the number of total infections. Our approach is
built on top of Ordinary Differential Equations (ODE) based
models, which are commonly used in epidemiology and for
estimating such infections. We show how we can help such
models to better compute the number of total infections and
identify the parameterization by which we need the fewest
bits to describe the observed dynamics of reported infec-
tions. Our experiments on COVID-19 spread show that our
approach leads to not only substantially better estimates
of the number of total infections but also better forecasts
of infections than standard model calibration based meth-
ods. We additionally show how our learned parameteriza-
tion helps in modeling more accurate what-if scenarios with
non-pharmaceutical interventions. Our approach provides a
general method for improving epidemic modeling which is
applicable broadly.
Keywords: Information theory, Ordinary differential-
based Equations, Modeling, Forecasting

1 Introduction
One of the most significant challenges in combating
against the spread of infectious diseases in population is
estimating the number of total infections. Our inability
in estimating unreported infections allows them to drive
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up disease transmission. For example, in the COVID-19
pandemic, a significant number of COVID-19 infections
were unreported, due to various factors such as the lack
of testing and asymptomatic infections [8, 6, 38, 36, 24].
There were only 23 reported infections in five major U.S.
cities by March 1, 2020, but it has been estimated that
there were in fact more than 28,000 total infections by
then [4], and spread the COVID-19 to the whole US.
Similar trends were observed in other countries, such as
in Italy, Germany, and the UK [40].

In fact, an accurate estimation of the number of
total infections is a fundamental epidemiological ques-
tion and critical for pandemic planning and response.
Therefore, epidemiologists use reported rate (αreported)
to capture total infections, which is defined as the ra-
tio of reported infections to total infections [28]. One
of the benefits of using this definition is that it in-
cludes asymptomatic infections, which may also con-
tribute substantially to spread [39, 25]. To estimate the
reported rate, data scientists and epidemiologists have
devoted much time and effort to using epidemiological
models. There are many carefully constructed Ordinary
Differential Equation (ODE) based models that cap-
ture the transmission dynamics of different infectious
diseases [24, 34, 7, 29, 21, 22, 41, 15, 19, 42, 43, 10, 26].
However, these models still suffer from estimating accu-
rate reported rates, leading to suboptimal total infec-
tions estimation. For example, as shown in Figure 1,
the Minneapolis Metro Area had only 16 COVID-19 re-
ported infections by March 11, 2020. Although epidemi-
ologists estimate that there were 182 total infections
(light green part in the iceberg) using epi models, later
studies revealed that there were actually around 300 to-
tal infections (iceburg below the sea level) [16, 1], which
is much larger than the epi model estimated values.

To tackle this, we propose a new information
theory-based approach named MdlInfer to estimate
the reported rate. It is based on the following central
intuition: Suppose an “oracle” gives us the time series
of the number of total infections D, we should be able
to describe Dreported in a succinctly way: As we know
D, it is trivial to get the reported rate αreported. Then
with both D and αreported, it will be trivial to describe
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Figure 1: Overview of our problem and methodology. (A) We visualize the idea of reported rates using
the iceberg. The visible portion above water are the reported infections, which is only a fraction of the whole
iceberg representing total infections. Light green corresponds to the 182 unreported infections estimated by typical
current practice used by researchers. We call it as the basic approach, or BaseInfer. In contrast, dark green
corresponds to the more accurate and much larger 301 unreported infections found by our approach MdlInfer.
(B) The usual practice is to calibrate an epidemiological model to reported data and compute the reported rate
from the resultant parameterizaion of the model. Here, an SEIR-style model with explicit compartments for
reported-vs-unreported infection is shown in the figure as an example. (C) Our new approach MdlInfer instead
aims to compute a more accurate reported rate by finding a ‘best’ parameterization for the same epidemiological
model (i.e., SEIR-style model in this example) using a principled information theoretic formulation - two-part
‘sender-receiver’ framework. Assume that a hypothetical Sender S wants to transmit the reported infections as
the Data to a Receiver R in the cheapest way possible. Hence S will find/solve for the best D∗, intuitively, the
Model that takes the fewest number of bits to encode the Data. Using D∗, we can find the best Θ∗ by exploring
a smaller search space.

Dreported, as it is simply D×αreported plus a little bit of
noise.

In practice, we are of course not given D, but we
could estimate D as a latent variable. Specifically, as
shown in Figure 1(C), we use Minimum Description
Length (MDL) principle to estimate D, which allows
us to most succinctly describe (i.e., most accurately
encode/reconstruct) the dynamics of Dreported. Here,
MdlInfer gives an estimate of 301 total infections in
Minneapolis as shown below the sea level, which is much
closer to the ground truth total infections numbers of
around 300 [16, 1].

Our main contributions are summarized below.

• We propose an MDL-based approach on top of
ODE-based epidemiological models, which are
harder to formulate and optimize. To the best of

our knowledge, we are the first to propose an MDL-
based approach on top of ODE-based epidemiolog-
ical models.

• Our proposed MDL-based approach MdlInfer
performs superior to the state of the art epidemi-
ological model in estimating total infections and
predicting the future reported infections.

• We also show that MdlInfer can aid pol-
icy making by analyzing counter-factual non-
pharmaceutical interventions, while inaccurate epi-
demiological model estimates may lead to wrong
non-pharmaceutical intervention conclusions.

The rest of the paper is organized in the follow-
ing way: Section 2 discusses the related works. In
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section 3, we introduce the current ODE model cali-
bration method to estimate the reported rate, and the
background of MDL framework. We then introduce our
MdlInfer framework in section 4 and explain how we
use it to estimate the total infections. In section 5, we
evaluate the performance of MdlInfer. We then dis-
cuss future work and conclude in section 6.

2 Related work
2.1 Reported rate estimation One of the most
effective current methods to identify the reported rate
in a region is through large-scale serological studies [37,
16, 44]. These surveys use blood tests to identify
the prevalence of antibodies against target panedmic
in a large population. While serological studies can
give an accurate estimation, they are expensive and
are not sustainable in the long run [3]. Furthermore,
it is also challenging to obtain real-time data using
such studies since there are unavoidable delays between
sample collection and laboratory tests [1, 16].

2.2 Minimum Description Length framework
MDL frameworks has been widely used for numerous
optimization problems ranging from network summa-
rization [20], causality inference [9], and failure detec-
tion in critical infrastructures [5]. However, these works
are built on networks and agent-based models. To the
best of our knowledge, we are the first to propose an
MDL-based approach on top of ODE-based epidemio-
logical models.

3 Preliminaries
3.1 ODE-based Models An ODE-based epidemio-
logical model uses ordinary differential equations to de-
scribe the spread of diseases by modeling changes in
populations (e.g., susceptible, infected, recovered) over
time [18]. In general, it OM has a set of parameters Θ
that need to estimate from observed data using a so-
called calibration procedure, Calibrate. In practice,
the data we use for calibration can be the time series of
the number of reported infections, or Dreported. To esti-
mate the number of total infections, these models often
explicitly include reported rate as one of their parame-
ters, or include multiple parameters that jointly account
for it. We call it as BaseInfer in later sections for brief.
There are many calibration procedures commonly used
in literature, such as RMSE-based [14] or Bayesian ap-
proaches [19, 15]. BaseInfer is generally a complex,
high-demensional problem, since there are multiple pa-
rameters interacting with each other. To make matters
worse, there exist many possible parameterizations that
show similar performance (e.g. in RMSE, likelihood)
yet correspond to vastly different reported rates, and

Table 1: List of notations
Notation Description

OM ODE model
Θ ODE model parameters to infer

Dreported Reported infections
αreported Reported rate

BaseInfer Baseline ODE calibration procedure
(calibrated on only Dreported)

Θ̂ Parameterization estimated by BaseInfer
α̂reported Reported rate in Θ̂

Dreported(Θ̂) ODE simulated reported infections using Θ̂

D(Θ̂) ODE simulated total infections using Θ̂
MdlInfer Our framework

D Candidate total infections in MdlInfer
Θ

′
Parameterization estimated by MdlInfer
when calibrating on both D and Dreported

α′
reported Reported rate in Θ′

Dreported(Θ
′) ODE simulated reported infections using Θ′

D(Θ′) ODE simulated total infections using Θ′

BaseInfer cannot select between these competing pa-
rameterizations in a principled way.

3.2 Two-part sender-receiver MDL framework
In this work, we use this framework to identify the
total infections. The conceptual goal of the framework
is to transmit the Data from the possession of the
hypothetical sender S to the hypothetical receiver R. We
assume the sender does this by first sending a Model
and then sending the Data under this Model. In this
MDL framework, we want to minimize the number of
bits for this process. We do this by identifying the
Model that encodes the Data such that the total
number of bits needed to encode both the Model and
the Data is minimized. Hence our cost function in the
total number of bits needed is composed of two parts:
(i) model cost L(Model): The cost in bits of encoding
the Model and (ii) data cost L(Data|Model): The
cost in bits of encoding the Data given the Model.
Intuitively, the idea is that a good Model will lead to
a fewer number of bits needed to encode both Model
and Data. The general MDL optimization problem can
be formulated as follows: Given the Data, L(Model),
and L(Data|Model), find Model∗ such that

Model∗ = arg min
Model

L(Model) + L(Data|Model)

4 MdlInfer
4.1 MDL formulation In our situation, the Data is
the reported infections Dreported, which is the only real-
world data given to us. As for the Model, intuitively
it should be (D,α′

reported) since we our goal to to find
the total infections D with the corresponding reported
rate α′

reported. Note that as two-part MDL (and MDL
in general) does not assume the nature of the Data or
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the Model, our MdlInfer can be applied to any ODE
model. Next, we give more details how to formulate our
problem of estimating total infections D. We also list
the notations in Table 1

4.1.1 Model space As described above, our
Model is intuitively (D,α′

reported). Note that reported
rate is actually one of the parameters for the ODE model
OM, we choose to include its corresponding parameter-
ization Θ

′
into Model. We further choose to also add

Θ̂ estimated by BaseInfer, making our Model to be
(D,Θ

′
, Θ̂). With Model = (D,Θ

′
, Θ̂), our Model

space will be all possible daily sequences for D and all
possible parameterizations for Θ

′
and Θ̂. The MDL

framework will search in this space to find the Model∗.
We also discuss other alternative Models and why
(D,Θ

′
, Θ̂) is better in Supplementary Materials.

4.1.2 Model cost With Model = (D,Θ
′
, Θ̂), we

conceptualize the model cost by imagining that the
sender S will send the Model = (D,Θ

′
, Θ̂) to the

receiver R in three parts: (i) first send the Θ̂ by
encoding Θ̂ directly (ii) next send the Θ

′
given Θ̂ by

encoding Θ
′ − Θ̂ and (iii) then send D given Θ

′
and Θ̂

by encoding α′
reported × D − Dreported(Θ̂). Intuitively,

both α′
reported ×D and Dreported(Θ̂) should be close to

Dreported, and the receiver could recover the D using
Θ̂, α′

reported, and Dreported(Θ̂) as they have already
been sent. We term the model cost as L(D,Θ

′
, Θ̂)

with three components: Cost(Θ̂), Cost(Θ
′ |Θ̂), and

Cost(D|Θ′
, Θ̂). Hence

L(D,Θ
′
, Θ̂) = Cost(Θ̂) + Cost(Θ

′ − Θ̂|Θ̂)

+ Cost(α′
reported ×D −Dreported(Θ̂)|Θ′

, Θ̂)

Here, the Cost(·) function gives the total number
of bits we need to spend in encoding each term. The
details of the encoding method can be found in the
Supplementary Materials.

4.1.3 Data cost We need to send the Data =
Dreported next given the Model. Given Model =

(D,Θ
′
, Θ̂), we send Data by encoding D−Dreported

1−α′
reported

−
D(Θ

′
). Intuitively, D − Dreported corresponds to the

unreported infections, and 1−α′
reported is the unreported

rate. Therefore, D−Dreported

1−α′
reported

should be close to the

total infections D and D(Θ
′
). The receiver could also

recover the Dreported using D, α′
reported, and D(Θ

′
) as

they have already been sent. We term data cost as
L(Dreported|D,Θ

′
, Θ̂) and formulate it as follows

L(Dreported|D,Θ
′
, Θ̂) = Cost(

D −Dreported

1− α′
reported

−D(Θ
′
)|D,Θ

′
, Θ̂)

4.1.4 Total cost With L(D,Θ
′
, Θ̂) and

L(Dreported|D,Θ
′
, Θ̂) above, the total cost

L(Dreported, D,Θ
′
, Θ̂) will be:

L(Dreported, D,Θ
′
, Θ̂) = L(D,Θ

′
, Θ̂) + L(Dreported|D,Θ

′
, Θ̂)

= Cost(Θ̂) + Cost(Θ
′ − Θ̂|Θ̂)

+ Cost(α′
reported ×D −Dreported(Θ̂)|Θ′

, Θ̂)

+ Cost(
D −Dreported

1− α′
reported

−D(Θ
′
)|D,Θ

′
, Θ̂)

4.2 Problem statement Note that our main ob-
jective is to estimate the total infections D. With
L(Dreported, D,Θ

′
, Θ̂), we can state the problem as:

Given the time sequence Dreported, epidemiological
model OM, and a calibration procedure Calibrate,
find D∗ that minimizes the MDL total cost i.e.

D∗ = argmin
D

L(Dreported, D,Θ
′
, Θ̂)

4.3 Algorithm Next, we will present our algorithm
to solve the problem in section 4.2. Note that directly
searching D∗ naively is intractable since D∗ is a daily
sequence not a scalar. Instead, we propose first finding
a “good enough” reported rate α∗

reported quickly with
the constraint D =

Dreported

α∗
reported

to reduce the search
space. Then with this α∗

reported, we can search for the
optimal D∗. Hence we propose a two-step algorithm:
(i) do a linear search to find a good reported rate
α∗
reported (ii) given the α∗

reported found above, use an
optimization method to find the D∗ that minimizes
L(Dreported, D,Θ

′
, Θ̂) with α∗

reported constraints. The
pseudo-code is given in Algorithm 1.

Algorithm 1 MdlInfer

Require: OM, Calibration procedure Calibrate, and
Dreported

1: Calibrate Θ̂ = Calibrate(OM, Dreported)
2: The array to save the MDL cost: CostArray = [ ]
3: for αreported in the grid search space from 0.01 to 1

with step 0.01 do
4: D =

Dreported

αreported

5: Calibrate Θ
′
= Calibrate(OM, (D,Dreported))

6: CostArray[αreported] = L(Dreported, D,Θ
′
, Θ̂)

7: end for
8: α∗

reported = argminαreported
CostArray[αreported]

9: Find the D∗ = argminD L(Dreported, D,Θ
′
, Θ̂). (us-

ing the Nelder-Mead algorithm).
Ensure: Total infections D∗
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Figure 2: MdlInfer (red) gives a closer estimation of total infections to serological studies (black)
than BaseInfer (blue) on various geographical regions and time periods. Note that both approaches
try to fit the serological studies without being informed with them. (A)-(H) The red and blue curves represent
MdlInfer’s estimation of total infections, MdlParamTinf , and BaseInfer’s estimation of total infections,
BaseParamTinf , respectively. The black point estimates and confidence intervals represent the total infections
estimated by serological studies [1, 16], SeroStudyTinf . (A)-(D) use SAPHIRE model and (E)-(H) use
SEIR + HD model. (I)-(J) The performance metric, ρTinf , comparing MdlParamTinf against BaseParamTinf

in fitting serological studies is shown for each region. (I) is for SAPHIRE model in (A)-(D), and (J) is for
SEIR + HD model in (E)-(H). Here, the values of ρTinf are 1.20, 5.47, 7.21, and 1.79 in (I), and 2.62 ,1.22,
6.39, and 1.58 in (J). Note that ρTinf larger than 1 means that MdlParamTinf is closer to SeroStudyTinf than
BaseParamTinf . We show more experiments in the Supplementary Materials.

5 Experiments
In this section, we will answer the following research
questions

• Question 1: Can MdlInfer estimate the total
infections accurately than BaseInfer and fit the
large-scale serological studies [37, 16, 44]?

• Question 2: Can MdlInfer fit the reported
infection Dreported and forecast future infections
accurately?

• Question 3: How does MdlInfer captures the
trends of symptomatic rate?

• Question 4: How can MdlInfer help to evaluate
the non-pharmaceyutical interventions?

5.1 Setup

5.1.1 dataset We choose 8 regions and periods based
on the severity of the outbreak and the availabil-
ity of serological studies and symptomatic surveil-
lance data. The serological studies dataset consists

of the point and 95% confidence interval estimates
of the prevalence of antibodies to SARS-CoV-2 in
these locations every 3–4 weeks from March to July
2020 [16, 1]. The symptomatic surveillance dataset
consists of point estimate RateSymp and standard er-
ror of the COVID-related symptomatic rate starting
from April 6, 2020 [30, 35]. The reported infec-
tions are from New York Times [2], which consists of
the daily time sequence of reported COVID-19 infec-
tions Dreported and the mortality Dmortality (cumula-
tive values) for each county in the US starting from
January 21, 2020. In each region, we divide the
timeline into two time periods: (i) observed period,
when only the number of reported infections are avail-
able, and both BaseInfer and MdlInfer are used
to learn the baseline parameterization (BaseParam)
Θ̂ and MDL parameterization (MdlParam) Θ∗, and
(ii) forecast period, where we evaluate the forecasts
generated by the parameterizations learned in the ob-
served period. To handle the time-varying reported
rates, we divide the observed period into multiple sub-
periods and learn different reported rates for each
sub-period separately. Our data and code have been
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deposited in https://anonymous.4open.science/r/MDL-
ODE-Missing-05DA/ which can be run on other
datasets. A demo is also deposited there.

5.1.2 ODE model We compare MdlInfer and
BaseInfer using two different ODE-based epidemio-
logical models: SAPHIRE [15] and SEIR + HD [19] as
OM. Following their literature [15, 19], we use Markov
Chain Monte Carlo (MCMC) as the calibration pro-
cedure Calibrate for SAPHIRE and iterated filter-
ing (IF) for SEIR + HD, both of with are Bayesian
approaches[17]. Both these epidemiological models have
previously been shown to perform well in fitting re-
ported infections and provided insight that was bene-
ficial for the COVID-19 response.

5.1.3 Metrics To quantify the performance gap be-
tween the two approaches, we use the root mean squared
error (RMSE) following the previous work [31, 32, 12,
11] for evaluation. To further demonstrate the perfor-
mance, we further compute the ratio ρ as the fraction
of the RMSE errors of BaseInfer over MdlInfer.
Specifically, when the ratio is greater than 1, it implies
that the MdlInfer is performing ρ times better than
BaseInfer.

5.2 Q1: Estimating total infections
Here, we use the point estimates of the total infec-

tions calculated from serological studies as the ground
truth (black dots shown in Figure 2). We call it
SeroStudyTinf . We also plot MdlInfer’s estima-
tion of total infections, MdlParamTinf , in the same
figure (red curve). To compare the performance of
MdlInfer and BaseInfer with SeroStudyTinf , we
use the cumulative value of estimated total infections.
Note that values from the serological studies are not di-
rectly comparable with the total infections because of
the lag between antibodies becoming detectable and in-
fections being reported [1, 16]. In Figure 2, we have al-
ready accounted for this lag following CDC study guide-
lines [1, 16] (See Methods section for details). The
vertical black lines shows a 95% confidence interval
for SeroStudyTinf . The blue curve represents total
infections estimated by BaseInfer, BaseParamTinf .
As seen in the figure, MdlParamTinf falls within the
confidence interval of the estimates given by serologi-
cal studies. Significantly, in Figure 2B and Figure 2F
for South Florida, BaseInfer for SAPHIRE model [15]
overestimates the total infections, while for SEIR + HD
model underestimates the total infections. However,
MdlInfer consistently estimates the total infections
correctly. This observation shows that as needed,
MdlParamTinf can improve upon the BaseParamTinf

in either direction (i.e., by increasing or decreasing the
total infections). Note that the MdlParamTinf curves
from both models are closer to the SeroStudyTinf even
when the BaseParamTinf curves are different. The re-
sults of better accuracy in spite of various geographical
regions and time periods show that MdlInfer is consis-
tently able to estimate total infections more accurately.

In Figure 2I and Figure 2J, we plot ρTinf =
Rmse(BaseParamTinf ,SeroStudyTinf )
Rmse(MdlParamTinf ,SeroStudyTinf )

. Overall, the ρTinf val-
ues are greater than 1 in Figure 2I and Figure 2J,
which indicates that MdlInfer performs better than
BaseInfer. Note that even when the value of
ρTinf is 1.20 for Figure 2A, the improvement made
by MdlParamTinf over BaseParamTinf in terms of
RMSE is about 12091. Hence, one can conclude that
MdlInfer is indeed superior to BaseInfer, when it
comes to estimating total infections. We show more ex-
periments in the Supplementary Materials.

5.3 Q2: Estimating reported infections Here,
we first use the observed period to learn the parame-
terizations. We then forecast the future reported infec-
tions (i.e., forecast periods), which were not accessible
to the model while training. The results are summa-
rized in Figure 3. In Figure 3A to Figure 3H, the ver-
tical grey dash line divides the observed and forecast
period. The black plus symbols represent reported in-
fections collected by the New York Times, NYT-Rinf.
The red curve represents MdlInfer’s estimation of re-
ported infections, MdlParamRinf . Similarly, the blue
curve represents BaseInfer’s estimation of reported in-
fections, BaseParamRinf . Note that the curves to the
right of the vertical grey line are future predictions. As
seen in Figure 3, MdlParamRinf aligns more closely
with NYT-Rinf than BaseParamRinf , indicating the
superiority of MdlInfer in fitting and forecasting re-
ported infections.

We use a similar performance metric
ρRinf = Rmse(BaseParamRinf ,NYT-Rinf)

Rmse(MdlParamRinf ,NYT-Rinf) to compare
MdlParamRinf against BaseParamRinf in a manner
similar to ρTinf . In Figure 3I and Figure 3J, we plot
the ρRinf for the observed and forecast period. In both
periods, we notice that the ρRinf is close to or greater
than 1. This further shows that MdlInfer has a
better or at least closer fit for reported infections than
BaseInfer. Additionally, the ρRinf for the forecast
period is even greater than ρRinf for the observed
period, which shows that MdlInfer performs even
better than BaseInfer while forecasting.

Note that Figure 3A, C, E, G correspond to the
early state of the COVID-19 epidemic in spring and
summer 2020, and Figure 3B, D, F, H correspond to
fall 2020. We can see that MdlInfer performs well in
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Figure 3: MdlInfer (red) gives a closer estimation of reported infections (black) than BaseInfer
(blue) on various geographical regions and time periods. We use the reported infections in the
observed period as inputs and try to forecast the future reported infections (forecast period). (A)-(H) The
vertical grey dash line divides the observed period (left) and forecast period (right). The red and blue curves
represent MdlInfer’s estimation of reported infections, MdlParamRinf , and BaseInfer’s estimation of reported
infections, BaseParamRinf , respectively. The black plus symbols represent the reported infections collected by
the New York Times (NYT-Rinf). (A)-(D) use SAPHIRE model and (E)-(H) use SEIR + HD model. (I)-(J)
The performance metric, ρRinf , comparing MdlParamRinf against BaseParamRinf in fitting reported infections
is shown for each region. (I) is for SAPHIRE model in (A)-(D), and (J) is for SEIR + HD model in (E)-(H).
Note that ρRinf larger than 1 means that MdlParamRinf is closer to NYT-Rinf than BaseParamRinf . We show
more experiments in the Supplementary Materials.

estimating temporal patterns at different stages of the
COVID-19 epidemic. We show more experiments in the
Supplementary Materials.

5.4 Q3: Estimating symptomatic rate trends
We validate this observation using Facebook’s

symptomatic surveillance dataset [30]. We plot
MdlInfer’s and BaseInfer’s estimated symptomatic
rate over time and overlay the estimates and stan-
dard error from the symptomatic surveillance data in
Figure 4. The red and blue curves are MdlInfer’s
and BaseInfer’s estimation of symptomatic rates,
MdlParamSymp and BaseParamSymp respectively.
Note that SAPHIRE model does not contain states cor-
responding to the symptomatic infections. Therefore,
we only focus on SEIR + HD model. We compare the
trends of the MdlParamSymp and BaseParamSymp

with the symptomatic surveillance results. We focus
on trends rather than actual values because the symp-
tomatic rate numbers could be biased [30] (see Methods
section for a detailed discussion) and therefore cannot
be compared directly with model outputs like what we
have done for serological studies. As seen in Figure 4,

MdlParamSymp captures the trends of the surveyed
symptomatic rate RateSymp (black plus symbols) bet-
ter than BaseParamSymp. We show more experiments
in the Supplementary Materials.

To summarize, these three sets of experiments in
section 5.2 to section 5.4 together demonstrate that
BaseInfer fail to accurately estimate the total infec-
tions including unreported ones. On the other hand,
MdlInfer estimates total infections closer to those es-
timated by serological studies and better fits reported
infections and symptomatic rate trends.

5.5 Q4: Evaluate the effect of non-
pharmaceutical Interventions We have already
shown that MdlInfer is able to estimate the num-
ber of total infections accurately. In the following
three observations, we show that such accurate es-
timations are important for evaluating the effect of
non-pharmaceutical interventions.

5.5.1 Non-pharmaceutical interventions on
asymptomatic and presymptomatic infections
are essential to control the COVID-19 epi-
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Figure 4: MdlInfer (red) gives a closer estimation of the trends of symptomatic rate (black)
than BaseInfer (blue) on various geographical regions and time periods. (A)-(D) The red and blue
curves represent MdlInfer’s estimation of symptomatic rate, MdlParamSymp, and BaseInfer’s estimation
of symptomatic rate, BaseParamSymp, respectively. They use the y-scale on the left. The black points and
the shaded regions are the point estimate with standard error for RateSymp (the COVID-related symptomatic
rates derived from the symptomatic surveillance dataset [30, 35]). They use the y-scale on the right. Note that
we focus on trends instead of the exact numbers, hence MdlParamSymp/BaseParamSymp, and RateSymp may
scale differently. We show more experiments in the Supplementary Materials.

demic Our simulations show that non-pharmaceutical
interventions on asymptomatic and presymptomatic
infections are essential to control COVID-19. Here, we
plot the simulated reported infections of MdlParam in
Figure 5A (red curve). We then repeat the simulation
of reported infections for 5 different scenarios: (i)
isolate just the reported infections, (ii) isolate just
the symptomatic infections, and isolate symptomatic
infections in addition to (iii) 25%, (iv) 50%, and
(v) 75% of both asymptomatic and presymptomatic
infections. In our setup, we assume that the infectivity
reduces by half when a person is isolated. As seen
in Figure 5A, when only the reported infections are
isolated, there is almost no change in the “future”
reported infections. However, when we isolate both
the reported and symptomatic infections, the reported
infections decreases significantly. Even here, the
reported infections are still not in decreasing trend. On
the other hand, non-pharmaceutical interventions for
some fraction of asymptomatic and presymptomatic
infections make reported infections decrease. Thus, we
can conclude that non-pharmaceutical interventions on
asymptomatic infections are essential in controlling the
COVID-19 epidemic.

5.5.2 Accuracy of non-pharmaceutical inter-
vention simulations relies on the good estima-
tion of parameterization Next, we also plot the sim-
ulated reported infections generated by BaseInfer in
Figure 5B (blue curve). As seen in the figure, based on
BaseInfer, we can infer that only non-pharmaceutical
interventions on symptomatic infections are enough to
control the COVID-19 epidemic. However, this has been
proven to be incorrect by prior studies and real-world

observations [25]. Therefore, we can conclude that the
accuracy of non-pharmaceutical intervention simulation
relies on the quality of the learned parameterization.
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Figure 5: (A) MdlInfer reveals that non-
pharmaceutical interventions (NPI) on asymptomatic
and presymptomatic infections are essential to control
the COVID-19 epidemic. Here, the red curve and other
five curves represent the MdlInfer’s estimation of
reported infections for no NPI scenario and 5 different
NPI scenarios described in the Results section. The
vertical grey dash line divides the observed period (left)
and forecast period (right). (B) Inaccurate estimation
by BaseInfer may lead to wrong non-pharmaceutical
intervention conclusions. The blue curve and other
five curves represent the BaseInfer’s estimation of
reported infections for no NPI scenario and the same 5
scenarios in (B).

6 Conclusion
This study proposes MdlInfer, a data-driven model
selection approach that automatically estimates the
number of total infections using epidemiological mod-
els. Our approach leverages the information theoretic
Minimum Description Length (MDL) principle and ad-
dresses several gaps in current practice including the
long-term infeasibility of serological studies [16], and
ad-hoc assumptions in epidemiological models [19, 24,
27, 15]. Overall, MdlInfer is a robust data-driven
method to accurately estimate total infections, which
will help data scientists, epidemiologists, and policy-
makers to further improve existing ODE-based epidemi-
ological models, make accurate forecasts, and combat
future pandemics. More generally, MdlInfer opens up
a new line of research in epidemic modeling using infor-
mation theory.
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Supplementary Materials

A Data
A.1 New York Times reported infections [2]
This dataset (NYT-Rinf) consists of the time sequence
of reported infections Dreported and reported mortality
Dmortality in each county across the U.S. since the begin-
ning of the COVID-19 pandemic (January 21, 2020) to
current. For each county, the NYT-Rinf dataset pro-
vides the date, FIPS code, and the cumulative values
of reported infections and mortality. Here, we use the
averaged counts over 14 days to eliminate noise.

A.2 Serological studies [16, 1] This dataset con-
sists of the point estimate and 95% confidence inter-
val of the prevalence of antibodies to SARS-CoV-2 in
10 US locations every 3-4 weeks during March to July
2020. The serological studies use the blood specimens
collected from population. For each location, CDC col-
lects 1800 samples approximately every 3-4 weeks. Us-
ing the prevalence of the antibodies and the population,
we can compute the estimated total infections and 95%
confidence interval in the location. However, we cannot
compare this number with the epidemiological model es-
timated total infection numbers directly as mentioned
in the main article Methods section. We account for this
problem by comparing the serological studies numbers
with the estimated total infections of 7 days prior to the
first day of specimen collection period (as suggested by
the CDC serological studies work [16]).

A.3 Symptomatic surveillance [30] This dataset
comes from Facebook’s symptomatic survey [30]. The
survey started on April 6, 2020 to current. As of Jan-
uary 28, 2021, there were a total of 16,398,000 partic-
ipants, with the average daily participants number of
55,000. The survey asks a series of questions designed
to help researchers understand the spread of COVID-
19 and its effect on people in the United States. For
the signal, they estimate the percentage of self-reported
COVID-19 symptoms in population defined as fever
along with either cough, shortness of breath, or diffi-
culty breathing [30]. The dataset also includes weighted
version which accounts for the differences between Face-
book users and the United States population. In the
experiments, we contrast the symptomatic rate trends
inferred by our approach against the weighted data from
the survey.

B ODE Model
B.1 SAPHIRE Model We use the SAPHIRE
model [19] as one epidemiological model OM in our ex-
periments. The compartmental diagram of SAPHIRE

model is shown in Figure S1. The SAPHIRE model has
9 different parameters. Note that only two parameters
are calibrated, while the rest are fixed.
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Figure S1: Compartmental diagram of SAPHIRE
model [15].

In this article, we expect the epidemiological model
to calibrate on both reported infections Dreported and
candidate unreported infections Dunreported. We com-
pute the newly reported infections and unreported in-
fections as follows:

1. New reported infections= αP
Dp

: P
Dp

represents the
number of new infections from presymptomatic
infections every day in OM. Here, we assume α
proportion of new infections every day will be that
day’s new reported infections.

2. New unreported infections = (1−α)P
Dp

: Then, the
1 − α proportion of new infections every day will
be that day’s new unreported infections.

B.2 SEIR+HD Model We also use the SEIR+HD
model [19] as another epidemiological model OM in
our experiments. The compartmental diagram of
SEIR+HD model is shown in Figure S2. The SEIR+HD
model has of 21 different parameters. Note that only
three parameters are calibrated, while the rest are fixed.

Similarly to SAPHIRE model, we still expect the
epidemiological model to calibrate on reported infec-
tions Dreported and candidate unreported infections
Dunreported. Hence we extend its calibration procedure
to infer two more parameters: α and α1 (proportion
of new symptomatic infections that are reported). We
compute the newly reported infections and unreported
infections as follows:

1. New reported infections= α1 × (NIP IS +NIP IM ):

Inew sympt = NIP IS +NIP IM represents the number
of new symptomatic infections every day in OM.
Here, we assume α1 proportion of new symptomatic
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Figure S2: Compartmental diagram of SEIR+HD
model [15].

infections every day will be that day’s new reported
infections.

2. New unreported infections = (1 − α1) × (NIP IS +
NIP IM ) +NEIA :

Then, the 1 − α1 proportion of new symptomatic
infections every day and new asymptomatic infec-
tions every day will be that day’s new unreported
infections.

B.3 Baseline Parameterization By calibrating
OM on Dreported, we get the baseline paramterization
p:

p = Calibrate(OM, {Dreported, others})

By running the epidemiological model with
p, OM will output the estimated reported infec-
tions Dreported(p), estimated unreported infections
Dunreported(p), and estimated total infections D(p) =
Dreported(p)+Dunreported(p). We can also calculate the
reported rate αreported as follows:

αreported =

∑
Dreported(p)∑

D(p)

Here, we sum over the daily sequence Dreported(p) and
D(p) to calculate a scalar as the reported rate for MDL
formulation.

B.4 MdlInfer Parameterization Similarly by
calibrating OM on Dreported and Dunreported, we get the
candidate paramterization p’:

p’ = Calibrate(OM, {Dreported, Dunreported, others})

By running the epidemiological model with p’, OM will
output the estimated reported infections Dreported(p’),
estimated unreported infections Dunreported(p’), and
estimated total infections D(p’) = Dreported(p’) +

Dunreported(p’). Similarly, we can calculate the reported
rate α′

reported as follows:

α′
reported =

∑
Dreported(p’)∑

D(p’)

With the calibration process, p, and p’ defined, we can
next formalize the MDL cost.

C Methodology
C.1 Sender-receiver Framework Here, we use the
two-part sender-receiver framework based on the Mini-
mum Description Length (MDL) principle. The goal of
the framework is to transmit the Data in possession of
the Sender S to the receiver R using a Model. We do
this by identifying the Model that describes the Data
such that the total number of bits needed to encode both
the Model and the Data is minimized. The number of
bits required to encode both the Model and the Data
is given by the cost function L, which has two compo-
nents: (i) model cost L(Model): The cost in bits of en-
coding the Model, and (ii) data cost L(Data|Model):
The cost in bits of encoding Data given the Model.

C.2 Model Space: Other Choice In this work, the
Data is Dreported. One idea for defining the Model
space is to use p. With such a Model, the receiver
R can easily compute first Dreported(p) given p. Then
the sender S will only need to encode and send the
difference between Dreported(p) and Dreported so that
the receiver can recover the Data fully. However, this
has the disadvantage that slightly different p could lead
to vastly different Dreported(p), and so the optimization
problem will become hard to solve. To account for this,
we propose Model as Model = (D,p’,p) as described
in the main article, which consists of three components.

C.3 Model Cost With the model space Model =
(D,p’,p), the sender S will send the Model to the
receiver R in three parts: (i) first send p, (ii) next
send p’ given p, and then (iii) send D given p’ and
p. Therefore, the model cost L(D,p’,p) will also have
three components

L(D,p’,p) = Cost(p) + Cost(p’|p) + Cost(D|p’,p)

Here, we will send the first component, p, directly, send
the second component, p’ given p, via sending p’ − p,
and send the third component, D given p’ and p, via
sending α′

reported ×D −Dreported(p). We further write
the model cost as below:

L(D,p’,p) = Cost(p) + Cost(p’ − p|p)
+ Cost(α′

reported ×D −Dreported(p)|p’,p)
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C.4 Data Cost Give the Model = (D,p’,p) and
model cost above, next we will send the Data in terms
of the Model. Here, the Data is Dreported, and the
data cost will have only one component:

L(Dreported|D,p’,p) = Cost(Dreported|D,p’,p)

Here, we will send it via D−Dreported

1−α′
reported

− D(p’), and we
further write the data cost as below:

L(Dreported|D,p’,p) = Cost(D−Dreported

1−α′
reported

−D(p’)|D,p’,p)

C.5 Total Cost The total cost is the sum of model
cost L(D,p’,p) and data cost L(Dreported|D,p’,p):

L(Dreported, D,p’,p) = L(D,p’,p) + L(Dreported|D,p’,p)
= Cost(p) + Cost(p’|p)
+ Cost(D|p’,p) + Cost(Dreported|D,p’,p)
= Cost(p) + Cost(p’ − p|p)
+ Cost(α′

reported ×D −Dreported(p)|p’,p)

+ Cost(
D −Dreported

1− α′
reported

−D(p’)|D,p’,p)

C.6 Cost Derivation Next, we derive the cost for
each component and give our encoding method explic-
itly:

1. Cost(p): We represent p as a vector of real
numbers (we describe our encoding later below).

2. Cost(p’ − p|p): We will encode the difference of
two vectors as a vector of real numbers.

3. Cost(α′
reported × D − Dreported(p)|p’,p): Here,

we encode the difference between the two time
sequences: α′

reported ×D given Dreported(p).

4. Cost(D−Dreported

1−α′
reported

−D(p’)|D,p’,p): Again, we en-
code it as a difference between the two time se-
quences: Dunreported

1−α′
reported

given D(p’).

Next, we describe the encoding cost of real numbers,
vectors, and the difference between two time sequences.

C.6.1 Encoding Integers To encode a positive in-
teger n, we encode both the binary representation of in-
teger n as well as the length of the representation log2 n.
Following [23], we use the cost in bits of encoding a sin-
gle integer n is as follows:

Cost(n) = log2 c0 + log∗(n).

where c0 ≈ 2.865 and log∗(n) = log2 n+log2 log2 n+ · · ·
as described in [23]. There are infinite terms in log∗(n)

function since after we encoded a number, we always
need to encode its length as another number, which
could be repeated for infinite times. Additionally, if we
want to transmit an integer that can be either positive
or negative, we can add another sign bit and therefore
the cost in bits for integers will be

Cost(n) = Cost(|n|) + 1.

C.6.2 Encoding Real Numbers Note that most
real numbers (e.g. π or e) need infinite number of bits
to encode. Hence, we introduce a precision threshold
δ. With threshold δ, we approximate a real number x
with xδ which satisfies |x − xδ| < δ, and we encode xδ

instead. To encode xδ, we encode both the integer part
⌊x⌋ as well as the fractional part xδ − ⌊x⌋. Hence the
cost in bits of encoding a real number x is as follows:

Cost(x) = Cost(⌊x⌋) + log2
1

δ
where ⌊x⌋ is the floor of x and therefore is a integer,
whose encoding cost is Cost(⌊x⌋) = log2 c0+log∗(⌊x⌋).
Additionally, if we want to transmit a real number that
can be either positive or negative, we can add another
sign bit and therefore the cost in bits for real numbers
will be

Cost(x) = Cost(|x|) + 1

C.6.3 Encoding Vectors To encode a vector p =
[p[1],p[2], · · · ,p[n]], we encode every components one
by one as real numbers. Hence the cost in bits of
encoding a vector p is as follows:

Cost(p) = Cost(p[1])+Cost(p[2])+· · ·+Cost(p[n])

C.6.4 Encoding The Difference between Two
Time Sequences To encode the difference A − B =
[At1 − Bt1 , At2 − Bt2 , · · · , Atn − Btn ] between two
time sequence A = [At1 , At2 , · · · , Atn ] and B =
[Bt1 , Bt2 , · · · , Btn ], we encode every components one by
one as real numbers. Hence the cost in bits of encoding
the difference is as follows:
Cost(A−B) = Cost(At1 −Bt1) + Cost(At2 −Bt2)

+ · · ·+ Cost(Atn −Btn)

C.7 Problem Statement Now we have derived ev-
ery cost involved in our problem, and we can finally
state our problem as one of estimating the total infec-
tions D as follows: Given the time sequence Dreported

and epidemiological model OM, find D∗ that minimizes
the MDL total cost:

D∗ = argmin
D

L(Dreported, D,p’,p)

We will give the algorithm to find such D∗ as follows:
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Figure S3: MdlParam (red) gives a closer estima-
tion of total infections to serological studies (black)
than BaseParam (blue). Note that the serologi-
cal studies are not informed for both approaches. a
The red and blue curves represent MdlInfer’s esti-
mation of total infections, MdlParamTinf , and base-
line calibration procedure’s estimation of total infec-
tions, BaseParamTinf , respectively. The black point
estimates and confidence intervals represent the total
infections estimated by serological studies [1, 16], or
SeroStudyTinf . b The performance metric, ρTinf ,
comparing MdlParamTinf against BaseParamTinf is
shown for a for the SEIR+HD model. Here, the values
of ρTinf is 1.93.

C.8 Algorithms Before presenting our algorithm to
find D∗, we will first address the problem of searching
D∗ directly. Note that D∗ is a time sequence of total
infections instead of a scalar, naively searching D∗

directly in large search space is intractable. Hence, we
propose an alternate method: First, we can find quickly
a good reported rate α∗

reported since we can constrain
D =

Dreported

αreported
to reduce the search space. Then we can

search for the optimal D∗ with α∗
reported from step 1 as

constraints. Here, we write down our two-step search
algorithm to find the D∗ as follows:

1. Step 1: We do a linear search to find a good re-
ported rate α∗

reported, which serves as an initializa-
tion in the second step.

2. Step 2: Given the α∗
reported found in step 1, we use

the Nelder-Mead [13] optimization to find the D∗

that minimizes L(Dreported, D,p’,p) with α∗
reported

constraints.

C.8.1 Step 1: Find the α∗
reported In step 1, we

search on αreported to find the α∗
reported as follows:

α∗
reported = arg min

αreported

L(Dreported,
Dreported

αreported
,p’,p)

To be more specific, in the first step of our algo-
rithm, we do a linear search on different αreported =
[0.01, 0.02, 0.03, · · · , 0.99] and calibrate the OM on D =
Dreported

αreported
, which means

p’ = Calibrate(OM, {Dreported,
Dreported

αreported
−Dreported, others})

Then we pick the α∗
reported that corresponds to the

lowest total cost L(Dreported, D,p’,p) as the α∗
reported.

C.8.2 Step 2: Find the D∗ given α∗
reported With

α∗
reported inferred in step 1, we will next find the D∗ that

minimizes the total cost.

D∗ = argmin
D

L(Dreported, D,p’,p)

Since we have already found α∗
reported in step 1, we will

only search the D∗ that satisfies∑
D∗ =

∑
Dreported

α∗
reported

To search for the optimal D∗, we leverage the popular
Nelder-Mead search algorithm [13].

D Metrics
To evaluate the performance of MdlInfer, as men-
tioned in the main article, we use the Root Mean
Squared Error (RMSE) following previous works [31,
32, 12]. Specifically, the metrics are calculated using
the following equataions following [33].

RMSE =

√∑
t

(ŷt − yt)2

where ŷt is the estimated number by either
BaseInfer or MdlInfer, yt is the ground-truth value.

E Experimental Setup
Here we describe our experimental setup in more detail
and present results on additional testbeds. We also
list the notations used in the experiments section in
Table S1.

E.1 Total Infections The Results section in the
main paper refers to BaseParamTinf , which represents
the cumulative total infections derived from the baseline
calibration procedure. It is computed as follows:

BaseParamTinf =
∑

D(p)

Similarly, MdlParamTinf , which represents the
cumulative total infections derived from MdlInfer, is
computed as follows:

MdlParamTinf =
∑

D(p’)
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Figure S4: MdlParam (red) gives a closer estimation of reported infections (black) than BaseParam (blue)
on various geographical regions and time periods. We use the reported infections in the observed period as
inputs and try to forecast the future reported infections (forecast period). a-h The vertical grey dash line
divides the observed period and forecast period. The red and blue curves represent MdlInfer’s estimation
of reported infections, MdlParamRinf , and baseline calibration procedure’s estimation of reported infections,
BaseParamRinf , respectively. The black plus symbols represent the infections reported by the New York Times
(NYT-Rinf). a-d is for SAPHIRE model and e-h is for SEIR+HD model. i-j The performance metric, ρRinf ,
comparing MdlParamRinf against BaseParamRinf is shown for a-h for the regions for both the SAPHIRE model
in i, and the SEIR+HD model in j.

In Figure S3, we show additional results compar-
ing the performance of MdlInfer and baseline cali-
bration procedure in estimating total infections. Here,
MdlInfer (red) gives a closer estimation of total in-
fections to serological studies (black) than baseline cal-
ibration procedure (blue).

E.2 Reported Infections In Figure S4, we present
additional results comparing the performance of
MdlInfer and baseline calibration procedure in fore-
casting future infections (forecast period). Here,
MdlInfer (red) gives a closer estimation of reported
infections (black) than baseline calibration procedure
(blue) on various geographical regions and time peri-
ods.

E.3 Symptomatic Rate The baseline calibration
procedure and MdlInfer also estimate the symp-
tomatic rate BaseParamSymp and MdlParamSymp re-
spectively. We compare these against the Facebook
symptomatic surveillance data RateSymp.

We calculate BaseParamSymp from p as follows:

BaseParamSymp =
IS(p) + IM (p)

N

where IS(p) is the number of infections in severe symp-
tomatic state, IM (p) represents the same in mild symp-
tomatic state, and N is the total population in this area.

Similarly MdlParamSymp is computed as follows:

MdlParamSymp =
IS(p’) + IM (p’)

N

In Figure S5, we present additional results compar-
ing MdlInfer and baseline calibration procedure in es-
timating trends of symptomatic rate. Here, MdlInfer
(red) gives a closer estimation of symptomatic rate
(black) than baseline calibration procedure (blue).

E.4 Cumulative Reported Rate We also calculate
the a dynamic reported rate from both baseline cali-
bration procedure and MdlInfer. Note that this cu-
mulative reported rate is different from αreported and
α′
reported, which are two scalars used in MDL formula-

tion. We calculate BaseParamRate from BaseParam
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Figure S5: MdlParam (red) gives a closer estimation of symptomatic rate (black) than BaseParam (blue).
The red and blue curves represent MdlInfer’s estimation of symptomatic rate, MdlParamSymp, and baseline
calibration procedure’s estimation of symptomatic rate, BaseParamSymp, respectively. The black points and the
shaded regions are the point estimate with standard error for RateSymp (the COVID-related symptomatic rates
derived from the symptomatic surveillance dataset [30, 35]).

p as follows:

BaseParamRate =

∑
NYT-Rinf∑

D(p)

Similarly we calculate MdlParamRate from
MdlParam p’ as follows:

MdlParamRate =

∑
NYT-Rinf∑

D(p’)

E.5 Non-pharmaceutical Interventions Simula-
tion We also use the baseline calibration procedure
and MdlInfer to perform non-pharmaceutical inter-
ventions simulation on SEIR+HD model. Here, both
the baseline calibration procedure and MdlInfer are
estimated on the observed period, then on the future
period, we will consider the following five scenarios of
isolation:

1. Isolate reported infections: We isolate the α1 frac-
tion of severe symptomatic infections IS and mild
symptomatic infections IM .

2. Isolate both reported infections and symptomatic
infections: Note that some reported infections are
included in the symptomatic infections. Here, we
isolate all severe symptomatic infections IS and
mild symptomatic infections IM .

3. Isolate 25% presymptomatic and asymptomatic in-
fections: We isolate 25% of presymptomatic infec-
tions IP , asymptomatic infections IA, and all severe
symptomatic infections IS and mild symptomatic
infections IM .

4. Isolate 50% presymptomatic and asymptomatic in-
fections: We isolate 50% of presymptomatic infec-
tions IP , asymptomatic infections IA, and all severe

symptomatic infections IS and mild symptomatic
infections IM .

5. Isolate 75% presymptomatic and asymptomatic in-
fections: We isolate 75% of presymptomatic infec-
tions IP , asymptomatic infections IA, and all severe
symptomatic infections IS and mild symptomatic
infections IM .

The infectiousness of the noes in isolated is reduces by
50%.

F Sensitive Analysis
We also perform sensitivity experiments to inspect the
robustness of our non-pharmaceutical interventions sim-
ulations for Minneapolis-Spring-20 in Figure S6. Here,
we reduce the infectiousness of the isolated infections to
3 different values: 0.4, 0.5, and 0.6, and repeat simula-
tions in each of the scenarios.

Our results consistently show that only isolating
reported or symptomatic infections is not be enough
to reduce the future reported infections. However,
isolating both symptomatic infections and some fraction
of asymptomatic and presymptomataic infections leads
to reduction in reported infections in most settings.
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Figure S6: Our non-pharmaceutical interventions simulation results are robust. a-c, the vertical grey dash line
divides the observed period and future period. The blue curve represents the BaseParam’s estimation of reported
infections. The other five curves represent the simulated reported infections for 5 scenarios: (i) Isolate the reported
infections, (ii) symptomatic infections, symptomatic infections and (iii) 25%, (iv) 50%, (v) 75% asymptomatic
and presymptomatic infections, where we reduce the infectiousness of these isolated infections to 40% in a, 50%
in b, and 60% in c in future period. d-f, the vertical grey dash line divides the observed period and future period.
The red curve represents the MdlParam’s estimation of reported infections. The other five curves represent the
simulated reported infections for the same 5 scenarios as in a to c. The results are for Minneapolis-Spring-20 that
we shown in main article Figure 5.
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Table S1: List of notations

Symbol Description

MdlInfer Our Minimum Description Length (MDL) framework to estimate total infections
OM Epidemiological models used in MdlInfer
BaseParam Baseline parameterizaton obtained via baseline calibration procedure
MdlParam Optimal parameterization identified by MdlInfer
SeroStudyTinf Total infections estimated by serological studies
BaseParamTinf Total infections estimated by baseline calibration procedure
MdlParamTinf Total infections estimated by MdlInfer
ρTinf The performance metric comparing MdlInfer against

baseline calibration procedure in estimating total infections
NYT-Rinf New York Times reported infections
BaseParamRinf Reported infections estimated by baseline calibration procedure
MdlParamRinf Reported infections estimated by MdlInfer
ρRinf The performance metric comparing MdlInfer against

baseline calibration procedure in estimating reported infections
RateSymp COVID-related symptomatic rate from symptomatic surveillance data
BaseParamSymp Symptomatic rate estimated by baseline calibration procedure
MdlParamSymp Symptomatic rate estimated by MdlInfer
SeroStudyRate Cumulative reported rate estimated by serological studies
BaseParamRate Cumulative reported rate estimated by baseline calibration procedure
MdlParamRate Cumulative reported rate estimated by MdlInfer
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