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Abstract—Healthcare associated infections (HAIs) impose a
substantial burden, both on patients and on the healthcare
system. Designing effective strategies by using interventions such
as vaccination, isolation, cleaning, mobility modification, etc., to
reduce HAI spread is an important computational challenge.
Spectral approaches are quite useful for modeling and solving
problems of reducing disease spread over contact networks, but
they have not been used for disease-spread models and contact
networks that are specific for HAIs. Our main contribution in this
paper is to close this gap. We make 3 specific contributions. (i) We
present the first epidemic threshold results on temporal bipartite
networks, i.e., a time-varying sequence of bipartite people-location
network, for the Susceptible-Infected-Susceptible (SIS) model. (ii)
We leverage our epidemic threshold result to pose the HAI mit-
igation problem as minimizing the spectral radius of the system
matrix, while removing few nodes or edges. We present a scalable
combinatorial algorithm that provides approximation guarantees.
(iii) Through extensive experiments on actual healthcare contact
networks derived from operations data from the University of
Iowa Hospitals and Clinics, Carilion Clinic, and several other
healthcare facilities, we show that our algorithm consistently
outperforms a number of baselines (random, degree, top-k, eigen
centrality) both in terms of reducing the spectral radius of the
system matrix and in terms of reducing infections.

Index Terms—HALISs, epidemic threshold, SIS model, spectral
radius

I. INTRODUCTION

Healthcare associated infections (HAIs), for example C. diff
infections (CDI) and Methicillin-resistant Staphylococcus au-
reus (MRSA) infections, impose a substantial burden, both on
patients that suffer from these infections and on the healthcare
system. It is generally believed that these infections can be
reduced by better hand hygiene by healthcare professionals
(HCPs) [12], better room cleaning protocols [7], modifying the
mobility patterns of HCPs and patient flow [23], [8], changing
architectural layout of healthcare facilities [9], etc. HAIs
such as CDI and MRSA infections are often spread through
pathogen or spores deposited on and picked up from surfaces
(e.g., door knobs, bed rails, keyboards, etc.). So it is critical
that models for HAI spread take locations into account. In a
healthcare setting (e.g., in an in-patient hospital unit) HCPs
provide regular care to patients by visiting patient rooms.
While these visits are crucial for the care of patients, they
also serve as potential pathways for pathogen transmissions.
Our goal is to model and solve the problem of reducing

disease-spread in healthcare facilities using interventions such
as isolation, cleaning, mobility modification, etc.

Spectral approaches have turned out to be quite useful for
modeling and solving problems of reducing disease spread
over contact networks. In this context, spectral approaches
characterize the spread of disease over a network in terms of
the spectrum (sequence of eigenvalues) of the adjacency matrix
or the Laplacian of the underlying network. There is now a
growing body of literature [6], [3], [13], [14], [16] on deriving
the epidemic threshold, a quantity that is a function of disease
parameters, such that (informally speaking) the disease will
die out iff the largest eigenvalue of the network is below the
threshold. Using epidemic thresholds, one can model problems
of disease mitigation as problems of removing nodes or edges
of the network so as to bring the largest eigenvalue below the
threshold [20], [21], [19], [4], [17], [15]. Here node deletion
could model vaccinating or isolating (for diseases which do not
have vaccines) an individual and edge deletion could model
modifying mobility so as to prevent some contacts.

While spectral approaches have been widely used for both
static networks and for dynamic, time-varying networks [14],
[16], they have not been used in the context of people-location
networks that are important for modeling HAIs. Our main
contribution in this paper is to apply spectral approaches to
the disease mitigation problem in healthcare settings. More
specifically, we make 3 main contributions in this paper:
Epidemic threshold. We model interactions in a healthcare
facility as a temporal bipartite network, i.e., as a time-varying
sequence of bipartite people-location networks. We then derive
an epidemic threshold for the Susceptible-Infected-Susceptible
(SIS) model for temporal bipartite networks while making
realistic assumptions on healthcare practices. To the best of our
knowledge, these are the first results on epidemic thresholds
for temporal bipartite graphs.

Effective algorithm. Our epidemic threshold result allows us
to pose problems of disease mitigation in healthcare facilities
as problems of minimizing the spectral radius of the system
matrix, while removing few nodes or edges. These problems
are not only computationally hard [19] but are expensive
to solve even via approximation algorithms or heuristics.We
present a near optimal combinatorial approximation algorithm
that avoids costly eigenvalue computation.

Extensive experiments. Through extensive experiments on



actual healthcare contact networks derived from operations
data from the University of Iowa Hospitals and Clinics and
several other healthcare facilities, we show that our algorithm
consistently outperforms a number of baselines both in terms
of reducing the spectral radius of the system matrix and in
terms of reducing infections. This shows the applicability of
our approach to HAI mitigation.

II. PRELIMINARIES

Temporal bipartite networks: We model mobility within
a healthcare facility as a series of daily activity snapshots
with a periodicity of 7. Specifically, we represent mobility
as a temporal network G = {G1,G2,Gs,...,G.}, where
each G¢(P, L, E;) € G is an undirected, unweighted, bipartite
network representing the interactions between people P and
locations L at time ¢. Each edge e(p,¢) € Ey, p € P,{ € L
indicates that a person p was at a location ¢ at time f.
Without loss of generality, we assume every (G; has the same
node set in both partitions P and L (otherwise just define
P = UP and L = UyL;). The periodicity of 7 implies
that G411 = G1, Gr42 = G2 and so on implying that we
have an implicit infinite sequence of activity snapshots. This
periodicity assumption is motivated by the fact that healthcare
activities tend to be regular and schedules are often periodic.
So 7 could be 2 and G; and G5 could represent day and night
activity or 7 could be 7 and each G; could represent activities
of a day of the week.

Epidemics on Networks: In the Susceptible-Infected-
Recovered (SIR) disease-spread model over a static network,
in each step a susceptible node gets infected by its infected
neighbor with probability 0 < 8 < 1 and an infected node
recovers with probability 0 < § < 1. Recovered nodes do
not get re-infected. The SIS model, which we discuss further
in this work, does not have the Recovered state and infected
nodes become susceptible again after recovery. The SIS model
is appropriate for our work because HAIs such as CDI are
not known to confer immunity and, in fact, prior CDI is a
significant risk factor for subsequent acquisition of CDI [5].
These models have been generalized to temporal networks
such that an infected node at time ¢ can only infect its
neighbors in G, [14].

III. PROBLEM FORMULATION
A. Informal Problems.

We ask two specific questions with an aim of developing
preemptive measures against disease outbreaks in healthcare
facilities. (i) Given limited resources, which individuals should
be isolated (or vaccinated) in order to reduce the likelihood of
epidemic outbreaks? (ii) Given limited flexibility on schedule,
which individual-location contacts should be prohibited in
order to reduce the likelihood of epidemic outbreaks? Note that
isolating a high number of individuals or prohibiting arbitrarily
high number of individual-location contact prevents healthcare
workers from providing effecting patient care. These two
questions naturally lead to node and edge deletion problems
respectively on the bipartite temporal contact network G which

models mobility within healthcare facilities. Note that deleting
a node in P (i.e., a person) removes the node from all G.
Similarly, deleting an edge from E; means that the edge is
gone even when the activity repeats, after 7 time units. In
order to make our problems formal and then provide solutions
to these problems, we take two next steps: (1) We describe
the standard SIS disease-spread model in temporal bipartite
networks representing mobility in healthcare facilities and (2)
We characterize the vulnerability of G to outbreaks in terms of
an epidemic threshold that we derive. The next two subsections
describe these.

B. SIS model on Dynamic Bipartite Networks.

The standard SIS model has been extended to temporal
networks [2], [14]. It also has been studied in the context
of bipartite networks [24]. Here, we describe the SIS model
in temporal bipartite networks in the context of HAIs. We
assume the process begins at time t = 1 in (G;, where a set
S C P of people are infected. At each subsequent time ¢, an
infected person p € P has an opportunity to contaminate all
locations | € L they visit at time ¢. More precisely, an infected
person p infects location | with probability 53, if (p,!) € E,.
An infected person recovers and becomes susceptible again
with probability J,. In the next time-stamp, ¢ + 1, newly
contaminated locations infect their visitors with probability ;.
Since we are modelling HAI spread, we model the stringent
cleaning protocols often employed at healthcare facilities. To
this end, we assume contaminated locations “recover” with
probability §; = 1 after they get their chance to infect the
visitors. As mentioned earlier, at time steps ¢ > 7, the mobility
is represented by G'((t—1) mod )41 and the process continues
till the disease dies out.

C. Deriving an epidemic threshold for G.

We begin by defining some notations. Let B; be the | P| x
|L| bi-adjacency matrix representing the graph G;. Similarly,
p: be a binary vector of size |P| indicating whether each
individual in P is infected or not at time ¢. Let us define the
system matrix of the bipartite temporal network G as follows:

S = H(l _5P)I+BpﬁlBthf mod 7)+1 (D
t=1

Intuitively, S captures progression of infection states over
time by combining the recovery process (captured by the ‘(1—
dp)I" term) and the process of infection spread (captured by
the ‘ﬂpBlBtBTt mod T)+1’ term). Now, let \g be the leading
eigenvalue of é The epidemic threshold of G is characterized
by the following theorem. The proofs of theorems/lemmas are
deferred to the full version of the paper.

Theorem 1: If Ag < 1, then p; is asymptotically stable at
0.

Note: Theorem 1 states that if A\g < 1 then the non-linear
dynamical system representing pathogen propagation in G is
stable when everybody is uninfected/healthy. It implies that
under small perturbations, the system quickly returns to the
state where everyone is healthy. Hence, regardless of initial
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Fig. 1: Time (z-axis) vs number of infections (y-axis) for the SIS model on temporal bipartite graphs extracted from various
healthcare facilities (see Section V for dataset description) for various values of Ag. As predicted by Theorem 1, infection dies
out quickly when Ag << 1, survives for few time-stamps when A\g =~ 1 and continues on otherwise.

condition, p; quickly converges to 0. On the other hand, if
As > 1, no such conditions hold.

We empirically validated Theorem 1 on four different
temporal bipartite networks extracted from various healthcare
facilities. We varied Ag and repeated the experiment for each
healthcare facility (See Figure 1. As observed in the figure,
the infection dies out quickly when A\g << 1, survives for
few time-stamps when Ag ~ 1 and continues on otherwise as
predicted by Theorem 1.

D. Formal Problem Statements.

Having precisely described the disease-spread model (Sec-
tion III-B) and derived an epidemic threshold for temporal
bipartite graphs for the SIS mode (Section III-C), we are now
ready to state our problems formally.

Problem 1: (DYNAMIC BIPARTITE EDGE
DELETION) Given a temporal bipartite network
g = {G17G27G3)"'7GT} with Gt(PvaEt)vtE[l,T]
and target fraction oap € (0,1], find a
smaller graph G* = {Gi,G5,G%,...,GE}  with
Gy (P*, L, Ef)V¢en1,-) by removing edges from G such
that | Ut Et*| > (1 — OtE)| Ue Et| and G* = argming: Ag’.

The node version of the problem, DYNAMIC BIPARTITE
NODE DELETION, is stated in a similar manner. In the prob-
lems above, G’ are the temporal graphs obtained by removing
edges/edges from G and Ag is the spectral radius of the system
matrix of G’.

IV. OUR APPROACH

Both the edge and node versions of our problem are
computationally challenging and in fact special cases of these
problems are already NP-Complete [19]. Furthermore, even
natural greedy heuristics are costly since they involve repeated
eigenvalue computation. Approaches using matrix perturbation
theory [18] for quickly estimating the change in A\g due to an
edge/node deletion seem difficult to use since S is a matrix
product. We next present a greedy combinatorial algorithm
which avoids eigenvalue computation completely.

We begin by noting that the relation between number of
closed walks in a static graph and eigenvalues of its adjacency
matrix is well known [15], [22]. We exploit this fact to design a
a scalable approach with approximation guarantees. However,
since our graph is dynamic in nature and it is the eigenvalue

of the system matrix (as opposed to the eigenvalue of the
adjacency matrix for static graphs) that we want to reduce, we
need to answer the question: “is there a graph we can derive
from G such that the walks on this graph are related to the
eigenvalues of the system matrix?”. We answer this question
first by creating a time-expanded graph F'(Vy, Es) from the
bipartite snapshots of G and then relating the number of closed
walks in F' to the eigenvalues of the system matrix. The static
directed graph F' is defined as follows.

Definition 1: Time-Expanded Bipartite Network. F' is a
time-expanded view of G. It consists of 2 x 7 layers of nodes,
with odd numbered layers consisting of people nodes and even
numbered layers corresponding to location nodes. The directed
edges between layers ¢ and 7+ 1 for when ¢ is an odd number
is given by B(;11),2 and is given by BiT/2 when i is even. The
outgoing edges in the last layer in F' connects to the first.

For a special case of the SIS model, with 5p = 1,
which assumes people get cured in one time-stamp, much
like the popular Independent Cascade model, we can show
that the leading eigenvalue of the system matrix and the
number of closed walks of certain lengths in F' are closely
related. For such a model, the system matrix reduces to
Sic = HZ=1 ﬂpﬁlBtht mod 7)41° Now, the relation between
the leading eigenvalue of Syc and the number of closed walk
in F' is given by the following theorem.

Theorem 2: For any k = 27c¢ for ¢ € N, we have the
following

> nodes(w) = Lm > (Ai(S1e) M
weW (F) (B - 1) i
where W (F') is the set of closed paths of length k in F' and
nodes(w) is the number of unique nodes in walk w.
Theorem 2 states that the number of closed walks in F" and the
eigenvalues of the system matrix of G for a special case of the
SIS model are closely related. Relying on this fact, we develop
a greedy algorithms called TEMPORALEDGECOVER which
repeatedly removes an edge participating in most closed walks.
The node version of the algorithm TEMPORALNODECOVER
does exactly the same except it removes nodes instead of
edges. The pseudocode for TEMPORALEDGECOVER is pre-
sented in Algorithm 1.

It turns out, we can actually prove that TEMPORALEDGE-
COVER is near-optimal. Let F'r be the edges selected by Al-
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Algorithm 1 TEMPORALEDGECOVER

Require: G = {G1,G2,Gs,...,G-} ,0<ap <1, K
Ensure: Temporal graph G’
1: Compute the time-expanded graph F' and F' using Definition 1
: Let By < U By
Er + 0
: while |ER| < OéE‘EU do
Compute X = FX~1 o FT
for every edge (i,j) € Ey \ Er do
Calculate W-Score(i, j) = >, X(4, 5, t), where X(4, j, t)
the copy of edge (,7) between layers ¢ and ¢ + 1
8: (3,4)* = arg max W-Score(z, j)
9: Remove all copies of (4,5)* from F and F
10: Er <+ ErUE,
11: if W-Score(i,j) == 0, for all edges then
12: R(—OAE‘EU|—‘ER‘
13: FEr < ErU R best edges to remove based on
W-Score(i, ) computed in the previous iteration

14: return G’ <+ G\ Er

AN A S

gorithm TEMPORALEDGECOVER to be removed. Removing
some edges from G converts some of the 1’s in By to 0’s; let
B; \ ER denote the bi-adjacency matrix obtained by replacing
the 1’s in B, that correspond to time ¢ edges in Erpc by 0’s.
Let Ss1 \ Fr denote the system matrix, but with each B; and
B/, replaced by B;\ Er and B, \ Er respectively. Recall
F is the directed graph defined in Definition 1. Let n be the
shorthand for the number, 7|P U L| of nodes in F.

Lemma 1: Given any constant € > 0, pick a smallest ¢
such that & = 27¢ is an integer larger than MHS%'
Then, we have (a) A1 (Ss1\Egr) < (1+¢), and furthermore (b)
|Egr| = O(|Eopr| - log? n) where Eopr is the set of fewest
edges in G such that A\;(Ss1 \ Errc) < 1.

V. EXPERIMENTS

We describe our experimental setup next. Code (and one of
our data along with documentation) is available for academic
purposes'. Experiments were conducted on Intel(R) Xeon(R)
machine with 528GB memory and 4 GPUs (GeForce GTX
1080 Ti).

Datasets: Our datasets consist of high resolution mobility logs
collected from various healthcare facilities. UTHC consists of
7 consecutive days of healthcare mobility log collected from
the University of Iowa Hospitals and Clinics. From this log,
we extract who-goes-where graph between healthcare profes-
sionals (HCPs) and locations. There are 5474 HCPs, 4216
unique locations, and a total of 26754 visits in the dataset.
Commercial HC is derived from proprietary data capturing
mobility in different healthcare facilities. The dataset captures
locations of HCPs at various times. There are a total of 44
million entry-exit logs at 20 different healthcare facilities of
varying types and sizes. From these, we extract 7-day mobility
graphs at 3 different facilities of varying sizes. Commercial
HC 1 consists of 995 HCPs, 434 unique locations, and 10833
visits. Similarly, Commercial HC 2 consists of 184 HCPs,

Thttps://github.com/bijayaVT/TemporalEdgeCover

85 unique locations, and 1686 visits. Carilion [10] consists
daily of interactions between 3.1 K individuals and locations
that took place in Carilion Clinic in Roanoke, VA. It also
consists of weekly mobility graphs and has an average of 30K
interactions per day.

Baselines: We compare performance of our approaches
against several baselines. RANDOM is a naive baseline which
removes nodes/edges in a random order. DEGREE deletes
nodes (edges) based on the sum of their degrees (sum of
the degree of its endpoints) at each time-stamp. TOPK is an
extension of existing approaches [19] in static monopartite
setting. It computes ranks of each node/edge based on the
drop in the value of Ag caused by its removal. Then it
simply deletes the top-k nodes/edges. EIGVECCEN deletes
the nodes/edges with the highest eigenvector centrality in F.
MONOPARTITE [14] models the interactions as monopartite
temporal networks and removes nodes/edges to reduce the
epidemic threshold.

A. Performance.

In our first experiment, we compare the performance of
our approach against all the baselines for both the edge and
node deletion problems as measured by their effectiveness in
reducing Ag. In each data, for each method we delete the
edges/nodes chosen by the method to obtain G’ from G. We
then compute the following.

s — Ay
~ s — Aso

Recall that \g- is the spectral radius of the system matrix of
G’. We define Ago to be the spectral radius of system matrix
of the graph obtained by removing all the edges (or all the
nodes). Ago = 0 for node deletion and Ago = (1 — §)" for
edge deletion. Note that g computes the percentage of drop
in the value of \g as compared to the maximum possible drop.

We repeat our experiments for various values of ag and
ap. The results for edge deletion are presented in the top row
of Figure 2. As seen in the figure, TEMPORALEDGECOVER
(black bar) is the best method in 14 out of 16 setups across all
values of o in all datasets. Even in the setups where TEMPO-
RALEDGECOVER is not the best (¢ = 0.1 for Commercial
HC 1 and ag = 0.3 for Carilion), it is very compet-
itive. TEMPORALEDGECOVER’s good performance over all
the baselines can be attributed to the fact that it is provably
near-optimal. Unsurprisingly, RANDOM has one of the worst
performances consistently. It is slightly more surprising to see
that DEGREE is the second best method ahead of TOPK and
EIGVECCEN for the edge deletion problem. We hypothesize
that in our dynamic setting the downstream effect of node/edge
removal in one time-stamp to another is high. Moreover, be-
cause of the centralized nature of healthcare facilities there are
natural ‘hub’ nodes such as nurses’ desks, check-in counters,
nurse practitioners. DEGREE does well by targeting such high
degree nodes. TOPK and EIGVECCEN only quantify centrality
once and hence they miss out on the capturing evolving
centralities as a result of each subsequent edge removal.
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Fig. 3: The log of infection count (averaged over 1000 runs) for the SIS model post edge deletion on all datasets.

Finally, the poor performance of MONOPARTITE highlights the
necessity of modeling pathogen spread in hospital as a process
over temporal bipartite networks. The results for node deletion
are presented in the bottom row of Figure 2. The story is
similar. Our approach TEMPORALNODECOVER outperforms
baselines in majority of the setting (11 out 16 settings) and
remains competitive even when it is not the best.

B. Reduction in Infections for the SIS Model.

Next, we compare performance of our algorithms and the
baselines in infection reduction. Here we first run all methods
for both edge and node deletion problems to obtain G’. Note
that all methods remove equal number of edges (and nodes)
from G to obtain G’. We run 1000 replicates of the SIS
simulations on G’ starting from 10 random seeds for each
method and keep track of the total number of infected nodes
at the end. We then summarize the results using box plots
showing variation in the total number of infections. We repeat
this for each method and for multiple values of ar and ay.
The result is summarized in Figure 3.

As observed in the figure, removing edges based on TEM-
PORALEDGECOVER leads to fewest infections in G’ in all five
of our datasets. We see that the benefit of our approaches over
the baselines are maximum for lower values of ag, which are

easier to implement in real world. For o = 0.7 we observe
that all methods except EIGVECCEN and TOPK lead to near
zero infection in Commercial HC 1. This is because these
two methods were not able to reduce \g in Commercial
HC 1 (See Figure 2 (a) top row). An interesting observation
is that there is a clear correspondence between the infection
count presented in Figure 3 and R presented in Figure 2. This
experiment shows that reducing \g does lead to reduction in
infection and also serves as an additional validation of the
threshold we derived in Theorem 1.

The results show a similar pattern for the node deletion
problem (Figure 3 bottom row). TEMPORALNODECOVER is
the best methods overall, followed by DEGREE. Note that
there are natural ‘hub’ nodes such as nurses’ desks, check-in
counters, and nurse practitioners in our datasets which favours
DEGREE over other baselines.

VI. RELATED WORKS

Epidemic Thresholds: The papers by Ganesh et al. [6]
and Chakrabarti et al. [3] are the earliest results on epidemic
thresholds for arbitrary networks. These results assume a static
network and apply to the SIS diease-spread model and the
latter result is obtained by using the nonlinear dynamical
system (NLDS) approach. Prakash et al. [13] generalize the



work of Chakrabarti et al. [3] to derive unified thresholds for
a variety of disease-spread models. In a direction particularly
relevant to this paper, Prakash et al. [14] generalize [3] to
derive epidemic thresholds for the SIS model on periodic,
time-varying dynamic networks. Sanatkar et al. [16] derive
epidemic thresholds for the SIS model on time-varying net-
works where the adjacency matrix at each time step is chosen
at random from a fixed set of matrices. All of these results
and more are discussed in the survey of Leitch et al. [11].
Node/Edge Deletion to reduce infections: Tong et al. [20]
propose the use of eigen-drop due to the deletion of a set .S
of k nodes, as a measure of the “shield-value” of S. Torres et
al. [21] focused on the nodes that have the largest influence on
the leading eigenvalue of a non-backtracking matrix of a graph
and proposed two metrics: X-non-backtracking centrality and
X-degree centrality, to identify the important nodes. The for-
mer metric considers aggregating non-backtracking centrality
of each node after specific nodes are removed whereas the
latter considers aggregating the degree of each node in prior
of specific nodes are removed. Since edge deletion is more
appropriate in some cases, Tong et al. [19] propose algorithms
for the deletion of k edges (as opposed to nodes) in order to
reduce infections. Chen et al. [4] propose algorithms for the
same problem that take advantage of the relationship between
eigenvector centrality and the leading eigenvalue. This method,
however, considers unweighted graphs and works on a static
network only. Song et al. [17] extend previous work by con-
sidering a setting where there are likely to be many outbreaks,
as opposed to a single outbreak.

Epidemic Modelling of Hospital Acquired Infections: Two
recent examples of epidemic modeling in healthcare settings
appear in [9], [1]. Jang et al. [9] model the spread of MRSA
whereas Adhikari et al. [1] model the spread of CDI.

VII. CONCLUSIONS

In this paper, we posed the problem of mitigating in-
fections in healthcare facilities as edge and node deletion
problems over temporal bipartite networks. To formulate the
problems, we derived epidemic thresholds on temporal bi-
partite networks for the SIS model. We showed that the
epidemic threshold depends on the leading eigenvalue of the
system matrix. We proposed a novel combinatorial algorithm
TEMPORALEDGECOVER which deletes nodes and edges from
the network such that the maximum possible drop on the
largest eigenvalue of the system matrix is achieved. We also
demonstrated that TEMPORALEDGECOVER is near optimal.
Our extensive experiments on mobility networks obtained from
various healthcare facilities demonstrate the validity of our
epidemic threshold and efficacy of our proposed algorithms.
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CDC MInD Healthcare group under cooperative agreement
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